Seven-channel QTouch ${ }^{\circledR}$ Touch Sensor IC

Features

- Configurations:
- Comms mode
- Standalone mode
- Number of Keys:
- Comms mode: 1-7 keys (or $1-6$ keys plus a Guard Channel)
- Standalone mode: $1-4$ keys plus a fixed Guard Channel on key 0
- Number of I/O Lines:
- Standalone mode: 5 outputs
- Technology:
- Patented spread-spectrum charge-transfer
- Key Outline Sizes:
- $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ or larger (panel thickness dependent); widely different sizes and shapes possible
- Layers Required:
- One
- Electrode Materials:
- Etched copper; Silver; Carbon; Indium Tin Oxide (ITO)
- Panel Materials:
- Plastic; Glass; Composites; Painted surfaces (low particle density metallic paints possible
- Panel Thickness:
- Up to 10 mm glass; Up to 5 mm plastic (electrode size dependent)
- Key Sensitivity:
- Comms mode: individually settable via simple commands over $I^{2} C$-compatible interface
- Standalone mode: settings are fixed
- Interface:
- $\mathrm{I}^{2} \mathrm{C}$-compatible slave mode (400 kHz). Discrete detection outputs
- Signal Processing:
- Self-calibration
- Auto drift compensation
- Noise filtering
- Adjacent Key Suppression ${ }^{\circledR}\left(\mathrm{AKS}^{\circledR}\right)$ - up to three groups possible
- Power:
- $1.8 \mathrm{~V}-5.5 \mathrm{~V}$
- Package:
- 14-pin SOIC RoHS compliant IC
- 20-pin VQFN RoHS compliant IC

1. Pinouts and Schematics

1.1 Pinout Configuration - Comms Mode (14-pin SOIC)

1.2 Pinout Configuration - Standalone Mode (14-pin SOIC)

1.3 Pinout Configuration - Comms Mode (20-pin VQFN)

1.4 Pinout Configuration - Standalone Mode (20-pin VQFN)

1.5 Pin Descriptions

Table 1-1. Pin Listings (14-pin SOIC)

| Pin | Name
 (Comms
 Mode) | Name
 (Standalone
 Mode) | Type | Description | If Unused,
 Connect |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |

1	VDD	VDD	P	Power	-
2	MODE	MODE	1	Mode selection pin Comms Mode - connect to Vss Standalone Mode - connect to Vdd	-
3	SDA	OUTO	OD	Comms Mode $-I^{2} C$ data line Standalone Mode - open drain output for guard channel	Open
4	$\overline{\text { RESET }}$	$\overline{\text { RESET }}$	1		Open
5	$\overline{\text { CHANGE }}$	OUT4	OD	$\overline{\text { CHANGE }}$ line for controlling the communications flow Comms Mode - connect to $\overline{\text { CHANGE }}$ line Standalone Mode - connect to output	Open
6	SCL	OUT3	OD	Comms Mode - connect to $I^{2} \mathrm{C}$ clock Standalone Mode - connect to output	Open
7	KEY6	OUT2	O/OD	Comms Mode - connect to Key 6 Standalone Mode - connect to output	Open
8	KEY5	OUT1	O/OD	Comms Mode - connect to Key 5 Standalone Mode - connect to output	Open
9	KEY4	KEY4	0	Key 4	Open
10	KEY3	KEY3	0	Key 3	Open
11	KEY2	KEY2	0	Key 2	Open
12	KEY1	KEY1	0	Key 1	Open
13	KEYO	KEYO	0	Key 0	Open
14	VSS	VSS	P	Ground	-

I	Input only	O	Output only, push-pull
OD	Open drain output	P	Ground or power

Table 1-2. Pin Listings (20-pin VQFN)

Pin	Name (Comms Mode)	Name (Standalone Mode)	Type	Description	If Unused, Connect To...
1	KEY4	KEY4	0	Key 4	Open
2	KEY3	KEY3	0	Key 3	Open
3	KEY2	KEY2	0	Key 2	Open
4	KEY1	KEY1	0	Key 1	Open
5	KEYO	KEYO	O	Key 0	Open
6	NC	NC	-	Not connected	-
7	NC	NC	-	Not connected	-
8	VSS	VSS	P	Ground	-
9	VDD	VDD	P	Power	-
10	NC	NC	-	Not connected	-
11	MODE	MODE	1	Mode selection pin Comms Mode - connect to Vss Standalone Mode - connect to Vdd	-
12	SDA	OUTO	OD	Comms Mode $-I^{2} C$ data line Standalone Mode - open drain output for guard channel	Open
13	$\overline{\text { RESET }}$	$\overline{\text { RESET }}$	I	$\overline{\text { RESET - has internal pull-up } 60 \mathrm{k} \Omega \text { resistor }}$	Open
14	CHANGE	OUT4	OD	$\overline{\text { CHANGE }}$ line for controlling the communications flow Comms Mode - connect to CHANGE line Standalone Mode - connects to output	Open
15	SCL	OUT3	OD	Comms Mode - connect to $I^{2} \mathrm{C}$ clock Standalone Mode - connect to output	Open
16	KEY6	OUT2	O/OD	Comms Mode - connect to Key 6 Standalone Mode - connect to output	Open
17	KEY5	OUT1	O/OD	Comms Mode - connect to Key 5 Standalone Mode - connect to output	Open
18	NC	NC	-	Not connected	-
19	NC	NC	-	Not connected	-
20	NC	NC	-	Not connected	-

