5V, Dual Trip Point Temperature Sensors # Features: - User Programmable Hysteresis and Temperature Set Point - Easily Programs with 2 External Resistors - Wide Temperature Detection Range: - -0°C to 70°C: (TC620/TC621CCX) - -40°C to +125°C: (TC620/TC621CVX) - -40°C to +85°C: (TC620/TC621CEX) - -55°C to +125°C: (TC620/TC621CMX) - Onboard Temperature Sensing Applications (TC620X) - External NTC Thermistor for Remote Sensing Applications (TC621X) - Available in 8-Pin PDIP and SOIC Packages # **Applications:** - Power Supply Over Temperature Detection - Consumer Equipment - Temperature Regulators - · CPU Thermal Protection ## **Device Selection Table** | Part Number | Package | Temperature
Range | |-------------|------------|----------------------| | TC620X*COA | 8-Pin SOIC | 0°C to +70°C | | TC620X*CPA | 8-Pin PDIP | 0°C to +70°C | | TC620X*EOA | 8-Pin SOIC | -40°C to +85°C | | TC620X*EPA | 8-Pin PDIP | -40°C to +85°C | | TC620C*VOA | 8-Pin SOIC | -40°C to +125°C | | TC621X*COA | 8-Pin SOIC | 0°C to +70°C | | TC621X*CPA | 8-Pin PDIP | 0°C to +70°C | | TC621X*EOA | 8-Pin SOIC | -40°C to +85°C | | TC621X*EPA | 8-Pin PDIP | -40°C to +85°C | Note: *The part code will be C or H (see Functional Block Diagrams). # Package Type #### **General Description:** The TC620 and TC621 are programmable logic output temperature detectors designed for use in thermal management applications. The TC620 features an onboard temperature sensor, while the TC621 connects to an external NTC thermistor for remote sensing applications. Both devices feature dual thermal interrupt outputs (HIGH LIMIT and LOW LIMIT), each of which is programmed with a single external resistor. On the TC620, these outputs are driven active (high) when measured temperature equals the user programmed limits. The CONTROL (hysteresis) output is driven high when temperature equals the high limit setting and returns low when temperature falls below the low limit setting. This output can be used to provide ON/OFF control to a cooling fan or heater. The TC621 provides the same output functions except that the logical states are inverted. The TC620/TC621 are usable over operating temperature ranges of 0°C to 70°C, -40°C to +125°C and -55°C to 125°C. # **Functional Block Diagrams** # 1.0 ELECTRICAL CHARACTERISTICS # **Absolute Maximum Ratings*** | Supply Voltage | | | | | |---|--|--|--|--| | Input Voltage Any Input (GND $-$ 0.3V) to (V $_{\rm DD}$ +0.3V) | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | Derating Factors: Plastic8 mW/°C | | | | | | Operating Temperature: M Version | | | | | | Storage Temperature65°C to +150°C | | | | | *Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. ## TC620/TC621 ELECTRICAL SPECIFICATIONS | Electrica | Electrical Characteristics: T _A = 25°C, unless otherwise specified. | | | | | | |------------------|--|-------|-----|-------|------|---| | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | | V_{DD} | Supply Voltage Range | 4.5 | | 18 | V | | | I _{DD} | Supply Current | _ | 270 | 400 | μА | $5V \le V_{DD} \le 18V$ | | R _{OUT} | Output Resistance | _ | 400 | 1000 | W | Output High or Low, $5V \le V_{DD} \le 18V$ | | I _{OUT} | Output Current | _ | _ | 1 | mA | Temp. Sensed Source/Sink | | I _{OUT} | Output Current | _ | _ | 1 | mA | Cool/Heat Source/Sink | | T _{ERR} | Absolute Accuracy | T - 3 | Т | T + 3 | °C | T = Programmed Temperature | # 2.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 2-1. TABLE 2-1: PIN FUNCTION TABLE | Pin No.
(8-Pin PDIP)
(8-Pin SOIC)
0°C to +70°C
-40°C to +85°C
-40°C to +125°C | Symbol | Description | |--|------------|---| | 1 | NC | No Internal Connection. | | 2 | LOW SET | Low temperature set point. Connect an external 1% resistor from LOW SET to $V_{\mbox{\scriptsize DD}}$ to set trip point. | | 3 | HIGH SET | High temperature set point. Connect an external 1% resistor from HIGH SET to V_{DD} to set trip point. | | 4 | GND | Ground Terminal. | | 5 | CONTROL | Control output. | | 6 | HIGH LIMIT | High temperature push/pull output. | | 7 | LOW LIMIT | Low temperature push/pull output. | | 8 | V_{DD} | Power supply input. | | Pin No.
