SN74ALVCH16271 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 12-bit to 24-bit bus exchanger is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16271 is intended for applications in which two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. This device is particularly suitable as an interface between conventional DRAMs and high-speed microprocessors.

A data is stored in the internal A-to-B registers on the low-to-high transition of the clock (CLK) input, provided that the clock-enable (CLKENA) inputs are low. Proper control of these inputs allows two sequential 12-bit words to be presented as a 24-bit word on the B port.

Transparent latches in the B-to-A path allow asynchronous operation to maximize memory access throughput. These latches transfer data when the latch-enable ($\overline{\text{LE}}$) inputs are low. The select ($\overline{\text{SEL}}$) line selects 1B or 2B data for the A outputs. Data flow is controlled by the active-low output enables ($\overline{\text{OEA}}$, $\overline{\text{OEB}}$).

DGG OR DL PACKAGE (TOP VIEW)

OEA [1	\cup	56	OEB
LE1B			55	CLKENA2
2B3 [3		54] 2B4
GND [4		53	GND
2B2 [5] 2B5
2B1 [6		51] 2B6
V _{CC} [7		50] v _{cc}
A1 [8		49] 2B7
A2 [] 2B8
A3 [10		47] 2B9
GND [11] GND
A4 [12] 2B10
A5 [44	2B11
A6 [] 2B12
A7 [15] 1B12
A8 [16		41] 1B11
A9 [17] 1B10
GND [18] GND
A10 [19] 1B9
A11 [20] 1B8
A12 [1] 1B7
V _{CC} [22] v _{cc}
1B1 [23] 1B6
1B2 [24] 1B5
GND [GND
1B3 [1] 1B4
LE2B	27		30	CLKENA1
SEL [28		29] CLK

To ensure the high-impedance state during power up or power down, the output enables should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	SSOP - DL	Tube	SN74ALVCH16271DL	ALVCH16271		
-40°C to 85°C	330F - DL	Tape and reel	SN74ALVCH16271DLR	ALVCH10271		
	TSSOP - DGG	Tape and reel	SN74ALVCH16271DGGR	ALVCH16271		

 Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

FUNCTION TABLES

OUTPUT ENABLE

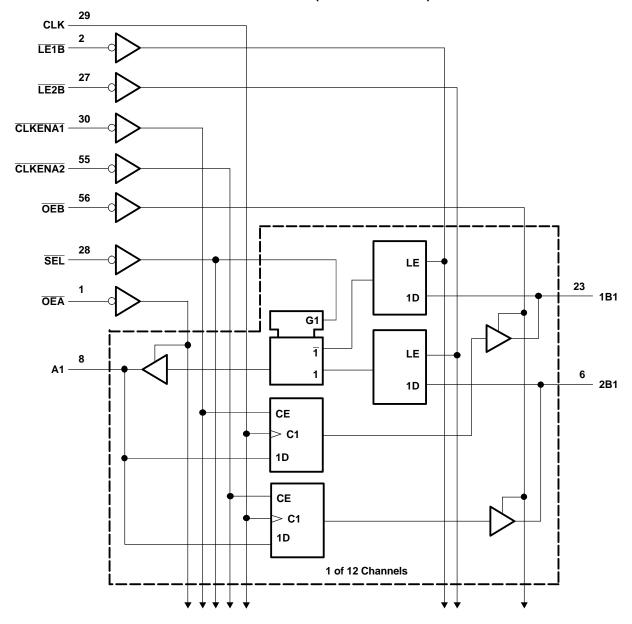
INP	UTS	OUTPUTS			
OEA	OEB	Α	1B, 2B		
Н	Н	Z	Z		
Н	L	Z	Active		
L	Н	Active	Z		
L	L	Active	Active		

A-TO-B STORAGE (OEB = L)

