# 40V, 3A Synchronous Step-Down COT Power Module ## **Description** The XR79203 is part of a family of 40V synchronous step-down power modules combining the controller, drivers, inductor, passive components and MOSFETs in a single package for point-of-load supplies. This module requires very few external components leading to ease of design and fast time to market. The XR79203 has load current rating of 3A. A wide 5V to 40V input voltage range allows for single supply operation from industry standard 24V ±10%, 18V to 36V and rectified 18VAC and 24VAC rails. With a proprietary emulated current mode Constant On-Time (COT) control scheme, the XR79203 provides extremely fast line and load transient response using ceramic output capacitors. It requires no loop compensation, simplifying circuit implementation and reducing overall component count. The control loop also provides 0.1% load and 0.2% line regulation and maintains constant operating frequency. A selectable power saving mode, allows the user to operate in Discontinuous Current Mode (DCM) at light current loads significantly increasing the converter efficiency. A host of protection features, including overcurrent, over temperature, short-circuit and UVLO, helps achieve safe operation under abnormal operating conditions. The XR79203 is available in a RoHS-compliant, green/halogen-free space-saving 8mm x 8mm x 4mm QFN package. # **Typical Application** Figure 1. Typical Application #### **FEATURES** - 3A step-down power module - □ 5V to 40V wide single input voltage - □ ≥0.6V adjustable output voltage - Controller, drivers, inductor, passive components and MOSFETs integrated in one package - Proprietary constant on-time control - No loop compensation required - Stable with ceramic output capacitors - □ Programmable 100ns-1µs on-time - Constant 400kHz to 800kHz frequency - Selectable CCM or DCM/CCM operation - Precision enable and power-good flag - Programmable soft-start - 8mm x 8mm x 4mm QFN package #### **APPLICATIONS** - Drones and remote vehicles - Automotive displays - FPGA/DSP/processor supplies - Industrial control and automation - Telecommunications and infrastructure equipment - Distributed power architecture Ordering Information - Back Page Figure 2. Efficiency, 24V<sub>IN</sub> # **Absolute Maximum Ratings** These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. | PV <sub>IN</sub> , V <sub>IN</sub> | 0.3V to 43V | |-----------------------------------------|--------------------------------| | V <sub>CC</sub> | -0.3V to 6.0V | | BST | 0.3V to 48V <sup>(1)</sup> | | BST-SW | 0.3V to 6V | | SW, ILIM | 1V to 43V <sup>(1)(2)</sup> | | All other pins | 0.3V to V <sub>CC</sub> + 0.3V | | Storage temperature | 65°C to 150°C | | Junction temperature | 150°C | | Power dissipation | Internally limited | | Lead temperature (soldering, 10 seconds | s) 300°C | | ESD rating (HBM – human body model) . | 2kV | | ESD rating (CDM - charged device mode | el) 2kV | | | | # **Operating Conditions** | PV <sub>IN</sub> , V <sub>IN</sub> | 5V to 40V | |-------------------------------------------------|---------------------------------| | SW, ILIM | 1V to 40V <sup>(1)(2)</sup> | | PGOOD, $V_{CC}$ , TON, SS, EN, FB | 0.3V to 5.5V | | Switching frequency | 400kHz to 800kHz <sup>(3)</sup> | | Junction temperature range (T <sub>J</sub> ) | 40°C to 125°C | | Package power dissipation max at 25°C | C4.3W | | Package thermal resistance $\theta_{\text{JA}}$ | 23°C/W | | NOTES: | | - 1. No external voltage applied. - 2. SW pin's DC range is -1V, transient is -5V for less than 50ns. - 3. Recommended frequency for optimum performance. ## **Electrical Characteristics** $T_J = 25^{\circ}C$ , $V_{IN} = 24V$ , BST = $V_{CC}$ , SW = AGND = PGND = 0V, $C_{VCC} = 4.7\mu$ F, unless otherwise specified. Limits applying over the full operating temperature range are denoted by a •. | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | |-----------------------|-----------------------------------------|--------------------------------------------------------------|---|------|------|------|-------| | Power Sup | oply Characteristics | | | | | | | | V <sub>IN</sub> | Input voltage range | V <sub>CC</sub> regulating | • | 5 | | 40 | V | | L | V., oupply ourrent | Not switching, V <sub>IN</sub> = 24V, V <sub>FB</sub> = 0.7V | • | | 0.7 | 2 | mA | | IVIN | V <sub>IN</sub> supply current | $f = 500kHz, R_{ON} = 124k\Omega, V_{FB} = 0.58V$ | | | 10 | | mA | | I <sub>OFF</sub> | Shutdown current | Enable = 0V, P <sub>VIN</sub> = V <sub>IN</sub> = 24V | | | 1 | | μΑ | | Enable and | d Undervoltage Lock-Out (UVLO) | | | | | | | | V <sub>IH_EN_1</sub> | EN pin rising threshold | | • | 1.8 | 1.9 | 2.0 | V | | V <sub>EN_HYS_1</sub> | EN pin hysteresis | | | | 70 | | mV | | V <sub>IH_EN_2</sub> | EN pin rising threshold for DCM/<br>CCM | | • | 2.8 | 3.0 | 3.1 | V | | V <sub>EN_HYS_2</sub> | EN pin hysteresis | | | | 110 | | mV | | | V <sub>CC</sub> UVLO start threshold | Rising edge | • | 4.00 | 4.25 | 4.40 | V | | | V <sub>CC</sub> UVLO hysteresis | | • | | 195 | | mV | # **Electrical Characteristics (Continued)** $T_J = 25^{\circ}C$ , $V_{IN} = 24V$ , BST = $V_{CC}$ , SW = AGND = PGND = 0V, $C_{VCC} = 4.7 \mu F$ , unless otherwise specified. Limits applying over the full operating temperature range are denoted by a $\bullet$ . | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | |--------------------------------|------------------------------|---------------------------------------------------------------------------------|---|-------|-------|-------|-------| | Reference | Voltage | | | | | | | | $V_{REF}$ | Reference voltage | V <sub>IN</sub> = 5V to 40V, V <sub>CC</sub> regulating | | 0.596 | 0.600 | 0.604 | V | | ▼REF | nelelelice voltage | VIN = 3V to 40V, VCC regulating | • | 0.594 | 0.600 | 0.606 | V | | | DC load regulation | CCM operation, closed loop, | | | ±0.1 | | % | | | DC line regulation | applies to any C <sub>OUT</sub> | | | ±0.2 | | % | | Programm | able Constant On-Time | | | | | | | | t <sub>ON(MIN)</sub> | Minimum programmable on-time | $R_{ON} = 14k\Omega$ , $V_{IN} = 40V$ | | | 120 | | ns | | t <sub>ON1</sub> | On-time 1 | $R_{ON} = 14k\Omega$ , $V_{IN} = 24V$ | • | 180 | 200 | 220 | ns | | t <sub>ON2</sub> | On-time 2 | $R_{ON} = 35.7k\Omega, V_{IN} = 24V$ | • | 420 | 470 | 520 | ns | | | On-time 2 frequency | $R_{ON} = 35.7 k\Omega$ , $V_{IN} = 24 V$ , $V_{OUT} = 5.0 V$ , $I_{OUT} = 3 A$ | | 425 | 470 | 525 | kHz | | T <sub>OFF(MIN)</sub> | Minimum off-time | | • | | 250 | 350 | ns | | Diode Emu | ulation Mode | | | | | | | | | Zero crossing threshold | DC value measured during test | | | -2 | | mV | | Soft-Start | | | | | | | | | | SS charge current | | • | -14 | -10 | -6 | μA | | | SS discharge current | Fault present | • | 1 | | | mA | | V <sub>CC</sub> Linear | r Regulator | | | | | | | | | V output voltage | V <sub>IN</sub> = 6V to 40V, I <sub>LOAD</sub> = 0 to 30mA | • | 4.8 | 5.0 | 5.2 | V | | V <sub>CC</sub> output voltage | | V <sub>IN</sub> = 5V, I <sub>LOAD</sub> = 0 to 20mA | • | 4.51 | 4.8 | | V | | Power God | od Output | | | | | | | | | Power good threshold | | | -10 | -7 | -5 | % | | | Power good hysteresis | | | | 1.5 | 4 | % | | | Power good sink current | | | 1 | | | mA | # **Electrical Characteristics (Continued)** $T_J = 25^{\circ}C$ , $V_{IN} = 24V$ , BST = $V_{CC}$ , SW = AGND = PGND = 0V, $C_{VCC} = 4.7 \mu F$ , unless otherwise