I	Input only	O	Output only, push-pull
OD	Open drain output	P	Ground or power

1.6 Schematics

Figure 1-1. Typical Circuit - Comms (14-pin SOIC)

Figure 1-2. Typical Circuit - Standalone (14-pin SOIC)

Figure 1-3. Typical Circuit - Comms (20-pin VQFN)

Figure 1-4. Typical Circuit - Standalone (20-pin VQFN)

For component values in Figure 1-1, 1-2, 1-3, and 1-4, check the following sections:
Section 3.1 on page 12: Series resistors (Rs0 - Rs6 for comms mode and Rs0 - Rs4 for standalone mode)
Section 3.2 on page 12: LED traces
Section 3.4 on page 12: Power Supply (voltage levels)
Section 4.4 on page 14: SDA, SCL pull-up resistors

2. Overview

2.1 Introduction

The AT42QT1070 (QT1070) is a digital burst mode charge-transfer ($\mathrm{QT}^{\text {TM }}$) capacitive sensor driver. The device can sense from one to seven keys, dependent on mode.
The QT1070 includes all signal processing functions necessary to provide stable sensing under a wide variety of changing conditions, and the outputs are fully debounced. Only a few external parts are required for operation and no external Cs capacitors are required.
The QT1070 modulates its bursts in a spread-spectrum fashion in order to heavily suppress the effects of external noise, and to suppress RF emissions. The QT1070 uses a dual-pulse method of acquisition. This provides greater noise immunity and eliminates the need for external sampling capacitors, allowing touch sensing using a single pin.

2.2 Modes

2.2.1 Comms Mode

The QT1070 can operate in comms mode where a host can communicate with the device via an $I^{2} \mathrm{C}$ bus. This allows the user to configure settings for Threshold, Adjacent Key Suppression (AKS), Detect Integrator, Low Power (LP) Mode, Guard Channel and Max Time On for keys.

2.2.2 Standalone Mode

The QT1070 can operate in a standalone mode where an $I^{2} \mathrm{C}$ interface is not required. To enter standalone mode, connect the Mode pin to Vdd before powering up the QT1070.
In standalone mode, the start-up values are hard coded in firmware and cannot be changed. The default start-up values are used. This means that key detection is reported via their respective IOs. The Guard channel feature is automatically implemented on key 0 in standalone mode. This means that this channel gets priority over all other keys going into touch.

2.3 Keys

Dependent on mode, the QT1070 can have a minimum of one key and a maximum of seven keys. These can be constructed in different shapes and sizes. See "Features" on page 1 for the recommended dimensions.

- Comms mode - 1 to 7 keys (or 1 to 6 keys plus Guard Channel)
- Standalone mode - 1 to 4 keys plus a Guard Channel

Unused keys should be disabled by setting the averaging factor to zero (see Section 5.9 on page 18).
The status register can be read to determine the touch status of the corresponding key. It is recommended using the open-drain CHANGE line to detect when a change of status has occurred.

2.4 Input/Output (IO) Lines

There are no IO lines in comms mode.
In Standalone mode pins OUTO - OUT4 can be used as open drain outputs for driving LEDs.

2.5 Acquisition/Low Power Mode (LP)

There are 255 different acquisition times possible. These are controlled via the LP mode byte (see Section 5.11 on page 19) which can be written to via $I^{2} C$ communication.
LP mode controls the intervals between acquisition measurements. Longer intervals consume lower power but have an increased response time. During calibration, touch and during the detect integrator (DI) period, the LP mode is temporarily set to LP mode 1 for a faster response.

The QT1070 operation is based on a fixed cycle time of approximately 8 ms . The LP mode setting indicates how many of these periods exist per measurement cycle. For example, If LP mode $=1$, there is an acquisition every cycle $(8 \mathrm{~ms})$. If LP mode $=3$, there is an acquisition every 3 cycles (24 ms). If a high Averaging Factor (see Section 5.9 on page 18) setting is selected then the acquisition time may exceed 8 ms .
LP settings above mode 32 (256 ms) result in slower thermal drift compensation and should be avoided in applications where fast thermal transients occur.

2.6 Adjacent Key Suppression (AKS) Technology

The device includes the Atmel-patented Adjacent Key Suppression (AKS) technology, to allow the use of tightly spaced keys on a keypad with no loss of selectability by the user.
There can be up to three AKS groups, implemented so that only one key in the group may be reported as being touched at any one time. Once a key in a particular AKS group is in detect no other key in that group can go into detect. Only when the key in detect goes out of detection can another key go into detect state.
The keys which are members of the AKS groups can be set (see Section 5.9 on page 18). Keys outside the group may be in detect simultaneously.

2.7 CHANGE Line (Comms Mode Only)

The $\overline{\text { CHANGE }}$ line is active low and signals when there is a change of state in the Detection or Input key status bytes. It is cleared (allowed to float high) when the host reads the status bytes.
If the status bytes change back to their original state before the host has read the status bytes (for example, a touch followed by a release), the CHANGE line will be held low. In this case, a read to any memory location will clear the $\overline{\text { CHANGE line. }}$

The CHANGE line is open-drain and should be connected via a $47 \mathrm{k} \Omega$ resistor to Vdd . It is necessary for minimum power operation as it ensures that the QT1070 can sleep for as long as possible. Communications wake up the QT1070 from sleep causing a higher power consumption if the part is randomly polled.
Note: The $\overline{\text { CHANGE }}$ line is pulled low 100 ms after power-up or reset.

