

#### **DATA SHEET**

# SE2622L: 2.4 GHz, 256 QAM Power Amplifier

# **Applications**

- DSSS 2.4 GHz WLAN (IEEE 802.11b)
- OFDM 2.4 GHz WLAN (IEEE 802.11g)
- OFDM 2.4 GHz WLAN (IEEE 802.11n)
- OFDM 2.4 GHz WLAN (256 QAM)
- Access points, PCMCIA, PC cards

#### **Features**

- Single 3.3 V supply operation:
  - 18 dBm, EVM = -35 dB, 256 QAM OFDM
  - -20 dBm, EVM = -30 dB, 802.11 n
  - 23 dBm, ACPR < -32 dBc, 802.11b
- Small signal gain: 31 dB typical
- Integrated temperature compensated power detector
- Digital power amplifier enable pin (VEN)
- Lead Free, Halogen Free and RoHS compliant
- Small footprint QFN (16-pin,  $3 \times 3 \times 0.9$  mm) package (MSL1, 260 °C per JEDEC J-STD-020)



Skyworks Green<sup>TM</sup> products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*<sup>TM</sup>, document number S004-0074.

# **Description**

The SE2622L is a 2.4 GHz power amplifier designed for use in the 2.4 GHz ISM band for wireless LAN applications. The device incorporates a power detector for closed loop monitoring of the output power.

The SE2622L includes a digital enable control for device on/off control.

The SE2622L temperature compensated power detector is highly immune to mismatch at its output with less than 1.5 dB of variation with a 2:1 mismatch. The device package and pinout for the 16-pin QFN are shown in Figure 1. A block diagram of the SE2622L is shown in Figure 2.

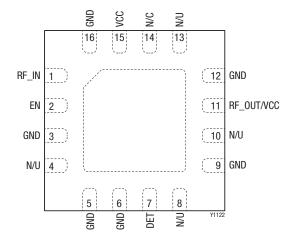



Figure 1. SE2622L Pinout – 16-Pin QFN (Top View)

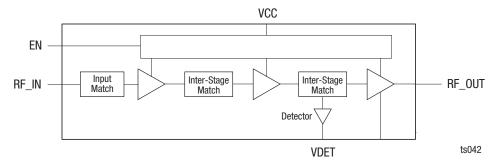



Figure 2. SE2622L Block Diagram

# **Electrical and Mechanical Specifications**

Signal pin assignments and functional pin descriptions are described in Table 1. The absolute maximum ratings of the SE2622L are provided in Table 2. Recommended operating

conditions are specified in Table 3. Electrical specifications are provided in Tables 4, 5, and 6.

Typical performance characteristics of the SE2622L are illustrated in Figure 3.

**Table 1. SE2622L Signal Descriptions** 

| Pin | Name  | Description                                        | Pin    | Name       | Description                                              |
|-----|-------|----------------------------------------------------|--------|------------|----------------------------------------------------------|
| 1   | RF_IN | Power amplifier RF input; DC block required        | 10     | N/U        | Not used                                                 |
| 2   | EN    | Digital pin used to power up and power down the IC |        | RF_OUT/VCC | Power Amplifier RF output / Final stage collector supply |
| 3   | GND   | Ground                                             | 12     | GND        | Ground                                                   |
| 4   | N/U   | Not used                                           | 13     | N/U        | Not used                                                 |
| 5,6 | GND   | Ground                                             | 14     | N/C        | No connect                                               |
| 7   | DET   | Analog power detector output                       | 15     | VCC        | Stages 1, 2 collector supply                             |
| 8   | N/U   | Not used                                           | 16     | GND        | Ground                                                   |
| 9   | GND   | Ground                                             | Paddle | GND        | Exposed die paddle; electrical and thermal ground        |

#### **Table 2. SE2622L Absolute Maximum Ratings (Note 1)**

| Parameter                                                | Symbol | Minimum | Maximum | Units |
|----------------------------------------------------------|--------|---------|---------|-------|
| Supply voltage on pins Vcc                               | Vcc    | -0.3    | +4      | V     |
| Power amplifier enable                                   | VEN    | -0.3    | +3.6    | V     |
| RF input power, RF_OUT terminated into 50 $\Omega$ match | RFIN   |         | +10     | dBm   |
| Storage temperature range                                | TSTG   | -40     | +150    | °C    |
| Electrostatic discharge:                                 | ESD    |         |         |       |
| Human Body Model (HBM), Class 1B                         |        |         | 500     | V     |