specified. Limits applying over the full operating temperature range are denoted by a $\bullet$ . | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | |-------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|---|------|------|------|----------------| | Protectio | n: OCP, OTP, Short-Circuit | | | | | | | | | Hiccup timeout | | | | 110 | | ms | | | I <sub>LIM</sub> /R <sub>DS</sub> | | | 2.40 | 2.85 | 3.20 | μ <b>A</b> /mΩ | | | I <sub>LIM</sub> current temperature coefficient | | | | 0.4 | | %/°C | | | I <sub>LIM</sub> comparator offset | | • | -8 | 0 | 8 | mV | | | Current limit blanking | GL rising >1V | | | 100 | | ns | | | Thermal shutdown threshold | Rising temperature | | | 150 | | °C | | | Thermal hysteresis | | | | 15 | | °C | | | Feedback pin short-circuit threshold | Percent of V <sub>REF</sub> , short-circuit is active.<br>After PGOOD is asserted | • | 50 | 60 | 70 | % | | Output P | ower Stage | | · | | | | | | Б | High-side MOSFET | | | | 41 | 59 | mΩ | | R <sub>DSON</sub> | Low-side MOSFET | $I_{DS} = 2A$ | | | 17 | 21.5 | mΩ | | I <sub>OUT</sub> | Maximum output current | | • | 3 | | | А | | L | Output inductance | | | 3.7 | 4.7 | 5.6 | μН | | C <sub>IN</sub> | Input capacitance | | | | 1 | | μF | | C <sub>BST</sub> | Bootstrap capacitance | | | | 0.1 | | μF | # **Pin Configuration** # **Pin Functions** | Pin Number | Pin Name | Туре | Description | | |---------------------------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 1 | SS | А | Soft-start pin. Connect an external capacitor between SS and AGND to program the soft-start rate based on the 10µA internal source current. | | | 2 | PGOOD | OD, O | Power-good output. This open-drain output is pulled low when V <sub>OUT</sub> is outside the regulation. | | | 3 | FB | А | Feedback input to feedback comparator. Connect with a set of resistors to VOUT and AGND in order to program V <sub>OUT</sub> . | | | 4, 5, 53, 54,<br>AGND Pad | AGND | А | Analog ground. Control circuitry of the IC is referenced to this pin. Connect to PGND. | | | 6 | VIN | PWR | IC supply input. Provides power to internal LDO. Connect to PVIN pins. | | | 7 | VCC | PWR | The output of LDO. Bypass with a 4.7μF capacitor to AGND. | | | 8 | PGND | PWR | Controller low-side driver ground. Connect with a short trace to closest PGND pins or PGND pad. | | | 13-19, 39-43,<br>PGND Pad | PGND | PWR | Ground of the power stage. Should be connected to the system's power ground plane. | | | 9-12, 20-23,<br>SW Pad | SW | PWR | Switching node. It internally connects the source of the high-side FET, the drain of the low-side FET, the inductor and bootstrap capacitor. Use thermal vias and/or sufficient PCB land area in order to heatsink the low-side FET and the inductor. | | | 24-38,<br>VOUT Pad | VOUT | PWR | Output of the power stage. Place the output filter capacitors as close as possible to these pins. | | | 45-49,<br>PVIN Pad | PVIN | PWR | Power stage input voltage. Place the input filter capacitors as close as possible to these pins. | | | 50, 51,<br>BST Pad | BST | А | Controller high-side driver supply pin. It is internally connected to SW via a 0.1µF bootstrap capacitor. Leave these pins floating. | | | 52 | ILIM | Α | Overcurrent protection programming. Connect with a short trace to SW pins. | | | 55 | EN/MODE | I | Precision enable pin. Pulling this pin above 1.9V will turn the IC on and it will operate in forced CCM. If the voltage is raised above 3.0V, then the IC will operate in DCM or CCM depending on load. | | | 56 | TON | Α | Constant on-time programming pin. Connect with a resistor to AGND. | | #### NOTE: A = Analog, I = Input, O = Output, OD = Open Drain, PWR = Power. # **Typical Performance