(8-Pin PDIP)
(8-Pin SOIC)
0°C to +70°C
-40°C to +85°C | Symbol | Description | | |---|------------|--|--| | 1 | THERMISTOR | Thermistor input. | | | 2 | HIGH SET | High temperature set point. Connect an external 1% resistor from HIGH SET to V_{DD} to set trip point. | | | 3 | LOW SET | Low temperature set point. Connect an external 1% resistor from LOW SET to V_{DD} to set trip point. | | | 4 | GND | Ground Terminal. | | | 5 | CONTROL | Control output. | | | 6 | LOW LIMIT | Low temperature push/pull output. | | | 7 | HIGH LIMIT | High temperature push/pull output. | | | 8 | V_{DD} | Power supply input. | | ## 3.0 DETAILED DESCRIPTION The TC620 has a positive temperature coefficient temperature sensor and a dual threshold detector. Temperature set point programming is accomplished with external resistors from the HIGH SET and LOW SET inputs to V_{DD} The HIGH LIMIT and LOW LIMIT outputs remain low as long as measured temperature is below set point values. As measured temperature increases, the LOW LIMIT output is driven high when temperature equals the LOW SET set point (±3°C max). If temperature continues to climb, the HIGH LIMIT output is driven high when temperature equals the HIGH SET set point (Figure 3-1). The CONTROL (hysteresis) output is latched in its active state at the temperature specified by the HIGH SET resistor. CONTROL is maintained active until temperature falls to the value specified by the LOW SET resistor. FIGURE 3-1: TC620/TC621 Input vs. Output Logic # 3.1 Programming the TC620 The resistor values to achieve the desired trip point temperatures on HIGH SET and LOW SET are calculated using Equation 3-1: ### **EQUATION 3-1:** $$R_{TRIP} = 0.5997 \text{ x T}^{2.1312}$$ Where: R_{TRIP} = Programming resistor in Ohms T = The desired trip point temperature in degrees Kelvin. For example, a 50°C setting on either the HIGH SET or LOW SET input is calculated using Equation 3-2 as follows: #### **EQUATION 3-2:** $$R_{SET} = 0.5997~x~((50 + 273.15)^{2.1312}) = 133.6~k\Omega$$ Care must be taken to ensure the LOW SET programming resistor is a smaller value than the HIGH SET programming resistor. Failure to do this will result in erroneous operation of the CONTROL output. Care must also be taken to ensure the LOW SET temperature setting is at least 5°C lower than the HIGH SET temperature setting. Figure 3-2 can help the user obtain an estimate of the external resistor values required for the desired LOW SET and HIGH SET trip points. FIGURE 3-2: TC620 Sense Resistors vs. Trip Temperature # 3.2 Built-in Hysteresis To prevent output "chattering" when measured temperature is at (or near) the programmed trip point values, the LOW SET and HIGH SET inputs each have built-in hysteresis of -2°C below the programmed settings (Figure 3-3). FIGURE 3-3: Built-In Hysteresis on Low Limit and High Limit Outputs As shown, the outputs remain in their active state (hysteresis) until temperature falls an additional 2°C below the user's setting. # 3.3 Using the TC621 The TC621 operation is similar to that of the TC620, but requires an external NTC thermistor. Use the resistance versus temperature curve of the thermistor to determine the values of the programming resistors. Note that the pin numbers for the HIGH SET and LOW SET programming resistors for the TC621 are reversed versus that of the TC620 (i.e., the resistor value on HIGH SET [Pin 2] should always be lower than the one connected to LOW SET [Pin 3]). Also note that the outputs of the TC621 are LOW TRUE when used with an NTC thermistor. #### 3.4 TC621 Thermistor Selection The TC621 uses an external thermistor to monitor the controlling temperature. A thermistor with a resistance value of approximately 100 k Ω at 25°C is recommended. A temperature set point is selected by picking a resistor whose value is equal to the resistance of the thermistor at the desired temperature. For example, using the data shown in Figure 3-4, a 30 k Ω resistor between HIGH TEMP (Pin 2) and V_{DD} (Pin 8) sets the high temperature trip point at +51°C and a 49 k Ω resistor on LOW TEMP (Pin 3) sets the low temperature trip point to +41°C. FIGURE 3-4: Typical NTC Thermistor # 3.5 TC620/TC621 Outputs Both devices have complimentary output stages. They are rated at a source or sink current of 1 mA maximum. # 4.0 TYPICAL APPLICATIONS # 4.1 Dual Speed Temperature Control In Figure 4-1, the Dual Speed Temperature Control uses a TC620 and a TC4469 quad driver. Two of the drivers of the TC4469 are configured in a simple oscillator. When the temperature is below the LOW TEMP set point, the output of the driver is OFF. When the temperature exceeds the LOW TEMP set point, the TC4469 gates the oscillator signal to the outputs of the driver. This square wave signal modulates the remaining outputs and drives the motor at a low speed. If this speed cannot keep the temperature below the HIGH TEMP set point, then the driver turns on continuously which increases the fan speed to high. The TC620 will monitor the temperature and only allow the fan to operate when needed and at the required speed to maintain the desired temperature. A higher power option can be designed by adding a resistor and a power MOSFET. # 4.2 Temperature Controlled Fan In the application in Figure 4-2, a high and a low temperature is selected by two R_{L} and $R_{H}.$ The TC620 monitors the ambient temperature and turns the FET switch on when the temperature exceeds the HIGH TEMP set point. The fan remains on until the temperature decreases to the LOW TEMP set point. This provides the hysteresis. In this application, the fan turns on only when required. The TC621 uses an external thermistor to monitor the ambient temperature. This adds one part, but allows more flexibility with the location of the temperature sensor. FIGURE 4-1: Dual Speed Temperature Control FIGURE 4-2: Temperature Controlled Fan FIGURE 4-3: Heating and Cooling Application # 5.0 PACKAGING INFORMATION # 5.1 Package Marking Information Package marking data not available at this time. # 5.2 Taping Form #### 5.3 **Package Dimensions** For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging ## 8-Pin Plastic DIP # **Package Dimensions (Continued)** For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging # 8-Pin SOIC Dimensions: inches (mm) # 6.0 REVISION HISTORY # **Revision D (December 2012)** Added a note to each package outline drawing. NOTES: # **SALES AND SUPPORT** ## Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: - Your local Microchip sales office - 1. 2. The Microchip Worldwide Site (www.microchip.com) Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. #### **New Customer Notification System** Register on our web site (www.microchip.com/cn) to receive the most current information on our products. **NOTES:** #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2001-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 9781620768235 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # **Worldwide Sales and Service** #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0464 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 ## **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820 11/29/12 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! # Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.