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

**CAUTION**: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

**Table 3. SE2622L Recommended Operating Conditions** 

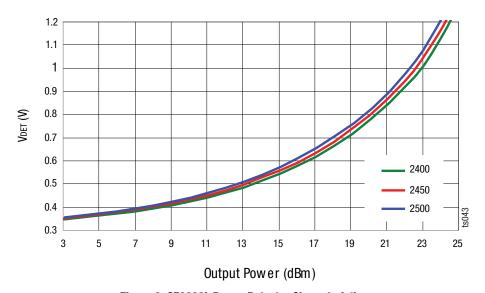
| Parameter                   | Symbol | Minimum | Maximum | Units |
|-----------------------------|--------|---------|---------|-------|
| Supply voltage              | Vcc    | 3.0     | 3.6     | ٧     |
| Supply voltage on pins VCC3 | Vcc3   | 3.0     | 3.6     | V     |
| Ambient temperature         | TA     | -40     | 85      | °C    |

Table 4. SE2622L Electrical Specifications: DC Characteristics (Note 1) (Vcc = Vcc3 = Ven = 3.3 V, TA = +25 °C, as Measured on Evaluation Board, Unless Otherwise Noted)

| Parameter                                           | Symbol      | Test Condition                                                       | Min | Typical | Max | Units |
|-----------------------------------------------------|-------------|----------------------------------------------------------------------|-----|---------|-----|-------|
| Supply current (Sum of Vcc0, Vcc, Vcc3) Icc-802.11b |             | POUT = +23 dBm, 11 Mbps CCK signal,<br>BT = 0.45, Vcc = Vcc3 = 3.3 V |     | 250     |     | mA    |
| Supply current (Sum of Vcc, Vcc3)                   | lcc-802.11g | Pout = +19 dBm, 54 Mbps OFDM signal,<br>Vcc = Vcc3 = 3.3 V           |     | 175     |     | mA    |
| Supply current (Sum of Vcc, Vcc3)                   | Icq         | No RF                                                                |     | 125     |     | mA    |
| Supply current                                      | loff        | VEN = 0 V, No RF                                                     |     | 2       | 10  | μА    |
| Logic high voltage                                  | VENH        |                                                                      | 1.3 |         | Vcc | ٧     |
| Logic low voltage                                   | VENL        |                                                                      | 0   |         | 0.5 | ٧     |
| Input current logic high voltage                    | lenh        |                                                                      |     | 300     |     | μА    |
| Input current logic low voltage                     | IENL        |                                                                      |     | <1      |     | μА    |
| Enable pin input impedance                          | ZEN         | Passive pull down                                                    |     | 10      |     | kΩ    |

Note 1: Performance is guaranteed only under the conditions listed in this table.

Table 5. SE2622L Electrical Specifications: AC Characteristics (Note 1) (VCC = VCC3 = VEN = 3.3 V, f = 2.45 GHz,  $TA = +25 ^{\circ}C$ , as Measured on Evaluation Board, Unless Otherwise Noted)