	INPU	OUTPUTS			
CLKENA1	CLKENA2	Α	1B	2B	
Н	Н	Х	Х	1B ₀ ⁽¹⁾	2B ₀ ⁽¹⁾
L	X	\uparrow	L	L	X
L	X	\uparrow	Н	Н	X
X	L	\uparrow	L	X	L
Χ	L	\uparrow	Н	A ₀	Н

(1) Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE ($\overline{OEA} = L$)


	INPUTS							
ΙĒ	SEL	1B	2B	Α				
Н	Х	Х	Х	A ₀ ⁽¹⁾				
Н	X	Χ	X	A ₀ ⁽¹⁾ A ₀ ⁽¹⁾				
L	Н	L	X	L				
L	Н	Н	X	Н				
L	L	Χ	L	L				
L	L	Χ	Н	Н				

 Output level before the indicated steady-state input conditions were established

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

LOGIC DIAGRAM (POSITIVE LOGIC)

SN74ALVCH16271 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
\/	Innut voltage range	Except I/O ports ⁽²⁾		4.6	V
VI	Input voltage range	I/O ports ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA
0	Deckage thermal impedance (4)	DGG package		64	°C/W
θ_{JA}	Package thermal impedance (4)	DL package		56	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage		0	V _{CC}	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		
	Libert Level autout aurona	V _{CC} = 2.3 V		-12	A	
l _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		12 12 24		
	I am land antent amount	V _{CC} = 2.3 V				
l _{OL}	Low-level output current	V _{CC} = 2.7 V				
		V _{CC} = 3 V				
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP(1)	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2		
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		
	$I_{OH} = -6 \text{ mA}$	2.3 V	2		
V _{OH}		2.3 V	1.7		V
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2		
		3 V	2.4		
	I _{OH} = -24 mA	3 V	2		
	I _{OL} = 100 μA	1.65 V to 3.6 V		0.2	
	I _{OL} = 4 mA	1.65 V		0.45	
N/	$I_{OL} = 6 \text{ mA}$	2.3 V		0.4	V
V _{OL}	1 12 m	2.3 V		0.7	V
	I _{OL} = 12 mA	2.7 V		0.4	
	I _{OL} = 24 mA	3 V		0.55	
I _I	$V_I = V_{CC}$ or GND	3.6 V		±5	μΑ
	V _I = 0.58 V	1.65 V	25		
	V _I = 1.07 V	1.65 V	-25		
	V _I = 0.7 V	2.3 V	45		
I _{I(hold)}	V _I = 1.7 V	2.3 V	-45		μΑ
	V _I = 0.8 V	3 V	75		
	V _I = 2 V	3 V	-75		
	$V_1 = 0$ to 3.6 $V^{(2)}$	3.6 V		±500	
I _{OZ} ⁽³⁾	$V_O = V_{CC}$ or GND	3.6 V		±10	μΑ
I _{cc}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		40	μΑ
ΔI_{CC}	One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μΑ
C _i Control inputs	$V_I = V_{CC}$ or GND	3.3 V	3.5		pF
C _{io} A or B ports	$V_O = V_{CC}$ or GND	3.3 V	9		pF

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)

			V _{CC} = 2 ± 0.2		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			130		130		130	MHz
t _w	Pulse duration, CLK high or low		3.3		3.3		3.3		ns
		A before CLK↑	2.6		2.1		1.7		
t _{su}	Setup time	B before LE	1.7		1.5		1.3		ns
		CLKEN before CLK↑	1.6		1.3		1		
		A after CLK↑	0.6		0.6		0.7		
t _h	Hold time	B after LE	0.9		0.9		1.1		ns
		CLKEN after CLK↑	1		0.9		0.9		