2.8 Types of Reset

2.8.1 External Reset

An external reset logic line can be used if desired, fed into the $\overline{\text { RESET }}$ pin. However, under most conditions it is acceptable to tie $\overline{\text { RESET }}$ to Vdd.

2.8.2 Soft Reset

The host can cause a device reset by writing a nonzero value to the $\overline{R E S E T}$ byte. This soft reset triggers the internal watchdog timer on a 125 ms interval. After 125 ms the device resets and wakes again.
The device NACKs any attempts to communicate with it during the first 30 ms of its initialization period.

2.9 Calibration

Writing a non-zero value to the calibration byte can force a recalibration at any time. This can be useful to clear out a stuck key condition after a prolonged period of uninterrupted detection.
Note: A calibrate command clears all key status bits and the overflow bit (until it is checked on the next cycle).

2.10 Guard Channel

A guard channel to help prevent false detection is available in both modes. This is fixed on key 0 for standalone mode and programmable for comms mode.
Guard channel keys should be more sensitive than the other keys (physically bigger). Because the guard channel key is physically bigger it becomes more susceptible to noise so it has a higher Averaging Factor (see Section 5.9 on page 18) and a lower Threshold (see Section 5.8 on page 18) than the other keys. In standalone mode it has an Averaging Factor of 16 and a Threshold of 10 counts.
A channel set as the guard channel (there can only be one) is prioritised when the filtering of keys going into detect is taking place. So if a normal key is filtering into touch (touch present but DI has not been reached) and the key set as the guard key begins filtering in, then the normal key's filter is reset and the guard key filters in first.

The guard channel is connected to a sensor pad which detects the presence of touch and overrides any output from the other keys.

Figure 2-1. Guard Channel Example

2.11 Signal Processing

2.11.1 Detect Threshold

The device detects a touch when the signal has crossed a threshold level and remained there for a specified number of counts (see Section 5.10 on page 19). This can be altered on a key-by-key basis using the key threshold $\mathrm{I}^{2} \mathrm{C}$ commands.
In standalone mode the detect threshold is set to a fixed value of 10 counts of change with respect to the internal reference level for the guard channel and 20 counts for the other four keys. The reference level has the ability to adjust itself slowly in accordance with the drift compensation mechanism.
The drift mechanism will drift toward touch at a rate of $160 \mathrm{~ms} \times 18=2.88$ seconds and away from touch at a rate of $160 \mathrm{~ms} \times 6=0.96$ seconds. The 160 ms is based on $20 \times 8 \mathrm{~ms}$ cycles. If the cycle time exceeds 8 ms then the overall times will be extended to match.

2.11.2 Detect Integrator

The device features a fast detection integrator counter (DI filter), which acts to filter out noise at the small expense of a slower response time. The DI filter requires a programmable number of consecutive samples confirmed in detection before the key is declared to be touched. The minimum number for the DI filter is 2 . Settings of 0 and 1 for the DI also default to 2 .

The DI is also implemented when a touch is removed. This uses the Fast Out DI option. When bit 5 of Address 53 is set the a key filters out with an integrator of 4.

2.11.3 Cx Limitations

The recommended range for key capacitance Cx is $1 \mathrm{pF}-30 \mathrm{pF}$. Larger values of Cx will give reduced sensitivity.

2.11.4 Max On Duration

If an object or material obstructs the sense pad the signal may rise enough to create a detection, preventing further operation. To prevent this, the sensor includes a timer which monitors detections. If a detection exceeds the timer setting the sensor performs a key recalibration. This is known as the Max On duration feature and is set to approximately 30 s in standalone mode.
In comms mode this feature can be changed by setting a value in the range 1-255
($160 \mathrm{~ms}-40,800 \mathrm{~ms}$) in steps of 160 ms . A setting of 0 disables the Max On Duration recalibration feature.
Note: If bit 4 of address 53 is clear then a recalibration of all keys occurs on Max On Duration, otherwise individual key recalibration occurs.

2.11.5 Positive Recalibration

If a keys signal jumps in the negative direction (with respect to its reference) by more than the Positive Recalibration setting (4 counts), then a recalibration of that key takes place.

2.11.6 Drift Hold Time

Drift Hold Time (DHT) is used to restrict drift on all keys while one or more keys are activated. DHT restricts the drifting on all keys until approximately four seconds after all touches have been removed.

This feature is particularly useful in cases of high-density keypads where touching a key or hovering a finger over the keypad would cause untouched keys to drift, and therefore create a sensitivity shift, and ultimately inhibit touch detection.

2.11.7 Hysteresis

Hysteresis is fixed at 12.5% of the Detect Threshold. When a key enters a detect state once the DI count has been reached, the NTHR value is changed by a small amount (12.5% of NTHR) in the direction away from touch. This is done to affect hysteresis and so makes it less likely a key will dither in and out of detect. NTHR is restored once the key drops out of detect.+

3. Wiring and Parts

3.1 Rs Resistors

Series resistors Rs (Rs0 - Rs6 for comms mode and Rs0 - Rs4 for standalone mode) are in line with the electrode connections and should be used to limit electrostatic discharge (ESD) currents and to suppress radio frequency interference (RFI). Series resistors are recommended for noise reduction. They should be approximately $4.7 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ each.