Characteristics** T<sub>A</sub> = 25°C, V<sub>IN</sub> = 24V, V<sub>OUT</sub> = 3.3V, I<sub>OUT</sub> = 3A, f = 500kHz, unless otherwise specified. Schematic shown in Figure 27. Figure 3. Load Regulation Figure 4. Line Regulation Figure 5. t<sub>ON</sub> vs. R<sub>ON</sub> Figure 6. $t_{ON}$ vs. $V_{IN}$ , $R_{ON} = 14k\Omega$ Figure 7. Switching Frequency vs. $I_{OUT}$ Figure 8. Switching Frequency vs. VIN # **Typical Performance Characteristics (Continued)** $T_A = 25$ °C, $V_{IN} = 24$ V, $V_{OUT} = 3.3$ V, $I_{OUT} = 3$ A, f = 500kHz, unless otherwise specified. Schematic shown in Figure 27. Figure 9. I<sub>OCP</sub> vs. R<sub>LIM</sub> Figure 10. $V_{\mbox{\scriptsize REF}}$ vs. Temperature Figure 11. $t_{ON}$ vs. Temperature, $R_{ON} = 14k\Omega$ Figure 12. Inductance vs. Current Figure 13. Inductor Current Ripple vs. $V_{OUT}$ # **Typical Performance Characteristics (Continued)** T<sub>A</sub> = 25°C, V<sub>IN</sub> = 24V, V<sub>OUT</sub> = 3.3V, I<sub>OUT</sub> = 3A, f = 500kHz, unless otherwise specified. Schematic shown in Figure 27. Figure 14. Steady State CCM, I<sub>OUT</sub> = 3A Figure 16. Power Up, I<sub>OUT</sub> = 3A Figure 18. Load Step, CCM, 0A-1.5A-0A Figure 15. Steady State DCM, I<sub>OUT</sub> = 0A Figure 17. Power Up, $I_{OUT} = 0A$ Figure 19. Load Step, DCM/CCM, 0.05A-1.5A-0.05A # **Typical Performance Characteristics (Continued)** ## Efficiency and Package Thermal Derating $T_A = 25$ °C, No airflow, f = 500kHz, unless otherwise specified. Schematic shown in Figure 27. Figure 20. Efficiency, $V_{IN} = 12V$ Figure 22. Efficiency, $V_{IN} = 24V$ Figure 21. Maximum $T_{AMBIENT}$ vs. $I_{OUT}$ , $V_{IN} = 12V$ Figure 23. Maximum $T_{AMBIENT}$ vs. $I_{OUT}$ , $V_{IN} = 24V$ # **Functional Block Diagram** Figure 24. Functional Block Diagram # **Applications Information** #### **Functional Description** XR79203 is a synchronous step-down proprietary emulated current-mode Constant On-Time (COT) module. The on-time, which is programmed via $R_{ON}$ , is inversely proportional to $V_{IN}$ and maintains a nearly constant frequency. The emulated current-mode control is stable with ceramic output capacitors. Each switching cycle begins with GH signal turning on the high-side (switching) FET for a preprogrammed time. At the end of the on-time, the high-side FET is turned off and the low-side (synchronous) FET is turned on for a preset minimum time (250ns nominal). This parameter is termed minimum off-time. After the minimum off-time, the voltage at the feedback pin FB is compared to an internal voltage ramp at the feedback comparator. When $V_{FB}$ drops below the ramp voltage, the high-side FET is turned on and the cycle repeats. This voltage ramp constitutes an emulated current ramp and makes possible the use of ceramic capacitors, in addition to other capacitor types, for output filtering. #### Enable/Mode Input (EN/MODE) EN/MODE pin accepts a tri-level signal that is used to control turn on/off. It also selects between two modes of operation: forced CCM and DCM/CCM. If EN is pulled below 1.8V, the module shuts down. A voltage between 2.0V and 2.8V selects the forced CCM mode which will run the module in continuous conduction at all times. A voltage higher than 3.1V selects the DCM/CCM mode which will run the module in discontinuous conduction at light loads. #### Selecting the Forced CCM Mode In order to set the module to operate in forced CCM, a voltage between 2.0V and 2.8V must be applied to EN/MODE. This can be achieved with an external control signal that meets the above voltage requirement. Where an external control is not available, the EN/MODE can be derived from $V_{\rm IN}$ . If $V_{\rm IN}$ is well regulated, use a resistor