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to

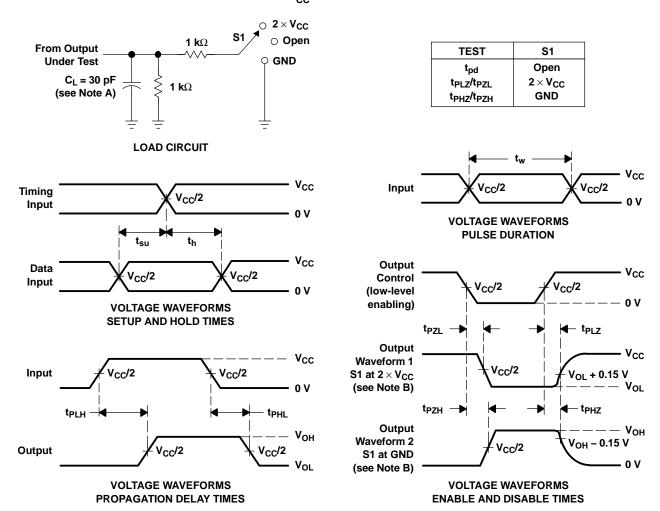
For I/O ports, the parameter $I_{\mbox{\scriptsize OZ}}$ includes the input leakage current.

SN74ALVCH16271 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = . ± 0.2	2.5 V 2 V	V _{CC} = 2	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(OUTPUT)	TYP		MAX	MIN	MAX	MIN	MAX	
f _{max}				130		130		130		MHz
	CLK	В	8	1	6.2		5	1	4.3	
	В		7	1	5.3		4.7	1.4	4	
t _{pd}	ĪĒ	Α	7	1	6		5.9	1.4	4.8	ns
	SEL		7	1.1	6.4		6.2	1.3	5.2	
t _{en}	OEB or OEA	B or A	8	1	6		6.1	1	5.1	ns
t _{dis}	OEB or OEA	B or A	7	1.4	5.4		4.6	1.7	4.2	ns

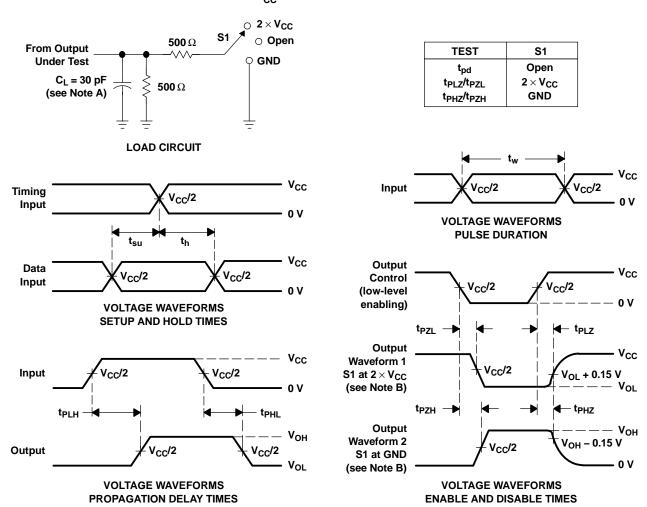

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

	PARAMETER			TEST C	ONDITIONS	V _{CC} = 2.5 V	$V_{CC} = 3.3 \text{ V}$	UNIT
	TANAMETER			IESIC	ONDITIONS	TYP	TYP	ONII
	A to B	Outputs enabled			92	105		
_	Dower discinstion conscitones	AIOB	Outputs disabled	0 0	f 40 MIL-	61	76	~F
C_{pd}	C _{pd} Power dissipation capacitance	D to A	Outputs enabled	$C_L = 0$,	f = 10 MHz	39	43	pF
		B to A	Outputs disabled			11	13	

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

PARAMETER MEASUREMENT INFORMATION $V_{cc} = 1.8 \text{ V}$


NOTES: A. C₁ includes probe and jig capacitance.