3.2 LED Traces and Other Switching Signals

Digital switching signals near the sense lines induce transients into the acquired signals, deteriorating the signal-tonoise (SNR) performance of the device. Such signals should be routed away from the sensing traces and electrodes, or the design should be such that these lines are not switched during the course of signal acquisition (bursts).
LED terminals which are multiplexed or switched into a floating state, and which are within, or physically very near, a key (even if on another nearby PCB) should be bypassed to either Vss or Vdd with at least a 10 nF capacitor. This is to suppress capacitive coupling effects which can induce false signal shifts. The bypass capacitor does not need to be next to the LED, in fact it can be quite distant. The bypass capacitor is noncritical and can be of any type.
LED terminals which are constantly connected to Vss or Vdd do not need further bypassing.

3.3 PCB Cleanliness

Modern no-clean flux is generally compatible with capacitive sensing circuits.
CAUTION: If a PCB is reworked in any way, it is highly likely that the behavior of the
 no-clean flux will change. This can mean that the flux changes from an inert material to one that can absorb moisture and dramatically affect capacitive measurements due to additional leakage currents. If so, the circuit can become erratic and exhibit poor environmental stability.

If a PCB is reworked in any way, clean it thoroughly to remove all traces of the flux residue around the capacitive sensor components. Dry it thoroughly before any further testing is conducted.

3.4 Power Supply

See Section 6.2 on page 22 for the power supply range. If the power supply fluctuates slowly with temperature, the device tracks and compensates for these changes automatically with only minor changes in sensitivity. If the supply voltage drifts or shifts quickly, the drift compensation mechanism is not able to keep up, causing sensitivity anomalies or false detections.
The usual power supply considerations with QT parts apply to the device. The power should be clean and come from a separate regulator if possible. However, this device is designed to minimize the effects of unstable power, and except in extreme conditions should not require a separate Low Dropout (LDO) regulator.

It is assumed that a larger bypass capacitor (such as1 $\mu \mathrm{F}$) is somewhere else in the power circuit; for example, near the regulator.

4. $\quad I^{2} C$ Communications (Comms Mode Only)

4.1 $\quad I^{2} C$ Protocol

4.1.1 Protocol

The $I^{2} C$ protocol is based around access to an address table (see Table 5-1 on page 15) and supports multibyte reads and writes. The maximum clock rate is 400 kHz .
See Section A. on page 29 for an overview of $\mathrm{I}^{2} \mathrm{C}$ bus operation.

4.1.2 Signals

The $I^{2} \mathrm{C}$ interface requires two signals to operate:

- SDA - Serial Data
- SCL - Serial Clock

A third line, $\overline{\mathrm{CHANGE}}$, is used to signal when the device has seen a change in the status byte:
 the two status bytes, this pin floats (high) again if it is pulled up with an external resistor. If the status bytes change back to their original state before the host has read the status bytes (for example, a touch followed by a release), the $\overline{\text { CHANGE }}$ line is held low. In this case, a read to any memory location clears the CHANGE line.

$4.2 \quad I^{2} \mathrm{C}$ Address

There is one preset $I^{2} \mathrm{C}$ address of $0 \times 1 \mathrm{~B}$. This is not changeable.

4.3 Data Read/Write

4.3.1 Writing Data to the Device

The sequence of events required to write data to the device is shown next.

\square Host to Device							

Table 4-1. Description of Write Data Bits

Key	Description
S	START condition
SLA+W	Slave address plus write bit
A	Acknowledge bit
MemAddress	Target memory address within device
Data	Data to be written
P	Stop condition

1. The host initiates the transfer by sending the START condition
2. The host follows this by sending the slave address of the device together with the WRITE bit.
3. The device sends an ACK.
4. The host then sends the memory address within the device it wishes to write to.
5. The device sends an ACK if the write address is in the range $0 \times 00-0 \times 7 \mathrm{~F}$, otherwise it sends a NACK.
6. The host transmits one or more data bytes; each is acknowledged by the device (unless trying to write to an invalid address).
7. If the host sends more than one data byte, they are written to consecutive memory addresses.
8. The device automatically increments the target memory address after writing each data byte.
9. After writing the last data byte, the host should send the STOP condition.

Note: the host should not try to write to addresses outside the range 0×20 to 0×39 because this is the limit of the device internal memory address.

4.3.2 Reading Data From the Device

The sequence of events required to read data from the device is shown next.

Data 1	A	Data 2	A	Data n	$\overline{\mathrm{A}}$	P

1. The host initiates the transfer by sending the START condition
2. The host follows this by sending the slave address of the device together with the WRITE bit.
3. The device sends an ACK.
4. The host then sends the memory address within the device it wishes to read from.
5. The device sends an ACK if the address to be read from is less than 0×80 otherwise it sends a NACK).
6. The host must then send a STOP and a START condition followed by the slave address again but this time accompanied by the READ bit.

Note: Alternatively, instead of step 6 a repeated START can be sent so the host does not need to relinquish control of the bus.
7. The device returns an ACK, followed by a data byte.
8. The host must return either an ACK or NACK.

