

Typical Applications

The HMC870LC5 is ideal for:

10 Gbps RZ Transmission

· Broadband Gain Block for

Test & Measurement Equipment

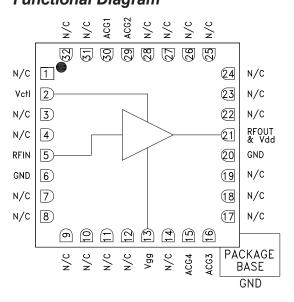
40 Gbps DQPSK

Military & Space

• 10 Gbps NRZ MZ & Low V_Π Modulator Driver

v05.0614

HMC870LC5


MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Features

Wide Supply Range from 3.3V to 7V Adjustable Output Amplitude: 2.5 to 8 Vp-p Low Additive RMS Jitter, <300 fs Low DC Power Consumption 1W for Vout = 8 Vp-p at Vdd = 7V Cross Point Adjustment

32 Lead 5x5mm SMT Package: 25mm²

Functional Diagram

General Description

The HMC870LC5 is a GaAs MMIC pHEMT Distributed Driver Amplifier packaged in a leadless 5x5 mm surface mount package which operates between DC and 20 GHz. The amplifier provides 17 dB of gain, 8Vp-p saturated output swing and features output swing cross point adjustment. Gain flatness is excellent at ± 0.5 dB as well as very low additive RMS jitter of 300 fs for 10 Gbps operation. HMC870LC5 provides Metro and Long Haul designers with scalable power dissipation for varying output drive requirements. (<0.4W at Vout = 3.6 Vp-p and <1W at Vout = 8.5 Vp-p) The HMC870LC5 has a very wide supply (Vdd) operating range from +3.3V to +7V, and the RF I/Os are internally matched to 50 Ohms.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd = 7V, Vctl = 1V, Idd = 165mA*

Parameter	Conditions		Тур.	Max.	Units
Gain	Frequency = 1 - 8 GHz Frequency = 8 - 16 GHz Frequency = 16 - 20 GHz		17.5 16.5 16		dB dB dB
Small Signal Bandwidth	3-dB cutoff		20		GHz
Input Return Loss	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		20 15		dB dB
Output Return Loss	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		20 15		dB dB
Gain Variation over Temperature	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		0.015 0.032	0.02 0.045	dB/°C dB/°C
Group Delay Variation	Frequency = 1 - 12 GHz		±15		ps
Saturated Output Power (Psat)	Frequency = 1 - 12 GHz Frequency = 12 - 20 GHz		24 23		dBm dBm

* Adjust Vgg between -2V to 0V to achieve Idd= 165 mA typical.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC870LC5

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Electrical Specifications, T_A = +25° C, Vdd = 7V, VctI = 1V, Idd = 165mA* Continued

Parameter	Conditions	Min.	Тур.	Max.	Units
Output Power for 1 dB Compression (P1dB)	Frequency = 1 - 12 GHz Frequency = 12 - 20 GHz	19 18	22 21		dBm dBm
Rise Time ^[1]	20% - 80%		20		ps
Fall Time ^[1]	20% - 80%		20		ps
Additive RMS Jitter ^[2]				300	fs
Supply Current (Idd) (Vgg = -0.6V Typ.)			165		mA
Bias Current Adjust (Vgg)		-2		0	V
Output Voltage Adjust (VctI)		0		2	V

[1] Data input = 22.5 Gbps NRZ PRBS 223-1 pattern, 1.2 Vp-p.

[2] RMS jitter is calculated with 22.5 Gbps 10101... pattern.

* Adjust Vgg between -2V to 0V to achieve Idd = 165 mA typical.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = 5V, Vctl = 1V, Idd = 140mA*