| Parameter                            | Symbol | Test Condition                                                          | Min     | Тур                     | Max                 | Units       |  |
|--------------------------------------|--------|-------------------------------------------------------------------------|---------|-------------------------|---------------------|-------------|--|
| Frequency range                      | f      |                                                                         | 2400    |                         | 2500                | MHz         |  |
|                                      |        | OFDM, 256 QAM, HT40, -35 dB EVM                                         |         | +18                     |                     |             |  |
|                                      |        | OFDM, 256 QAM, HT20, -35 dB EVM                                         |         | +19                     |                     | dBm         |  |
|                                      |        | OFDM, 256 QAM, HT40, -38 dB EVM                                         |         | +16                     |                     |             |  |
| Output power                         | Роит   | OFDM, 64 QAM, HT20, -30 dB EVM                                          |         | +20                     |                     |             |  |
|                                      |        | CCK signal, BT = 0.045, Mask                                            |         | +23                     |                     |             |  |
|                                      |        | 802.11n, HT20, all data rates, Mask                                     |         | +23                     |                     |             |  |
|                                      |        | 802.11n, HT40, all data rates, Mask                                     |         | +22                     |                     |             |  |
| Output 1dB compression point         | P1dB   | No modulation                                                           | +24.5   | +27                     |                     | dBm         |  |
| Input return loss                    | S11    |                                                                         |         | -12                     | -10                 | dB          |  |
| Small signal gain                    | S21    | Pin = −25 dBm                                                           | 26      | 31                      | 34                  | dB          |  |
| Gain Variation over band             | ΔS21   | PIN = −25 dBm, f = 2400 to 2500 MHz                                     |         | 1                       |                     | dB          |  |
| Hammania                             | 2f     | Pour CO dPm CW                                                          |         | -50                     |                     | dBm/MHz     |  |
| Harmonic                             | 3f     | POUT = +23 dBm, CW                                                      |         | -50                     |                     | dBm/MHz     |  |
| Rise and fall time                   | tR, tF |                                                                         |         | 0.5                     |                     | μS          |  |
| Stability                            | STAB   | POUT = +23 dBm, 54 Mbps OFDM signal,<br>64 QAM, VSWR = 6:1. All Phases  |         | armonicall<br>dBc/100 k | y related ou<br>KHz | itputs less |  |
| Tolerance to output load mismatching | VSVR   | POUT = +23 dBm, 54 Mbps OFDM signal,<br>64 QAM, VSWR = 10:1. All Phases | No dama | ge                      |                     |             |  |

 $\textbf{Note 1:} \ \ \textbf{Performance is guaranteed only under the conditions listed in this table.}$ 

Table 6. SE2622L Electrical Specifications: Power Detector Characteristics (Note 1)  $(Vcc = Vcc3 = Ven = 3.3 \text{ V}, f = 2.45 \text{ GHz}, TA = +25 ^{\circ}C, as Measured on Evaluation Board, Unless Otherwise Noted)}$ 

| Parameter         | Symbol  | Test Condition | Min | Typical | Max  | Units |
|-------------------|---------|----------------|-----|---------|------|-------|
| Pout detect range | PDR     |                | 0   |         | P1dB | dBm   |
| Detector voltage  | VDET    | Pout = +23 dBm |     | 1.04    |      | V     |
| Detector voltage  | VDET    | Pout = +21 dBm |     | 0.87    |      | V     |
| Detector voltage  | VDET    | Pout = No RF   |     | 0.33    |      | V     |
| Output impedance  | PDZout  |                |     | 2.3     |      | kΩ    |
| DC load impedance | PDZLOAD |                | 10  |         |      | kΩ    |

Note 1: Performance is guaranteed only under the conditions listed in this table.



**Figure 3. SE2622L Power Detector Characteristics** 

# **Evaluation Board Description**

The SE2622L-EK1 Evaluation Board is used to test the performance of the SE2622L-R PA. A typical application

schematic diagram is provided in Figure 4. Table 7 provides the Bill of Materials (BOM) list for Evaluation Board components.

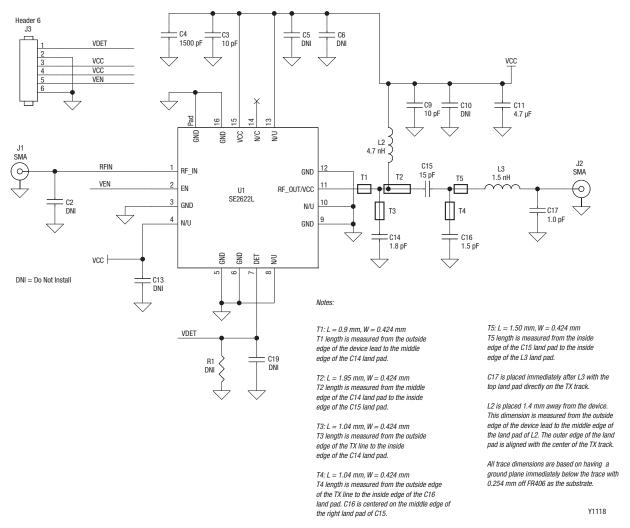



Figure 4. SE2622L Evaluation Board Schematic

## **Circuit Design Considerations**

The following design considerations are general in nature and must be followed regardless of final use or configuration:

- Paths to ground should be made as short as possible.
- The ground pad of the SE2622L-R has special electrical and thermal grounding requirements. This pad is the main thermal conduit for heat dissipation. Since the circuit board acts as the heat sink, it must shunt as much heat as possible from the device. Therefore, design the connection to the ground pad to dissipate the maximum wattage produced by the circuit board. Multiple vias to the grounding layer are required. For further
- information, refer to the Skyworks Application Note, *PCB Design Guidelines for High Power Dissipation Packages*, document number 201211.
- Bypass capacitors should be used on the DC supply lines. An RF inductor is required on the VCC supply line to block RF signals from the DC supply. Refer to the schematic drawing below for further details.
- The RF lines should be well separated from each other with solid ground between traces to maximize input-to-output isolation.

#### **Evaluation Board Test Procedure**

- 1. Connect GND to all ground pins.
- 2. Connect a power supply to the VCC1, VCC2, and the two RF\_OUT pins.
- 3. If desired, connect a voltage meter to the VDET pin.
- 4. Connect a +3.3 V supply to EN pin.
- 5. Connect a signal generator to the RF signal input port. Set it to the desired RF frequency at a power level of –30 dBm or less to the Evaluation Board. DO NOT enable the RF signal.
- 6. Connect a spectrum analyzer to the RF signal output port.

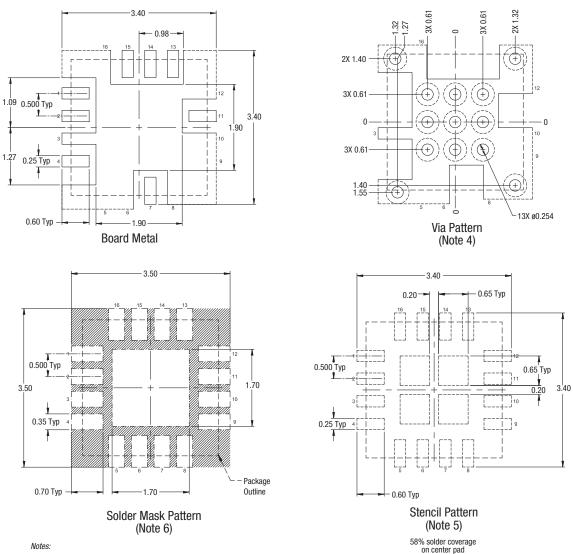
- 7. Enable the power supply.
- 8. Enable the RF signal.
- 9. Take measurements.

**CAUTION:** If the input signal exceeds the rated power, the Evaluation Board can be permanently damaged.

**NOTE:** It is important to adjust the VCC voltage source so that the target supply voltage (+5) is measured at the board. The high collector currents will drop the collector voltage significantly if long leads are used. Adjust the bias voltage to compensate."

**Table 7. SE2622L Evaluation Board Bill of Materials** 

| Component                     | Part number | Description       | Manufacturer |
|-------------------------------|-------------|-------------------|--------------|
| U1                            | SE2622L     |                   | Skyworks     |
| PCB                           | Z053-B      |                   | Skyworks     |
| R1, C2, C5, C6, C10, C13, C19 | DNI         |                   |              |
| C3, C9                        | 10 pF       | GRM1555C1H100JZ01 | Murata       |
| C4                            | 1500 pF     | GRM155R71H152KA01 | Murata       |
| C11                           | 4.7 μF      | GRM188R60J475KE19 | Murata       |
| C14                           | 1.8 pF      | GRM1555C1H1R8CZ01 | Murata       |
| C15                           | 15 pF       | GRM1555C1H150JZ01 | Murata       |
| C16                           | 1.5 pF      | GRM1555C1H1R5CZ01 | Murata       |
| C17                           | 1.0 pF      | GRM1555C1H1R0CZ01 | Murata       |
| J1, J2                        | SMA         | 142-0701-851      | Johnson      |
| J3                            | HEADER 6    | 22-28-4063        | Molex        |
| L2                            | 4.7 nH      | LQG18HN4N7S00D    | Murata       |
| L3                            | 1.5 nH      | LQG15HN1N5S02D    | Murata       |