1. If the host returns an ACK, the device subsequently transmits the data byte from the next address. Each time a data byte is transmitted, the device automatically increments the internal address. The device continues to return data bytes until the host responds with a NACK.
2. If the host returns a NACK, it should then terminate the transfer by issuing the STOP condition.
3. The device resets the internal address to the location indicated by the memory address sent to it previously. Therefore, there is no need to send the memory address again when reading from the same location.
Note: Reading the 16-bit reference and signal values is not an automatic operation; reading the first byte of a 16bit value does not lock the other byte. As a result glitches in the reported value may be seen as values increase from 255 to 256 , or decrease from 256 to 255.

4.4 SDA, SCL

The $I^{2} C$ bus transmits data and clock with SDA and SCL respectively. They are open-drain; that is $I^{2} C$ master and slave devices can only drive these lines low or leave them open. The termination resistors pull the line up to Vdd if no $\mathrm{I}^{2} \mathrm{C}$ device is pulling it down.

The termination resistors commonly range from $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ and should be chosen so that the rise times on SDA and SCL meet the $I^{2} \mathrm{C}$ specifications ($1 \mu \mathrm{~s}$ maximum).

Standalone mode: if $I^{2} \mathrm{C}$ communications are not required, then standalone mode can be enabled by connecting the MODE pin to Vdd. See Section 2.4 on page 8 for more information.

5. Setups

5.1 Introduction

The device calibrates and processes signals using a number of algorithms specifically designed to provide for high survivability in the face of adverse environmental challenges. User-defined Setups are employed to alter these algorithms to suit each application. These Setups are loaded into the device over the $\mathrm{I}^{2} \mathrm{C}$ serial interfaces. In standalone mode these settings are fixed to predetermined values.

Table 5-1. Internal Register Address Allocation

Address	Use	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R/W
0	Chip ID	Major ID (= 2)				Minor ID (= E)				R
1	Firmware Version	Firmware version number								R
2	Detection status	CALIBRATE	OVERFLOW	-	-	-	-	-	TOUCH	R
3	Key status	Reserved	Key 6	Key 5	Key 4	Key 3	Key 2	Key 1	Key 0	R
4-5	Key signal 0	Key signal 0 (MSByte) - Key signal 0 (LSByte)								R
6-7	Key signal 1	Key signal 1 (MSByte) - Key signal 1 (LSByte)								R
8-9	Key signal 2	Key signal 2 (MSByte) - Key signal 2 (LSByte)								R
10-11	Key signal 3	Key signal 3 (MSByte) - Key signal 3 (LSByte)								R
12-13	Key signal 4	Key signal 4 (MSByte) - Key signal 4 (LSByte)								R
14-15	Key signal 5	Key signal 5 (MSByte) - Key signal 5 (LSByte)								R
16-17	Key signal 6	Key signal 6 (MSByte) - Key signal 6 (LSByte)								R
18-19	Reference data 0	Reference data 0 (MSByte) - Reference data 0 (LSByte)								R
20-21	Reference data 1	Reference data 1 (MSByte) - Reference data 1 (LSByte)								R
22-23	Reference data 2	Reference data 2 (MSByte) - Reference data 2 (LSByte)								R
24-25	Reference data 3	Reference data 3 (MSByte) - Reference data 3 (LSByte)								R
26-27	Reference data 4	Reference data 4 (MSByte) - Reference data 4 (LSByte)								R
28-29	Reference data 5	Reference data 5 (MSByte) - Reference data 5 (LSByte)								R
30-31	Reference data 6	Reference data 6 (MSByte) - Reference data 6 (LSByte)								R
32	NTHR key 0	Negative Threshold level for key 0								R/W
33	NTHR key 1	Negative Threshold level for key 1								R/W
34	NTHR key 2	Negative Threshold level for key 2								R/W
35	NTHR key 3	Negative Threshold level for key 3								R/W
36	NTHR key 4	Negative Threshold level for key 4								R/W
37	NTHR key 5	Negative Threshold level for key 5								R/W
38	NTHR key 6	Negative Threshold level for key 6								R/W
39	AVE/AKS key 0	Adjacent key suppression level for key 0								R/W
40	AVE/AKS key 1	Adjacent key suppression level for key 1								R/W

Table 5-1. Internal Register Address Allocation (Continued)

Address	Use	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R/W
41	AVE/AKS key 2			Adjacent key suppression level for key 2						R/W
42	AVE/AKS key 3			Adjacent key suppression level for key 3						R/W
43	AVE/AKS key 4			Adjacent key suppression level for key 4						R/W
44	AVE/AKS key 5			Adjacent key suppression level for key 5						R/W
45	AVE/AKS key 6			Adjacent key suppression level for key 6						R/W
46	DI key 0			Detection integrator counter for key 0						R/W
47	DI key 1			Detection integrator counter for key 1						R/W
48	DI key 2			Detection integrator counter for key 2						R/W
49	DI key 3			Detection integrator counter for key 3						R/W
50	DI key 4			Detection integrator counter for key 4						R/W
51	DI key 5			Detection integrator counter for key 5						R/W
52	DI key 6			Detection integrator counter for key 6						R/W
53	FO/MO/Guard No			FastOutDI/ Max Cal/Guard Channel						R/W
54	LP			Low Power (LP) Mode						R/W
55	Max On Duration			Maximum On Duration						R/W
56	Calibrate			Calibrate						R/W
57	$\overline{\text { RESET }}$			RESET						R/W

5.2 Address 0: Chip ID

Table 5-2. Chip ID

Address	b7	b6	b5	b4	b3	b2
0	MAJOR ID					MINOR ID

MAJOR ID: Reads back as 2
MINOR ID: Reads back as E

5.3 Address 1: Firmware Version

Table 5-3. Firmware Version

Address	b7	b6	b5	b4	b3	b2	b1
1	FIRMWARE VERSION					b0	

FIRMWARE VERSION: this shows the 8-bit firmware version 1.5 (0×15).

