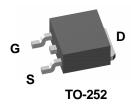
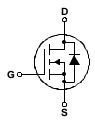


FDD6630A

30V N-Channel PowerTrench^O MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.


Applications

- DC/DC converter
- Motor drives

Features

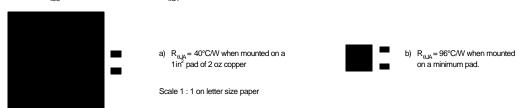
- 21 A, 30 V $R_{DS(ON)} = 35 \ m\Omega \ @ \ V_{GS} = 10 \ V$ $R_{DS(ON)} = 50 \ m\Omega \ @ \ V_{GS} = 4.5 \ V$
- Low gate charge (5nC typical)
- · Fast switching
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 3)	21	А
	Pulsed	(Note 1a)	100	
P _D	Power Dissipation	(Note 1)	28	W
		(Note 1a)	3.2	
		(Note 1b)	1.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Thermal Characteristics

R ₀ JC	Thermal Resistance, Junction-to-Case	(Note 1)	4.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W


Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD6630A FDD6630A		13"	16mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings (Note	2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V _{DD} = 15 V			55	mJ
l _{AR}	Drain-Source Avalanche Current				7.6	Α
Off Char	acteristics			l	l	l
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C		23		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
IGSSR	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	1.7	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	V _{GS} = 10 V, I _D = 7.6 A V _{GS} = 4.5 V, I _D = 6.3 A V _{GS} = 10 V, I _D = 7.6 A, T _I = 125°C		28 40 44	35 50 58	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, I_D = 7.6 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	20			Α
g FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, \qquad I_{D} = 7.6 \text{ A}$		13		S
Dynamic	Characteristics			l	l	l
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		462		pF
Coss	Output Capacitance	f = 1.0 MHz		113		pF
Crss	Reverse Transfer Capacitance			40		pF
Switchin	g Characteristics (Note 2)			I	l	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		5	11	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		8	17	ns
t _{d(off)}	Turn-Off Delay Time			17	28	ns
t _f	Turn-Off Fall Time			13	24	ns
Qg	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 7.6 \text{ A},$		5	7	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		2		nC
Q_{gd}	Gate-Drain Charge			1.4		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
I _S	Maximum Continuous Drain-Source				2.7	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ (Note 2)		0.8	1.2	V

Notes:

1. R_{Q,A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{Q,C} is guaranteed by design while R_{Q,CA} is determined by the user's board design.

- 2. Pulse Test: Pulse Width < $300\mu s,$ Duty Cycle < 2.0%
- 3. Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(CN)}}}$ where P_D is maximum power dissipation at $T_C = 25^{\circ}C$ and $R_{DS(cn)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A

Typical Characteristics

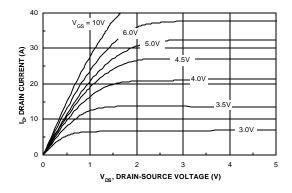
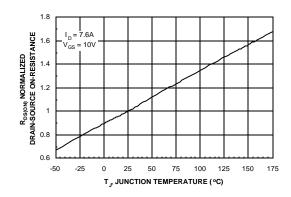



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

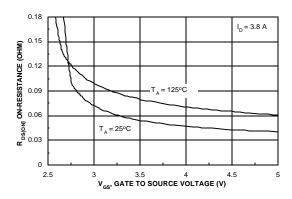
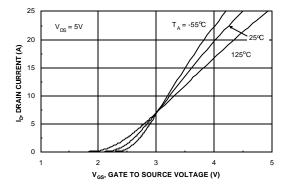



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

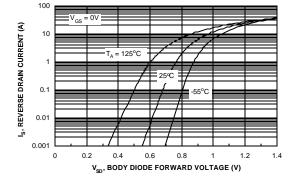
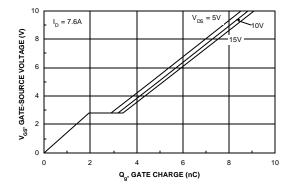



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

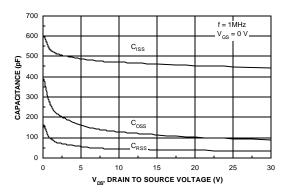
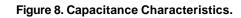
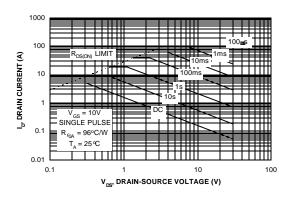




Figure 7. Gate Charge Characteristics.

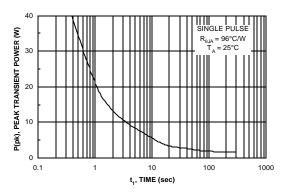


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

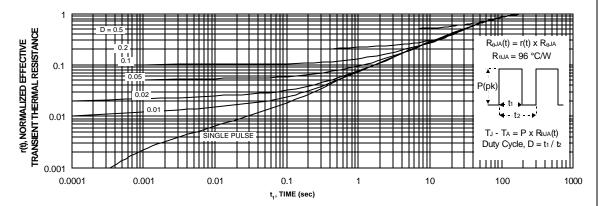


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ F-PFS™ AccuPower™ FRFET® Auto-SPM™ AX-CAP™* BitSiC® Green FPS™

Green FPS™ e-Series™ Build it Now™ CorePLUS™ $\mathsf{G} max^{\mathsf{TM}}$ CorePOWER™ GTO™ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™ Marking Small Speakers Sound Louder

Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ **ESBC™**

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT®** FAST®

FastvCore[™] FETBench™ FlashWriter® *

PDP SPM™ Power-SPM™ PowerTrench® Global Power ResourceSM PowerXS™

Programmable Active Droop™

QFĔT® QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™

SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM ®* GENERAL

The Power Franchise® wer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC®

UHC' Ultra FRFET™ UniFFT™ VCXTM VisualMax™ VoltagePlus™

XSTM

μSerDes™

TriFault Detect™

TRUECURRENT®*

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

and Better™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

mWSaver™

OptoHiT™

Motion-SPM™

OPTOLOGIC®

OPTOPLANAR®

MIČROCOUPLER™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.