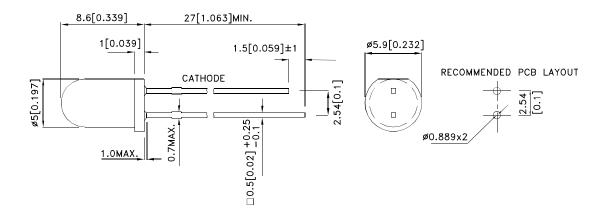


T-1 3/4 (5mm) SOLID STATE LAMP

Part Number: WP7113LVBC/D Blue

ATTENTION OBSERVE PRECAUTIONS FOR HANDLING **ELECTROSTATIC** DISCHARGE SENSITIVE **DEVICES**


Features

- Low power consumption.
- Popular T-1 3/4 diameter package.
- General purpose leads.
- Reliable and rugged.
- Long life solid state reliability.
- Available on tape and reel.
- Low current IF=2mA operating.
- RoHS compliant.

Descriptions

- The Blue source color devices are made with InGaN Light Emitting Diode.
- Electrostatic discharge and power surge could damage the LEDs.
- It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs.
- All devices, equipments and machineries must be electrically grounded.

Package Dimensions

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25(0.01") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
 4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

SPEC NO: DSAN8290 **REV NO: V.2B DATE: JAN/22/2015** PAGE: 1 OF 6 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: L.Q.Xie ERP: 1101033258

Selection Guide

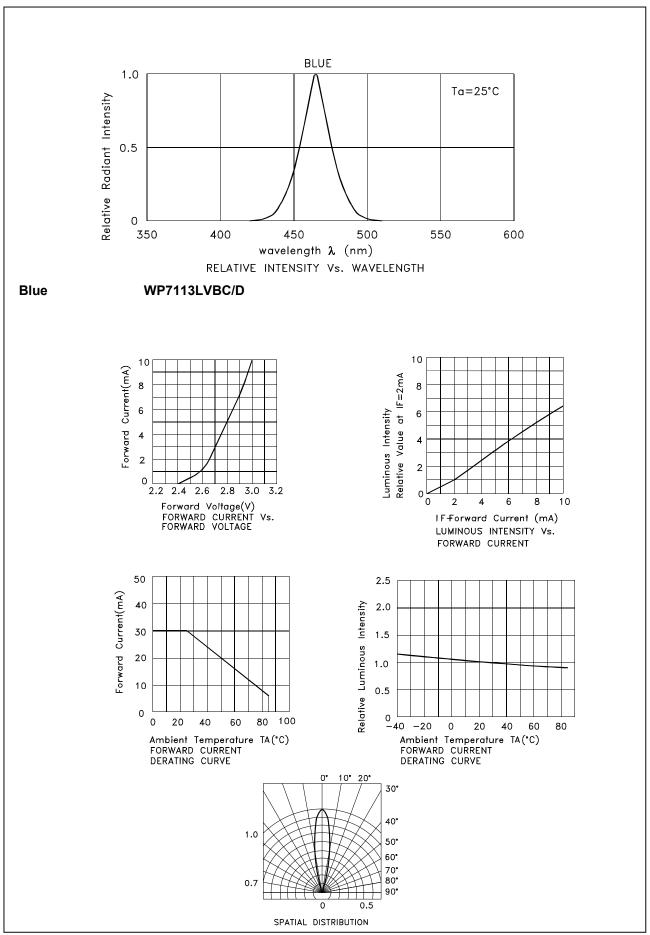
Part No.	Dice	Lens Type	lv (mcd) [2] @ 2mA		Viewing Angle [1]
			Min.	Тур.	201/2
WP7113LVBC/D	Blue (InGaN)	Water Clear	550	1600	20°

Notes:

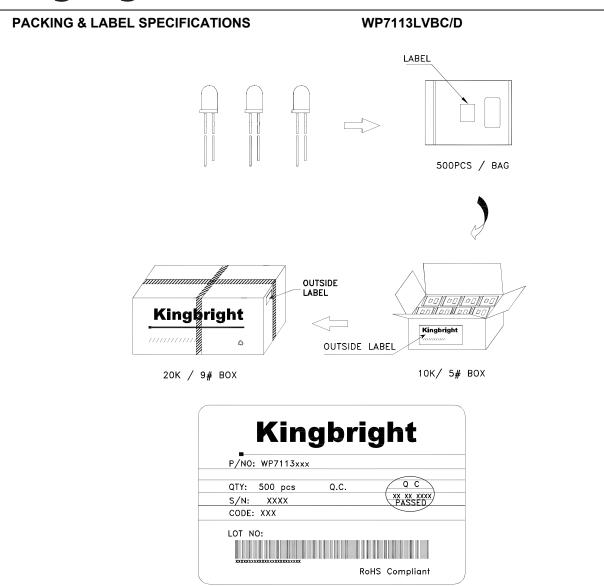
- 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
- 2. Luminous intensity/ luminous Flux: +/-15%.
- 3. Luminous intensity value is traceable to the CIE127-2007 compliant national standards.

Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Device	Min.	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	Blue		465		nm	IF=2mA
λD [1]	Dominant Wavelength	Blue		470		nm	IF=2mA
Δλ1/2	Spectral Line Half-width	Blue		22		nm	IF=2mA
С	Capacitance	Blue		100		pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	Blue	2.2	2.65	3.0	V	IF=2mA
lr	Reverse Current	Blue			50	uA	V _R = 5V


- 1.Wavelength: +/-1nm.
- 2.Forward Voltage: +/-0.1V.
- 3. Wavelength value is traceable to the CIE127-2007 compliant national standards.
- 4.Excess driving current and/or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

Absolute Maximum Ratings at TA=25°C

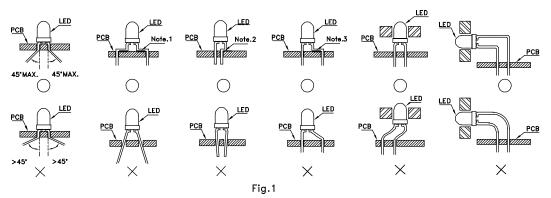

Parameter	Blue	Units		
Power dissipation	90	mW		
DC Forward Current	30	mA		
Peak Forward Current [1]	100	mA		
Reverse Voltage	5	V		
Operating/Storage Temperature	-40°C To +85°C			
Lead Solder Temperature [2]	260°C For 3 Seconds			
Lead Solder Temperature [3]	260°C For 5 Seconds			

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
- 3. 5mm below package base.

PAGE: 2 OF 6 SPEC NO: DSAN8290 **REV NO: V.2B** DATE: JAN/22/2015 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: L.Q.Xie ERP: 1101033258

SPEC NO: DSAN8290 REV NO: V.2B DATE: JAN/22/2015 PAGE: 3 OF 6
APPROVED: WYNEC CHECKED: Allen Liu DRAWN: L.Q.Xie ERP: 1101033258

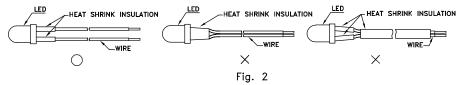
Terms and conditions for the usage of this document

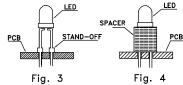

- 1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- 2. The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.
- 4. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.
- 5. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.
- 6. All design applications should refer to Kingbright application notes available at http://www.KingbrightUSA.com/ApplicationNotes

SPEC NO: DSAN8290 REV NO: V.2B DATE: JAN/22/2015 PAGE: 4 OF 6

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: L.Q.Xie ERP: 1101033258

PRECAUTIONS

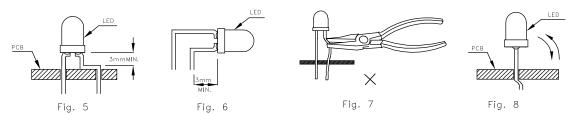

- 1. Storage conditions:
 - a.Avoid continued exposure to the condensing moisture environment and keep the product away from rapid transitions in ambient temperature.
 - b.LEDs should be stored with temperature $\leq 30^{\circ}$ C and relative humidity < 60%.
 - c.Product in the original sealed package is recommended to be assembled within 72 hours of opening. Product in opened package for more than a week should be baked for 30 (+10/-0) hours at 85 \sim 100°C.
- 2. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)


" \bigcirc " Correct mounting method " \times " Incorrect mounting method

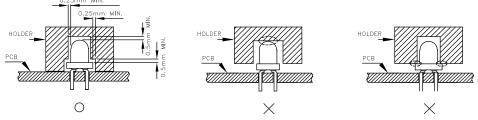
Note 1-3: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits.

3. When soldering wires to the LED, each wire joint should be separately insulated with heat—shrink tube to prevent short—circuit contact. Do not bundle both wires in one heat shrink tube to avoid pinching the LED leads. Pinching stress on the LED leads may damage the internal structures and cause failure. (Fig. 2)

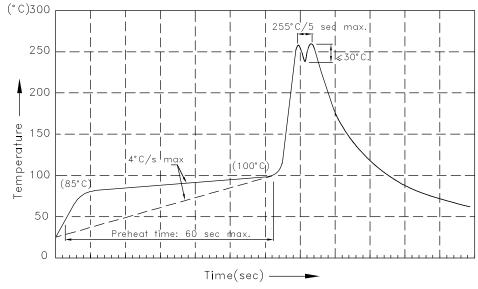
4. Use stand-offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.



- 5. Maintain a minimum of 3mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)
- 6. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)


SPEC NO: DSAN8290 REV NO: V.2B DATE: JAN/22/2015 PAGE: 5 OF 6

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: L.Q.Xie ERP: 1101033258


7. Do not bend the leads more than twice. (Fig. 8)

8. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

- 9. The tip of the soldering iron should never touch the lens epoxy.
- 10. Through-hole LEDs are incompatible with reflow soldering.
- 11. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.
- 12. Recommended Wave Soldering Profiles:

Notes

- 1.Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C
- 2.Peak wave soldering temperature between 245°C \sim 255°C for 3 sec (5 sec max).
- 3.Do not apply stress to the epoxy resin while the temperature is above 85°C.
- 4.Fixtures should not incur stress on the component when mounting and during soldering process.
- 5.SAC 305 solder alloy is recommended.
- 6.No more than one wave soldering pass.

SPEC NO: DSAN8290 REV NO: V.2B DATE: JAN/22/2015 PAGE: 6 OF 6

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: L.Q.Xie ERP: 1101033258

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.