5.4 Address 2: Detection Status

Table 5-4. Detection Status

Address	b7	b6	b5	b4	b3	b2	b1	b0
2	CALIBRATE	OVERFLO W	-	-	-	-	-	TOUCH

CALIBRATE: This bit is set during a calibration sequence.
OVERFLOW: This bit is set if the time to acquire all key signals exceeds 8 ms .
TOUCH: This bit is set if any keys are in detect.

5.5 Address 3: Key Status

Table 5-5. Key Status

Address	b7	b6	b5	b4	b3	b2	b1	b0
3	Reserved	KEY6	KEY5	KEY4	KEY3	KEY2	KEY1	KEY0

KEYO - 6: bits 0 to 6 indicate which keys are in detection, if any. Touched keys report as 1 , untouched or disabled keys report as 0 .

5.6 Address 4-17: Key Signal

Table 5-6. Key Signal

Address	b7	b6	b5	b4	b3	b2	b1
4		MSByte OF KEY SIGNAL FOR KEY 0					
5		bSByte OF KEY SIGNAL FOR KEY 0					
$6-17$		MSByte/LSByte OF KEY SIGNAL FOR KEYS $1-6$					

KEY SIGNAL: addresses 4-17 allow key signals to be read for each key, starting with key 0 . There are two bytes of data for each key. These are the key's 16-bit key signals which are accessed as two 8-bit bytes, stored MSByte first. These addresses are read-only.

5.7 Address 18 - 31: Reference Data

Table 5-7. Reference Data

Address	b7	b6	b5	b4	b3	b2	b1	b0
18	MSByte OF REFERENCE DATA FOR KEY 0							
19	LSByte OF REFERENCE DATA FOR KEY 0							
20-31	MSByte/LSByte OF REFERENCE DATA FOR KEYS 1 - 6							

REFERENCE DATA: addresses 18 - 31 allow reference data to be read for each key, starting with key 0 . There are two bytes of data for each key. These are the key's 16-bit reference data which is accessed as two 8-bit bytes, stored MSByte first. These addresses are read-only.

5.8 Address 32 - 38: Negative Threshold (NTHR)

Table 5-8. NTHR

Address	b7	b6	b5	b4	b3	b2	b1
$32-38$	NEGATIVE THRESHOLD FOR KEYS 0-6						b0

NTHR Keys 0-6: these 8-bit values set the threshold value for each key to register a detection.
Default: 20 counts
Note: Do not use a setting of 0 as this causes a key to go into detection when its signal is equal to its reference.

5.9 Address 39-45: Averaging Factor/Adjacent Key Suppression (AVEIAKS)

Table 5-9. AVEIAKS

Address	b7	b6	b5	b4	b3	b2	b1	b0
$39-45$	AVE5	AVE4	AVE3	AVE2	AVE1	AVE0	AKS1	AKS0

AVE 0 - 5: The Averaging Factor (AVE) is the number of pulses which are added together and averaged to get the final signal value for that channel.
For example, if AVE $=8$ then 8 ADC samples are taken and added together. The result is divided by the original number of pulses (8). If sixteen pulses are used then the result is divided by sixteen.

This provides a better signal-to-noise ratio but requires longer acquire times. Values for AVE are restricted internally to $1,2,4,8,16$ or 32.
Default: 8 (In standalone mode key 0 is 16)
AKS 0-1: these bits control which keys are included in an AKS group. There can be up to three groups, each containing any number of keys (up to the maximum allowed for the mode).

Each key can have a value between 0 and 3 , which assigns it to an AKS group of that number. A key may only go into detect when it has the largest signal change of any key in its group. A value of 0 means the key is not in any AKS group.

Default: 0x01

5.10 Address 46-52: Detection Integrator (DI)

Table 5-10. Detection Integrator

Address	b7	b6	b5	b4	b3	b2	b1	b0
46-52	DETECTION INTEGRATOR							

DETECTION INTEGRATOR: addresses 46-52 allow the DI level to be set for each key. This 8-bit value controls the number of consecutive measurements that must be confirmed as having passed the key threshold before that key is registered as being in detect. The minimum value for the DI filter is 2 . Settings of 0 and 1 for the DI also default to 2 because a minimum of two consecutive measurements must be confirmed.

Default: 4

5.11 Address 53: FastOutDI/Max Cal/Guard Channel

Table 5-11. Max Cal/Guard Channel

Address	b7	b6	b5	b4	b3	b2	b1
53		-	FO	MAX CAL		GUARD CHANNEL	

FO: Fast Out DI - when bit 5 is set then a key filters out with an integrator of 4 . Could have a DI in of 100 but filter out with DI of 4 (global setting for all keys).

MAX CAL: if this bit is clear then all keys recalibrate after a Max On Duration timeout, otherwise only the key with the incorrect timing gets recalibrated.
GUARD CHANNEL: bits $0-3$ are used to set a key as the guard channel (which gets priority filtering). Valid values are $0-6$, with any larger value disabling the guard key feature.