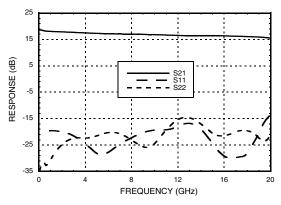
Parameter	Conditions	Min.	Тур.	Max.	Units
Gain	Frequency = 1 - 8 GHz Frequency = 8 - 16 GHz Frequency = 16 - 20 GHz	14 13.5 12	17.5 17.0 16.5		dB dB dB
Small Signal Bandwidth	3-dB cutoff		20		GHz
Input Return Loss	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		20 15		dB dB
Output Return Loss	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		15 10		dB dB
Gain Variation over Temperature	Frequency = 1 - 10 GHz Frequency = 10 - 20 GHz		0.016 0.029	0.02 0.045	dB/°C dB/°C
Group Delay Variation	Frequency = 1 - 12 GHz		±15		deg
Saturated Output Power (Psat)	Frequency = 1 - 12 GHz Frequency = 12 - 20 GHz		22.5 22		dBm dBm
Output Power for 1 dB Compression (P1dB)	Frequency = 1 - 12 GHz Frequency = 12 - 20 GHz	18 17	20.5 20		dBm dBm
Rise Time ^[1]	20% - 80%		20		ps
Fall Time ^[1]	20% - 80%		20		ps
Additive RMS Jitter ^[2]				300	fs
Supply Current (Idd) (Vgg = -0.6V Typ.)			140		mA
Bias Current Adjust (Vgg)		-2		0	V
Output Voltage Adjust (Vctl)		0		2	V

[1] Data input = 22.5 Gbps NRZ PRBS 2²³-1 pattern, 1.2 Vp-p.

[2] RMS jitter is calculated with 22.5 Gbps 10101... pattern.

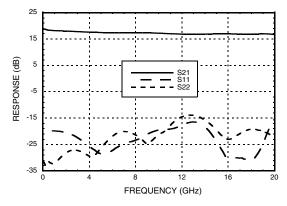
* Adjust Vgg between -2V to 0V to achieve Idd = 140 mA typical.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

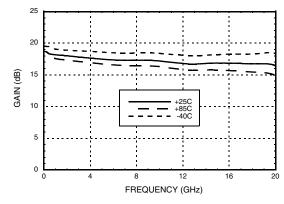


MZ OPTICAL MODULATOR

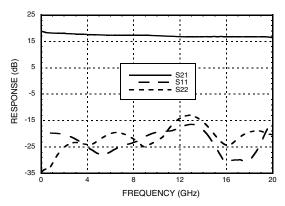
DRIVER, DC - 20 GHz

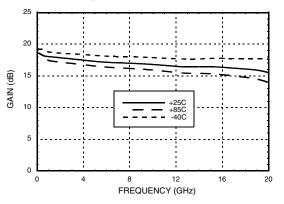

RoHS V EARTH FRIENDLY

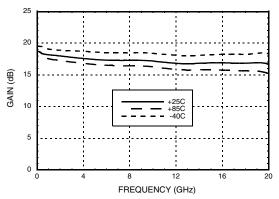
Gain & Return Loss @ Vdd = 7V



v05.0614


Gain & Return Loss @ Vdd = 3.3V

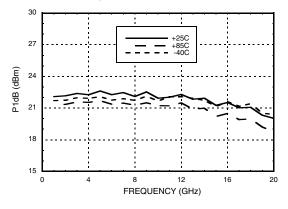

Gain vs. Temperature @ Vdd = 5V


Gain & Return Loss @ Vdd = 5V

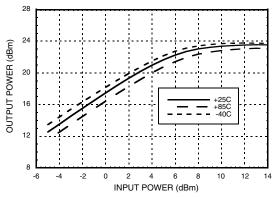
Gain vs. Temperature @ Vdd = 7V

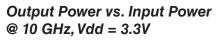
Gain vs. Temperature @ Vdd = 3.3V

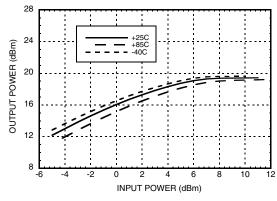
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

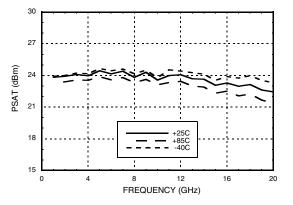
ARTH FRIENDLY

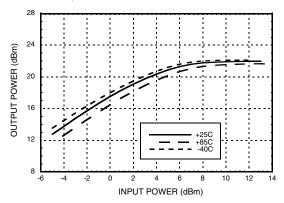

RoHS


P1dB vs. Temperature @ Vdd = 7V

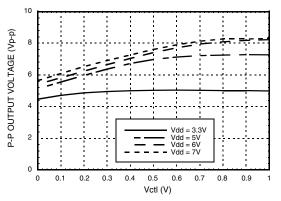

v05.0614

Output Power vs. Input Power @ 10 GHz, Vdd = 7V




[1] Data input = 11.25 Gbps NRZ PRBS 2²³-1 pattern, 1.2 Vp-p.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Psat vs. Temperature @ Vdd = 7V

