ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

40 V, 200 mA NPN/PNP switching transistor Rev. 01 — 31 August 2009

Product data sheet

1. Product profile

1.1 General description

NPN/PNP double switching transistor in a SOT666 ultra small and flat lead Surface-Mounted Device (SMD) plastic package.

Table 1. Product overview

Type number	Package	0		PNP/PNP	
	NXP	JEITA	complement	complement	
PMBT3946VPN	SOT666	-	PMBT3904VS	PMBT3906VS	

1.2 Features

- Double general-purpose switching transistor
- Board-space reduction
- Ultra small and flat lead SMD plastic package

1.3 Applications

General-purpose switching and amplification

1.4 Quick reference data

Table 2.	Quick reference data							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Per transistor; for the PNP transistor with negative polarity								
V_{CEO}	collector-emitter voltage	open base	-	-	40	V		
I _C	collector current		-	-	200	mA		
TR1 (NPN	TR1 (NPN)							
h _{FE}	DC current gain	$V_{CE} = 1 V;$ $I_{C} = 10 mA$	100	180	300			
TR2 (PNF	TR2 (PNP)							
h _{FE}	DC current gain	$V_{CE} = -1 V;$ $I_{C} = -10 mA$	100	180	300			

40 V, 200 mA NPN/PNP switching transistor

2. Pinning information

Table 3.	Pinning		
Pin	Description	Simplified outline	Graphic symbol
1	emitter TR1		
2	base TR1		
3	collector TR2		
4	emitter TR2	0	
5	base TR2		
6	collector TR1	1 2 3	1 2 3
			sym019

3. Ordering information

Table 4. Ordering	informatio	n	
Type number	Package		
	Name	Description	Version
PMBT3946VPN	-	plastic surface-mounted package; 6 leads	SOT666

4. Marking

Table 5.	Marking codes	
Type num	ber	Marking code
PMBT394	6VPN	ZE

5. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

		•••				
Symbol	Parameter	Conditions	Min	Max	Unit	
TR1 (NPN	l)					
V _{CBO}	collector-base voltage	open emitter	-	60	V	
TR2 (PNF	?)					
V _{CBO}	collector-base voltage	open emitter	-	-40	V	
Per transistor; for the PNP transistor with negative polarity						
V _{CEO}	collector-emitter voltage	open base	-	40	V	
V_{EBO}	emitter-base voltage	open collector	-	6	V	
I _C	collector current		-	200	mA	
I _{CM}	peak collector current	single pulse; t _p ≤ 1 ms	-	200	mA	
I _{BM}	peak base current	single pulse; t _p ≤ 1 ms	-	100	mA	
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	[2] _	240	mW	

40 V, 200 mA NPN/PNP switching transistor

Table 6.	Limiting	values	continued
----------	----------	--------	-----------

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Per devic	e				
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	[1][2] _	360	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] Reflow soldering is the only recommended soldering method.

[2] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per trans	istor					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	<u>[1][2]</u> _	-	521	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point		-	-	100	K/W
Per devic	e					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	[1][2] _	-	347	K/W

[1] Reflow soldering is the only recommended soldering method.

[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

NXP Semiconductors

PMBT3946VPN

40 V, 200 mA NPN/PNP switching transistor

7. Characteristics

Table 8.Characteristics

 $T_{amb} = 25 \circ C$ unless otherwise specified.

anno —•						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TR1 (NPN	۷)					
I _{CBO}	collector-base cut-off current	$V_{CB} = 30 \text{ V}; I_E = 0 \text{ A}$	-	-	50	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = 6 V; I_C = 0 A$	-	-	50	nA
h _{FE}	DC current gain	$V_{CE} = 1 V$				
		I _C = 0.1 mA	60	180	-	
		$I_{\rm C} = 1 \rm{mA}$	80	180	-	
		I _C = 10 mA	100	180	300	
		I _C = 50 mA	60	105	-	
		I _C = 100 mA	30	50	-	
V _{CEsat}	collector-emitter	$I_{C} = 10 \text{ mA}; I_{B} = 1 \text{ mA}$	-	75	200	mV
	saturation voltage	$I_{C} = 50 \text{ mA}; I_{B} = 5 \text{ mA}$	-	120	300	mV
V _{BEsat}	base-emitter	$I_{C} = 10 \text{ mA}; I_{B} = 1 \text{ mA}$	650	750	850	mV
	saturation voltage	$I_{C} = 50 \text{ mA}; I_{B} = 5 \text{ mA}$	-	850	950	mV