5.12 Address 54: Low Power (LP) Mode

Table 5-12. LP Mode

Address	b7	b6	b5	b4	b3	b2	b1
54	LOW POWER MODE						b0

LP MODE: this 8-bit value determines the number of 8 ms intervals between key measurements. Longer intervals between measurements yield a lower power consumption but at the expense of a slower response to touch.

Setting	Time
0	8 ms
1	8 ms
2	16 ms
3	24 ms
4	32 ms
\ldots	\ldots
254	2.032 s
255	2.040 s

Default: 2 (16 ms between key acquisitions)

5.13 Address 55: Max On Duration

Table 5-13. Max Time On

Address	b7	b6	b5	b4	b3	b2	b1	b0
55	MAX ON DURATION							

MAX ON DURATION: this is a 8-bit value which determines how long any key can be in touch before it recalibrates itself.

A value of 0 turns Max On Duration off.

Setting	Time
0	Off
1	160 ms
2	320 ms
3	480 ms
4	640 ms
255	40.8 s

Default: 180 (160 ms $\times 180=28.8 \mathrm{~s})$

5.14 Address 56: Calibrate

Table 5-14. Calibrate

Address	b7	b6	b5	b4	b3	b2	b1
56	Writing a nonzero value forces a calibration						

Writing any nonzero value into this address triggers the device to start a calibration cycle. The CALIBRATE flag in the detection status register is set when the calibration begins and clears when the calibration has finished.

5.15 Address 57: RESET

Table 5-15. $\overline{\text { RESET }}$

Address	b7	b6	b5	b4	b3	b2	b1
57	Writing a nonzero value forces a reset						

Writing any nonzero value to this address triggers the device to reset.

6. Specifications

6.1 Absolute Maximum Specifications

Vdd	-0.5 to +6 V
Max continuous pin current, any control or drive pin	$\pm 10 \mathrm{~mA}$
Short circuit duration to ground, any pin	infinite
Short circuit duration to Vdd, any pin	infinite
Voltage forced onto any pin	-0.5 V to (Vdd +0.5$) \mathrm{V}$
CAUTION: Stresses beyond those listed under Absolute Maximum Specifications may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum specification conditions for extended periods may affect device reliability.	

6.2 Recommended Operating Conditions

Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vdd	+1.8 V to 5.5 V
Supply ripple+noise	$\pm 25 \mathrm{mV}$
Cx load capacitance per key	1 to 30 pF

6.3 DC Specifications

$\mathrm{Vdd}=3.3 \mathrm{~V}, \mathrm{Cs}=10 \mathrm{nF}$, load $=5 \mathrm{pF}, 32 \mathrm{~ms}$ default sleep, $\mathrm{Ta}=$ recommended range, unless otherwise noted

Parameter	Description	Minimum	Typical	Maximum	Units	Notes
Vil	Low input logic level	-	-	$0.2 \times \mathrm{Vdd}$	V	
Vih	High input logic level	$0.7 \times \mathrm{Vdd}$	-	$\mathrm{Vdd}+0.5$	V	
Vol	Low output voltage	-	-	0.6	V	
Voh	High output voltage	$\mathrm{Vdd}-$ 0.7 V	-	-	V	
lil	Input leakage current	-	-	± 1	$\mu \mathrm{~A}$	

6.4 Power Consumption Measurements

$\mathrm{Cx}=5 \mathrm{pF}, \mathrm{Rs}=4.7 \mathrm{k} \Omega$

	Idd $(\mu \mathrm{A})$ at Vdd $=$		
LP Mode	$\mathbf{5 ~ V}$	3.3 V	$\mathbf{1 . 8} \mathbf{~ V}$
$0(8 \mathrm{~ms})$	1744	906	442
$1(16 \mathrm{~ms})$	1375	615	305
$2(24 \mathrm{~ms})$	1263	525	261
$4(32 \mathrm{~ms})$	1168	486	234
$5(40 \mathrm{~ms})$	1119	445	221
$6(48 \mathrm{~ms})$	1089	434	211

6.5 Timing Specifications

Paramete r	Description	Minimum	Typica I	Maximum	Units	Notes
T_{R}	Response time	$\begin{gathered} \text { DI } \\ \text { setting } \times 8 \mathrm{~ms} \end{gathered}$	-	LP mode + (DI setting $\times 8 \mathrm{~ms}$)	ms	Under host control
F_{QT}	Sample frequency	162	180	198	kHz	Modulated spread-spectrum (chirp)
T_{D}	Power-up delay to operate/calibration time	-	<230	-	ms	Can be longer if burst is very long.
$\mathrm{F}_{12 \mathrm{C}}$	$1^{2} \mathrm{C}$ clock rate	-	-	400	kHz	-
Fm	Burst modulation, percentage		± 8		\%	-
	$\overline{\text { RESET }}$ pulse width	5	-	-	$\mu \mathrm{s}$	-

6.6 Mechanical Dimensions

6.7 AT42QT1070-SSU - 14-pin SOIC

COMMON DIMENSIONS
(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
A	0.0532	-	0.0688	
A1	0.0040	-	0.0098	
b	0.0130	-	0.0200	5
D	0.3367	-	0.3444	2
E	0.1497	-	0.1574	3
H	0.2284	-	0.2440	
L	0.0160	-	0.0500	4
e	0.050 BSC			

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not exceed $0.15 \mathrm{~mm}\left(0.006{ }^{\prime \prime}\right)$ per side.
3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm (0.010 ") per side.
4. L is the length of the terminal for soldering to a substrate.
5. The lead width B, as measured 0.36 mm ($0.014^{\prime \prime}$) or greater above the seating plane, shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.0244^{\prime \prime}\right)$ per side.