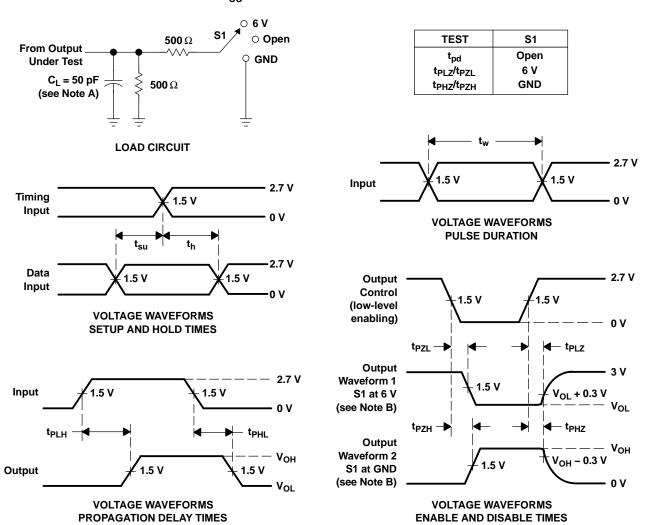
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{O}$ = 50 Ω , t_{f} \leq 2 ns, t_{f} \leq 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{Pl 7} and t_{PH7} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PL7} and t_{PH7} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.


Figure 2. Load Circuit and Voltage Waveforms

TRUMENTS

www.ti.com

SCES017G-JULY 1995-REVISED SEPTEMBER 2004

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω , $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

20-Aug-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
74ALVCH16271DGGRE4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74ALVCH16271DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ALVCH16271DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

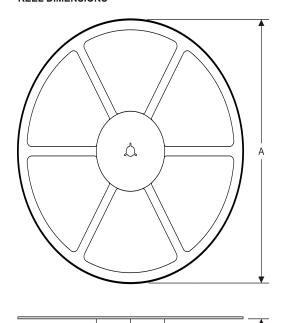
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

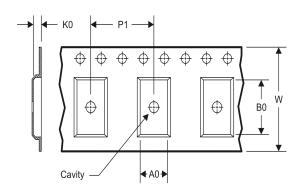
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

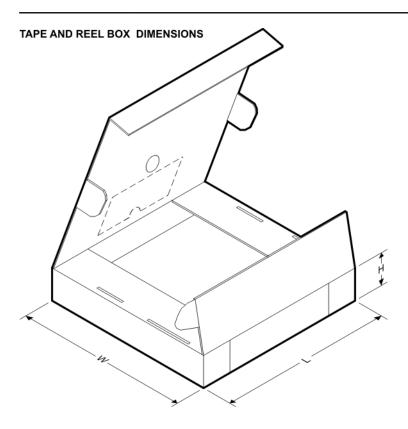
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

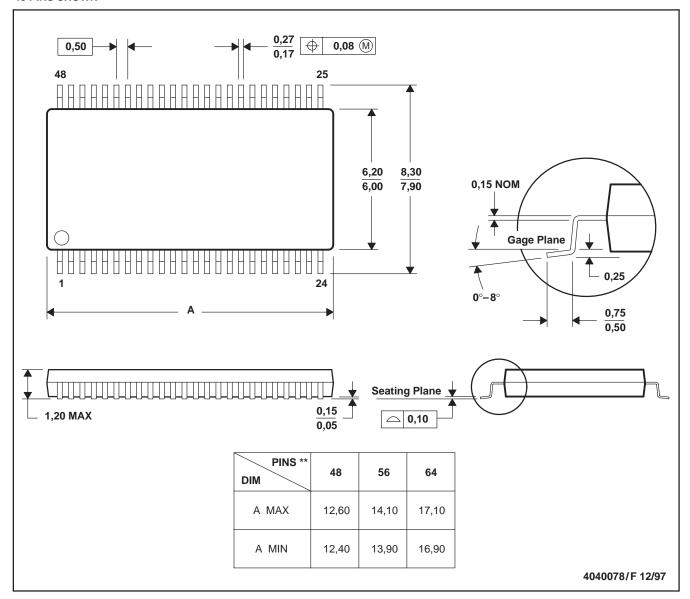

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH16271DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

www.ti.com 14-Jul-2012


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16271DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti oom/oudio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.