40 V, 200 mA NPN/PNP switching transistor

Table 8. Characteristics ...continued

$T_{amb} = 25 \circ C$ unless otherwise specified

	°C unless otherwise sp					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _d	delay time	$V_{CC} = 3 \text{ V}; \text{ I}_{C} = 10 \text{ mA};$	-	-	35	ns
t _r	rise time	$I_{Bon} = 1 \text{ mA};$ $I_{Boff} = -1 \text{ mA}$	-	-	35	ns
t _{on}	turn-on time		-	-	70	ns
t _s	storage time		-	-	200	ns
t _f	fall time		-	-	50	ns
t _{off}	turn-off time		-	-	250	ns
C _c	collector capacitance	$V_{CB} = 5 V; I_E = i_e = 0 A;$ f = 1 MHz	-	-	4	рF
C _e	emitter capacitance	$\label{eq:Veb} \begin{split} V_{EB} &= 500 \text{ mV};\\ I_C &= i_c = 0 \text{ A}; \text{ f} = 1 \text{ MHz} \end{split}$	-	-	8	рF
f _T	transition frequency	V_{CE} = 20 V; I_C = 10 mA; f = 100 MHz	300	-	-	MHz
NF	noise figure	$\label{eq:VCE} \begin{split} V_{CE} &= 5 \text{ V}; \text{ I}_{C} = 100 \ \mu\text{A}; \\ R_{S} &= 1 \ k\Omega; \\ \text{f} &= 10 \ \text{Hz} \ \text{to} \ 15.7 \ \text{kHz} \end{split}$	-	-	5	dB
TR2 (PNF	?)					
I _{CBO}	collector-base cut-off current	$V_{CB} = -30 \text{ V}; I_E = 0 \text{ A}$	-	-	-50	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -6 V; I_C = 0 A$	-	-	-50	nA
h _{FE}	DC current gain	$V_{CE} = -1 V$				
		I _C = -0.1 mA	60	180	-	
		$I_{\rm C} = -1 \rm{mA}$	80	180	-	
		$I_{\rm C} = -10 {\rm mA}$	100	180	300	
		I _C = -50 mA	60	130	-	
		$I_{\rm C} = -100 \rm{mA}$	30	50	-	
V _{CEsat}	collector-emitter	$I_{C} = -10 \text{ mA}; I_{B} = -1 \text{ mA}$	-	-100	-250	mV
	saturation voltage	$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -5 \text{ mA}$	-	-165	-400	mV
V _{BEsat}	base-emitter	$I_{C} = -10 \text{ mA}; I_{B} = -1 \text{ mA}$	-	-750	-850	mV
	saturation voltage	$I_{\rm C} = -50 \text{ mA}; I_{\rm B} = -5 \text{ mA}$	-	-850	-950	mV
t _d	delay time	$V_{CC} = -3 V;$	-	-	35	ns
t _r	rise time	$I_{\rm C} = -10 \text{ mA};$	-	-	35	ns
t _{on}	turn-on time	$I_{Bon} = -1 \text{ mA};$ $I_{Boff} = 1 \text{ mA}$	-	-	70	ns
t _s	storage time	20	-	-	225	ns
t _f	fall time		-	-	75	ns
t _{off}	turn-off time		-	-	300	ns
C _c	collector capacitance	$\label{eq:VCB} \begin{array}{l} V_{CB} = -5 \text{ V}; \text{ I}_{E} = \text{i}_{e} = 0 \text{ A}; \\ \text{f} = 1 \text{ MHz} \end{array}$	-	-	4.5	pF

40 V, 200 mA NPN/PNP switching transistor

Table 8. Characteristics ...continued

$T_{amb} = 25 ^{\circ}C$ unless otherwise specified.						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _e	emitter capacitance	$V_{EB} = -500 \text{ mV};$ $I_C = i_c = 0 \text{ A}; \text{ f} = 1 \text{ MHz}$	-	-	10	pF
f _T	transition frequency	$V_{CE} = -20 \text{ V};$ $I_{C} = -10 \text{ mA};$ f = 100 MHz	250	-	-	MHz
NF	noise figure	$\label{eq:V_CE} \begin{array}{l} V_{CE} = -5 \ V; \\ I_C = -100 \ \mu \text{A}; R_S = 1 \ \text{k}\Omega; \\ f = 10 \ \text{Hz} \ \text{to} \ 15.7 \ \text{kHz} \end{array}$	-	-	4	dB

NXP Semiconductors

PMBT3946VPN

40 V, 200 mA NPN/PNP switching transistor

NXP Semiconductors

PMBT3946VPN

40 V, 200 mA NPN/PNP switching transistor

40 V, 200 mA NPN/PNP switching transistor

40 V, 200 mA NPN/PNP switching transistor

8. Test information

40 V, 200 mA NPN/PNP switching transistor

9. Package outline

10. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number Package		Description	Packing	Packing quantity	
			4000	8000	
PMBT3946VPN	SOT666	2 mm pitch, 8 mm tape and reel	-	-315	
		4 mm pitch, 8 mm tape and reel	-115	-	

[1] For further information and the availability of packing methods, see Section 14.

40 V, 200 mA NPN/PNP switching transistor

11. Soldering

40 V, 200 mA NPN/PNP switching transistor

12. Revision history

Table 10. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
PMBT3946VPN_1	20090831	Product data sheet	-	-	

40 V, 200 mA NPN/PNP switching transistor

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PMBT3946VPN_1 Product data sheet

40 V, 200 mA NPN/PNP switching transistor

15. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 3
7	Characteristics 4
8	Test information 10
9	Package outline 11
10	Packing information
11	Soldering 12
12	Revision history 13
13	Legal information 14
13.1	Data sheet status 14
13.2	Definitions 14
13.3	Disclaimers 14
13.4	Trademarks 14
14	Contact information 14
15	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

Date of release: 31 August 2009 Document identifier: PMBT3946VPN_1

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.