Output Power vs. Input Power @ 10 GHz, Vdd = 5V

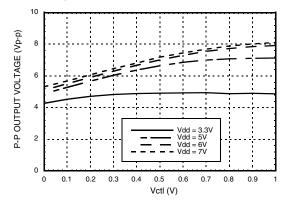
Peak-to-Peak Output Voltage vs. Vdd @ 11.25 Gbps^[1]

HMC870LC5

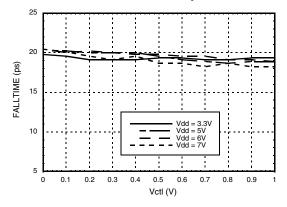
MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

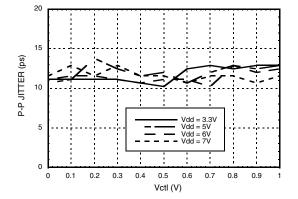
Vdd = 3.3V Vdd = 5V

Vdd = 6V Vdd = 7V


0.6 0.7 0.8 0.9

0.5


Vctl (V)


Peak-to-Peak Output Voltage vs. Vdd @ 22.5 Gbps ^[1]

Fall Time vs. Vdd@ 22.5 Gbps [1]

Peak-to-Peak Jitter vs. Vdd @ 11.25 Gbps [3][4]

Data input = 22.5 Gbps NRZ PRBS 2²³-1 pattern, 1.2 Vp-p.
 RMS jitter is measured with 22.5 Gbps 10101... pattern.

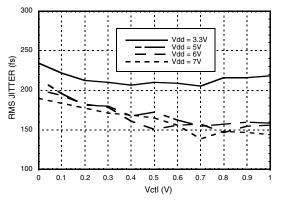
RMS Jitter vs. Vdd @ 22.5 Gbps^[2]

Rise Time vs. Vdd @ 22.5 Gbps [1]

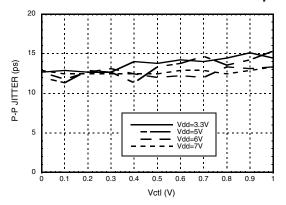
20

15

10


5

0

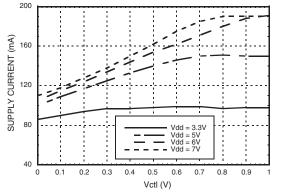

0.1

0.2 0.3 0.4

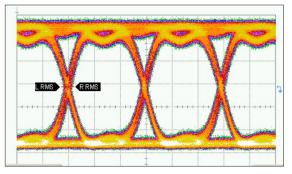
RISE TIME (ps)

Peak-to-Peak Jitter vs. Vdd @ 22.5 Gbps [1][4]

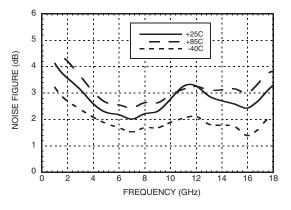
[3] Data input = 11.25 Gbps NRZ PRBS 2²³-1 pattern, 1.2 Vp-p.
[4] Source jitter was not de-embedded.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ROHS V


Supply Current vs. Vdd @ 22.5 Gbps [1]

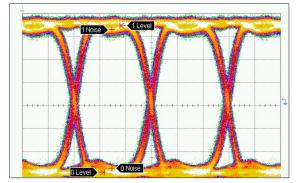
v05.0614


[1] Data Input = 22.5 Gbps NRZ PRBS 223-1 pattern, 1.2 Vp-p

11.25 Gbps NRZ Output Eye Diagram

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Noise Figure vs. Temperature @ Vdd = 7V



	N			
	Current	Min	Max	Units
Eye Amplitude	3.6	3.6	3.6	V
Rise Time	20	20	20	ps
Fall Time	21.33	20.67	22	ps
Jitter RMS	1.893	1.87	2.072	ps

Time scale: 30.0 ps/div Amplitude scale: 762 mV/div

Vdd = 3.3V, Vin: 11.25 Gbps NRZ PRBS 2^{31} -1, 0.5 Vp-p Vout: 3.6Vp-p Vctl = 1V

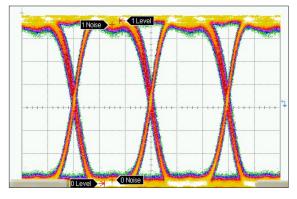
11.25 Gbps NRZ Output Eye Diagram

	N			
	Current	Min	Max	Units
Eye Amplitude	7.47	7.47	7.47	V
SNR	17.97	17.88	18.12	V/V