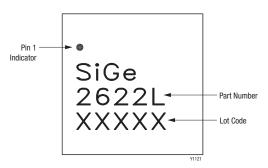

## **Package Dimensions**

The PCB layout footprint for the SE2622L is provided in Figure 5. Typical case markings are shown in Figure 6. Package dimensions for the 16-pin QFN are shown in Figure 7, and tape and reel dimensions are provided in Figure 8.

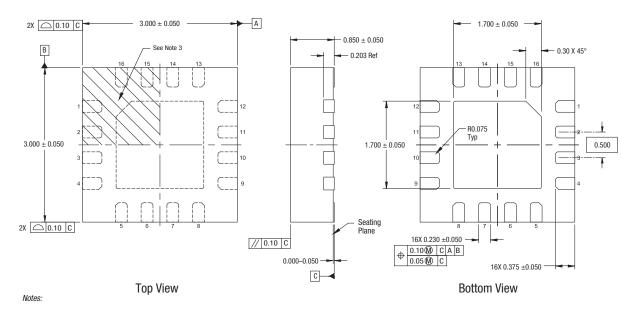
### **Package and Handling Information**

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2622L is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to:

- Skyworks Application Note: *Quad Flat No-Lead Module Solder Reflow & Rework Information*, Document Number QAD-00045.
- Skyworks Application Note: *Handling, Packing, Shipping and Use of Moisture Sensitive QFN*, Document Number QAD-00044.




Notes:


- All dimensions are in millimeters.
   Dimensions and tolerances according to ASME Y14.5M-1994.
   Unless specified, dimensions are symmetrical about center lines.
   Via hole recommendations: 0.025 mm Cu via wall plating (minimum), via hole to be filled with conductive paste and plated over.
   Stencil recommendations: 0.125 mm stencil thickness, laser cut apertures, trapezoidal walls and rounded corners offer better paste release.
   Solder mask recommendations: contact board fabricator for recommended solder mask offset and tolerance.

Y1177

Figure 5. PCB Layout Footprint for the SE2622L



**Figure 6. Typical Case Markings** (Top View)



- 1. Dimensions and tolerances according to ASME Y14.5M-1994.
- All measurements are in millimeters.

  Unless otherwise specified, the following values apply:
  Decimal Tolerance:
   XX (1 place) ± 0.1 mm
   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm

   XXX (2 places) ± 0.05 mm
- X.XXX (3 places) ± 0.025 mm 3. Terminal 1 identification mark located within marked area.

8

4. Unless specified, dimensions are symmetrical about center lines.

Y1123

Figure 7. SE2622L 16-Pin QFN Package Dimensions

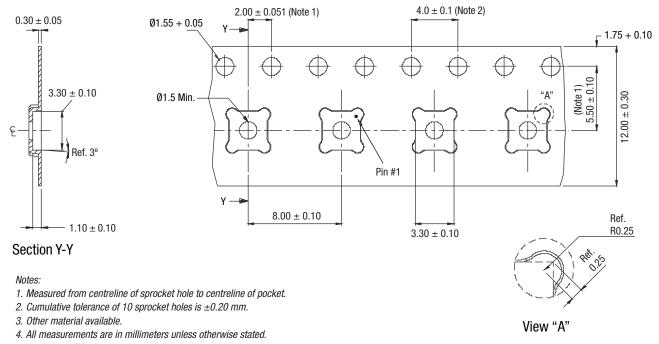



Figure 8. SE2622L Tape and Reel Dimensions

ts019

## **Ordering Information**

| Model Name                               | Manufacturing Part Number | <b>Evaluation Board Part Number</b> |  |
|------------------------------------------|---------------------------|-------------------------------------|--|
| SE2622L 2.4 GHz, 256 QAM Power Amplifier | SE2622L                   | SE2622L-EK1                         |  |

Copyright © 2013-2014 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

## Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.