1/15/13

Atmel
Package Drawing Contact: packagedrawings@atmel.com

TITLE
14S1, 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)

GPC
SVQ
DRAWING NO.
14S1

6.8 AT42QT1070-MMH - 20-pin $3 \times 3 \mathrm{~mm}$ VQFN

6.9 Marking

6.9.1 AT42QT1070-SSU - 14-pin SOIC

Either part marking can be used.

Date Code Description

W=Week code

W week code number 1-52 where: $A=1 B=2 \ldots . \quad Z=26$ then using the underscore $\underline{A}=27 \ldots \underline{Z}=52$

6.9.2 AT42QT1070-MMH - 20-pin $3 \times 3 \mathrm{~mm}$ VQFN

Either part marking can be used.

6.10 Part Number

Part Number	Description
AT42QT1070-SSU	14-pin SOIC RoHS compliant IC
AT42QT1070-MMH	$20-$-pin $3 \times 3 \mathrm{~mm}$ VQFN RoHS compliant IC

6.11 Moisture Sensitivity Level (MSL)

MSL Rating	Peak Body Temperature	Specifications
MSL3	$260^{\circ} \mathrm{C}$	IPC/JEDEC J-STD-020

Appendix A. $I^{2} \mathrm{C}$ Operation

The device communicates with the host over an $I^{2} C$ bus. The following sections give an overview of the bus; more detailed information is available from www.i2C-bus.org. Devices are connected to the $I^{2} \mathrm{C}$ bus as shown in Figure A1. Both bus lines are connected to Vdd via pull-up resistors. The bus drivers of all $I^{2} \mathrm{C}$ devices must be open-drain type. This implements a wired AND function that allows any and all devices to drive the bus, one at a time. A low level on the bus is generated when a device outputs a zero.

Figure A-1. $\quad I^{2} C$ Interface Bus

A. 1 Transferring Data Bits

Each data bit transferred on the bus is accompanied by a pulse on the clock line. The level of the data line must be stable when the clock line is high; the only exception to this rule is for generating START and STOP conditions.

Figure A-2. Data Transfer

A. 2 START and STOP Conditions

The host initiates and terminates a data transmission. The transmission is initiated when the host issues a START condition on the bus, and is terminated when the host issues a STOP condition. Between the START and STOP conditions, the bus is considered busy. As shown in Figure A-3, START and STOP conditions are signaled by changing the level of the SDA line when the SCL line is high.

Figure A-3. START and STOP Conditions

A. 3 Address Byte Format

All address bytes are 9 bits long, consisting of 7 address bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is performed, otherwise a write operation is performed. When the device recognizes that it is being addressed, it will acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. An address byte consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W, respectively.

The most significant bit of the address byte is transmitted first. The address sent by the host must be consistent with that selected with the option jumpers.

Figure A-4. Address Byte Format

A. 4 Data Byte Format

All data bytes are 9 bits long, consisting of 8 data bits and an acknowledge bit. During a data transfer, the host generates the clock and the START and STOP conditions, while the receiver is responsible for acknowledging the reception. An acknowledge (ACK) is signaled by the receiver pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signaled.

Figure A-5. Data Byte Format

A. 5 Combining Address and Data Bytes into a Transmission

A transmission consists of a START condition, an SLA+R/W, one or more data bytes and a STOP condition. The wired ANDing of the SCL line is used to implement handshaking between the host and the device. The device extends the SCL low period by pulling the SCL line low whenever it needs extra time for processing between the data transmissions.

Note: Each write or read cycle must end with a stop condition. The device may not respond correctly if a cycle is terminated by a new start condition.

Figure A-6 shows a typical data transmission. Note that several data bytes can be transmitted between the SLA+R/W and the STOP.

Figure A-6. Byte Transmission

Associated Documents

- QTAN0062 - QTouch and QMatrix Sensitivity Tuning for Keys, Slider and Wheels
- Touch Sensors Design Guide

Revision History

Revision Number	History
Revision A - October 2010	Initial release of document for code revision 1.5
Revision B - November 2012	General updates
Revision C - May 2013	Applied new template

Notes

Atmel Enabling Unlimited Possibilities ${ }^{\circ}$

Atmel Corporation

1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 \& 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Roa
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel München GmbH
Business Campus
Parkring 4
D-85748 Garching bei München
GERMANY
Tel: $(+49) 89-31970-0$
Fax: (+49) 89-3194621

Atmel Japan G.K.

 16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-kuTokyo 141-0032
JAPAN
Tel: (+81) (3) 6417-0300
Fax: (+81) (3) 6417-0370
© 2013 Atmel Corporation. All rights reserved. / Rev.: 9596C-AT42-05/2013
Atmel ${ }^{\circledR}$, Atmel logo and combinations thereof, Adjacent Key Suppression ${ }^{\circledR}$, AKS ${ }^{\circledR}$, QTouch ${ }^{\circledR}$, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be registered trademarks or trademarks of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Microchip:
AT42QT1070-MMH AT42QT1070-SSU AT42QT1070-MMHR AT42QT1070-SSUR

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