divider and set the voltage to 2.5V. If $V_{\rm IN}$ varies over a wide range, the circuit shown in Figure 25 can be used to generate the required voltage. Note that at $V_{\rm IN}$ of 5.0V and 40V the nominal Zener voltage is 4.0V and 5.0V respectively. Therefore for $V_{\rm IN}$ in the range of 5.0V to 40V, the circuit shown in Figure 25 will generate $V_{\rm EN}$ required for forced CCM. #### Selecting the DCM/CCM Mode In order to set the module operation to DCM/CCM, a voltage between 3.1V and 5.5V must be applied to EN/MODE pin. If an external control signal is available, it can be directly connected to EN/MODE. In applications where an external control is not available, EN/MODE input can be derived from $V_{IN}.$ If $V_{IN}$ is well regulated, use a resistor divider and set the voltage to 4V. If $V_{IN}$ varies over a wide range, the circuit shown in Figure 26 can be used to generate the required voltage for DCM/CCM operation. Forced CCM, wide V<sub>IN</sub> range Figure 25. Selecting Forced CCM by Deriving EN/MODE from V<sub>IN</sub> DCM/CCM, wide V<sub>IN</sub> range Figure 26. Selecting DCM/CCM by Deriving EN/MODE from V<sub>IN</sub> ## **Applications Information (Continued)** ## Programming the On-Time The on-time $t_{ON}$ is programmed via resistor $R_{ON}$ according to following equation: $$R_{ON} = \frac{V_{IN} \times [t_{ON} - (2.5 \times 10^{-8})]}{2.95 \times 10^{-10}}$$ A graph of $t_{ON}$ vs. $R_{ON}$ , using the above equation, is compared to typical test data in Figure 5. The graph shows that calculated data matches typical test data within 3%. The t<sub>ON</sub> corresponding to a particular set of operating conditions can be calculated based on empirical data from: $$t_{ON} = \frac{v_{OUT}}{v_{IN} \times 1.06 \text{ x f} \times \text{Eff.}}$$ Where: - f is the desired switching frequency at nominal I<sub>OUT</sub> - Eff. is the converter efficiency corresponding to nominal I<sub>OUT</sub> Substituting for t<sub>ON</sub> in the first equation we get: $$R_{ON} = \frac{\left(\frac{V_{OUT}}{1.06 \text{ x f} \times \text{Eff.}}\right) - \left[(2.5 \times 10^{-8}) \times V_{IN}\right]}{(2.95 \times 10^{-10})}$$ Now $R_{ON}$ can be calculated in terms of operating conditions $V_{IN}$ , $V_{OUT}$ , f and Eff. using the above equation. At $V_{IN}$ = 24V, f = 500kHz, $I_{OUT}$ = 3A and using the efficiency numbers from Figure 22 we get the following $R_{ON}$ : | V <sub>OUT</sub> (V) | Eff. (%) | f (kHZ) | R <sub>ON</sub> (kΩ) | |----------------------|----------|---------|----------------------| | 12.0 | 94 | 700 | 56.3 | | 5.0 | 90 | 500 | 33.5 | | 3.3 | 87 | 500 | 22.2 | | 1.8 | 80 | 500 | 12.4 | ## Overcurrent Protection (OCP) If the load current exceeds the programmed overcurrent threshold $I_{OCP}$ for four consecutive switching cycles, the module enters the hiccup mode of operation. In hiccup mode the MOSFET gates are turned off for 110ms (hiccup timeout). Following the hiccup timeout a soft-start is attempted. If OCP persists, hiccup timeout will repeat. The module will remain in hiccup mode until load current is reduced below the programmed $I_{OCP}$ . In order to program overcurrent protection use the following equation: $$R_{LIM} = \left[ \frac{(I_{OCP} + (0.5 \times \Delta I_{L}))}{\left(\frac{I_{LIM}}{R_{DS}}\right)} + 0.16k\Omega \right]$$ Where: - R<sub>LIM</sub> is resistor value in kΩ for programming I<sub>OCP</sub> - I<sub>OCP</sub> is the overcurrent value to be programmed - $\blacksquare \Delta I_I$ is the peak-to-peak inductor current ripple - $I_{LIM}/R_{DS} = 2.4\mu A/m\Omega$ is the minimum value of the parameter specified in the tabulated data - 0.16kΩ accounts for OCP comparator offset The above equation