Time scale: 30.0 ps/div Amplitude scale: 1.17 V/div

Vdd = 5V, Vin: 11.25Gbps NRZ PRBS 2³¹-1, 1.2V p-p, Vout: 7.5Vp-p Vctl = 1V

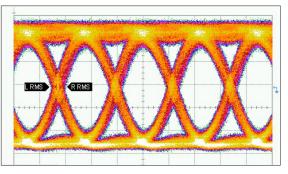
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



HMC870LC5

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

11.25 Gbps NRZ Output Eye Diagram (Continued)



	N			
	Current	Min	Max	Units
Eye Amplitude	8.26	8.26	8.27	V
SNR	22.35	22.26	22.51	V/V

Time scale: 30.0 ps/div Amplitude scale: 1.17 V/div

Vdd = 7V, Vin: 11.25Gbps NRZ PRBS 2³¹-1, 1.2V p-p, Vout: 8.3Vp-p Vctl = 1V

22.5 Gbps NRZ Output Eye Diagram

	Measurements			
	Current	Min	Max	Units
Eye Amplitude	3.53	3.53	3.54	V
Rise Time	18.22	17.33	18.22	ps
Fall Time	20.44	19.56	20.89	ps
Jitter RMS	2.417	2.187	2.422	ps

Time scale: 20.0 ps/div Amplitude scale: 762 mV/div

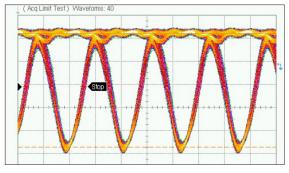
Vdd = 3.3V, Vin: 22.5Gbps NRZ PRBS 2³¹⁻¹, 0.5V p-p, Vout: 3.5Vp-p Vctl = 1V

22.5 Gbps NRZ Output Eye Diagram

	N			
	Current	Min	Max	Units
Eye Amplitude	7.85	7.84	7.85	V
SNR	13.74	13.69	14.07	V/V

Time scale: 20.0 ps/div Amplitude scale: 1.17 V/div

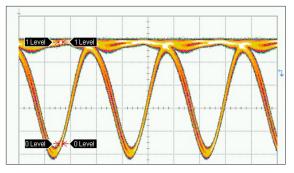
Vdd = 7V, Vin: 22.5Gbps NRZ PRBS 2³¹-1, 1.2 V p-p, Vout: 7.9Vp-p Vctl = 1V



MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

HMC870LC5

11.25 Gbps RZ Output Eye Diagram


v05.0614

	Measurements				
	Current Units				
Jitter RMS	1.93	ps			
Bit Rate	11.2	Gb/s			

Time scale: 40.0 ps/div Amplitude scale: 1.22 V/div

Vdd = 3.3V, Vin: 11.25Gbps RZ PRBS 2³¹-1, 0.3V p-p, Vout: 2.9Vp-p Vctl = 1V

11.25 Gbps RZ Output Eye Diagram

	N	Measurements		
	Current	Min	Max	Units
Duty Cycle	51.5	50.4	57.1	%
SNR	20.85	13.35	20.96	V/V
Jitter RMS	1.753	1.689	1.795	ps
Eye Amplitude	2.85	2.37	2.86	V

Time scale: 30.0 ps/div Amplitude scale: 647 mV/div

 $\label{eq:Vdd} Vdd = 5V, \, \text{Vin: 11.25Gbps} \ \text{RZ PRBS 2^{31}-1, $1.2V p-p,} \\ \text{Vout: 6Vp$-p} \\ \text{Vctl} = 1V \\ \end{array}$

Absolute Maximum Ratings

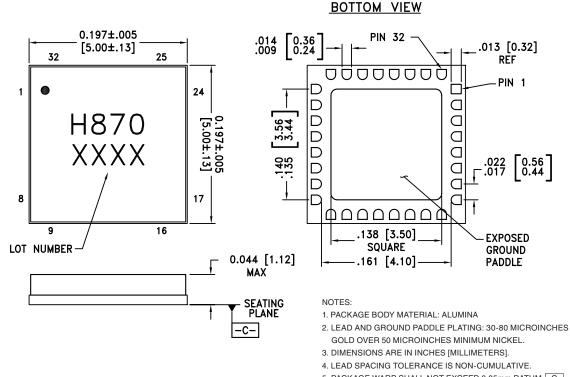
+9V
-2V to 0V
(Vdd -7) to Vdd (V)
+23 dBm
175 °C
1.5 W
59.4 °C/W
-65 to +150 °C
-40 to +85 °C
Class 1A

Typical Supply Current vs. Vdd*

Vdd (V)	ldd (mA)*	Power Dissipation (W)
+3.3	100	0.33
+5.0	140	0.70
+6.0	160	0.96
+7.0	165	1.115

* Adjust Vgg between -2V to 0V to achieve Idd shown.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


MZ OPTICAL MODULATOR

DRIVER, DC - 20 GHz

v05.0614

Outline Drawing

5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-

6. ALL GROUND LEADS AND GROUND PADDLE MUST BE

SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC870LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H870 XXXX

[1] Max peak reflow temperature of 260 $^\circ\text{C}$

[2] 4-Digit lot number XXXX

OPTICAL & MODULATOR DRIVERS - SM1

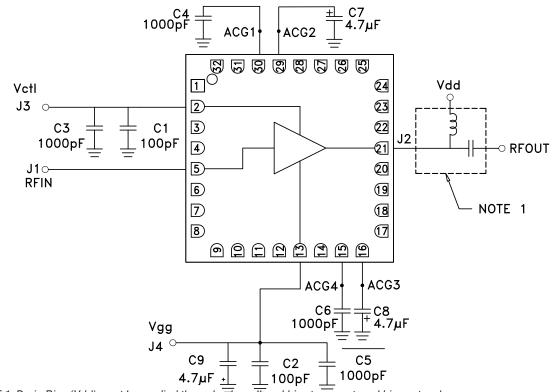
v05.0614

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 4, 7 - 12, 14, 17 - 19, 22 - 28, 31, 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	Vctl	Output voltage swing adjustment. +1V should be applied to Vctl for nominal operation.	Vctl
5	RFIN	This pin is DC coupled and matched to 50 Ohms.	
6, 20	GND	RF/DC Ground. These pins and the package base must be connected to RF/DC ground.	
13	Vgg	Gate Control for amplifier.	Vgg
15	ACG4	Low frequency termination. Attach bypass capacitor	RFINO ACG3
16	ACG3	per application circuit herein.	
21	RFOUT & Vdd	RF output for amplifier. Connect the DC bias (Vdd) network to provide drain current (Idd). See application circuit herein.	ACG1 0 RFOUT & ACG2 0
29	ACG2	Low frequency termination. Attach bypass capacitor	
30	ACG1	per application circuit herein.	= '

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

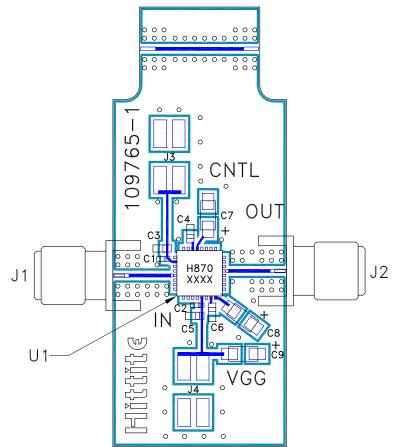


HMC870LC5

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Application Circuit

NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee or external bias network.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Evaluation PCB

v05.0614

List of Materials for Evaluation PCB 108347 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	2mm Molex Header	
C1, C2	100 pF Capacitor, 0402 Pkg.	
C3 - C6	1000 pF Capacitor, 0603 Pkg.	
C7 - C9	4.7 µF Capacitor, Tantalum	
U1	HMC870LC5, Modulator Driver	
PCB [2]	109765 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request. **OPTICAL & MODULATOR DRIVERS - SMT**

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC870LC5

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Device Operation

These devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

The input to this device should be AC-coupled. To provide the typical 8Vp-p output voltage swing, a 1.2Vp-p AC-coupled input voltage swing is required.

Device Power Up Instructions

- 1. Ground the device
- 2. Set Vgg to -2V (no drain current)
- 3. Set Vctl to +1V (no drain current)
- 4. Set Vdd to +5V (no drain current)
- 5. Adjust Vgg for Idd = 140mA
- Vgg may be varied between -1V and 0V to provide the desired eye crossing point percentage (i.e. 50% crosspoint) and a limited cross point control capability.
- Vdd may be increased to +7V if required to achieve greater output voltage swing.
- Vctl may be adjusted between +2V and +0V to vary the output voltage swing.

Device Power Down Instructions

1. Reverse the sequence identified above in steps 1 through 4.

RoHS√

v05.0614

HMC870LC5

MZ OPTICAL MODULATOR DRIVER, DC - 20 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.