is for worst-case analysis and safeguards against premature OCP. Typical value of $I_{OCP}$ , for a given $R_{LIM}$ , will be higher than that predicted by the above equation. Graph of calculated $I_{OCP}$ vs. $R_{LIM}$ is compared to typical $I_{OCP}$ in Figure 9. ## Short-Circuit Protection (SCP) If the output voltage drops below 60% of its programmed value, the Module will enter hiccup mode. Hiccup will persist until short-circuit is removed. SCP circuit becomes active after PGOOD asserts high. #### Over Temperature Protection (OTP) OTP triggers at a nominal controller temperature of 150°C. The gate of switching FET and synchronous FET are turned off. When controller temperature cools down to 135°C, soft-start is initiated and operation resumes. REV1C 12/17 # **Applications Information (Continued)** #### Programming the Output Voltage Use an external voltage divider as shown in Figure 27 to program the output voltage $V_{\text{OUT}}$ . $$R_{FB1} = R_{FB2} \times \left( \frac{V_{OUT}}{0.6V} - 1 \right)$$ Where $R_{FB2}$ has a nominal value of $2k\Omega$ . ## Programming the Soft-Start Place a capacitor $C_{SS}$ between the SS and AGND pins to program the soft-start. In order to program a soft-start time of $t_{SS}$ , calculate the required capacitance $C_{SS}$ from the following equation: $$C_{SS} = t_{SS} \times \frac{10\mu A}{0.6V}$$ #### Feed-Forward Capacitor (CFF) The feed-forward capacitor $C_{FF}$ is used to set the necessary phase margin when using ceramic output capacitors. Calculate $C_{FF}$ from the following equation: $$C_{FF} = \frac{1}{2 \times \pi \times R_{FB1} \times 5 \times f_{LC}}$$ Where $f_{LC}$ , the output filter double-pole frequency is calculated from: $$f_{LC} = \frac{1}{2 \times \pi \times \sqrt{L \times C_{OUT}}}$$ You must use manufacturer's DC derating curves to determine the effective capacitance corresponding to $V_{OUT}$ . A load step test and/or a loop frequency response test should be performed and if necessary $C_{FF}$ can be adjusted in order to get a critically damped transient load response. In certain conditions an alternate compensation scheme may need to be employed using ripple injection from the inductor. An application note is being developed to provide more information about this compensation scheme. ## Feed-Forward Resistor (RFF) $R_{FF}$ , in conjunction with $C_{FF}$ , functions similar to a high frequency pole and adds gain margin to the frequency response. Calculate $R_{FF}$ from: $$R_{FF} = \frac{1}{2 \times \pi \times f \times C_{FF}}$$ Where f is the switching frequency. If $R_{FF} > 0.02 \text{ x } R_{FB1}$ then calculate $R_{FF}$ value from $R_{FF} = 0.02 \text{ x } R_{FB1}$ . ## Maximum Allowable Voltage Ripple at FB Pin Note that the steady-state voltage ripple at feedback pin FB ( $V_{FB,RIPPLE}$ ) must not exceed 50mV in order for the module to function correctly. If $V_{FB,RIPPLE}$ is larger than 50mV then $C_{OUT}$ should be increased as necessary in order to keep the $V_{FB,RIPPLE}$ below 50mV. REV1C 13/17 # **Applications Information (Continued)** Figure 27. Typical Application Circuit ## **Mechanical Dimensions** ## **TOP VIEW** #### **BOTTOM VIEW** #### **SIDE VIEW** | | | | | - | |------|------|----------|------|---| | REF. | MIN. | NOM. | MAX. | | | Α | 3.90 | 4.00 | 4.10 | 1 | | ь | 0.20 | 0.25 | 0.30 | 1 | | L | 0.50 | 0.60 | 0.70 | ] | | k | 0.25 | 0.35 | 0.45 | | | D | | 8.00 BSC | | | | D1 | 1.15 | 1.25 | 1.35 | | | D2 | 1.95 | 2.05 | 2.15 | | | D3 | 3.95 | 4.05 | 4.15 | | | D4 | 2.07 | 2.17 | 2.27 | | | D5 | 1.40 | 1.50 | 1.60 | | | D6 | 1.28 | 1.38 | 1.48 | | | D7 | 1.95 | 2.05 | 2.15 | | | D8 | 0.40 | 0.50 | 0.60 | | | E | | 8.00 BSC | | | | E1 | 4.57 | 4.67 | 4.77 | | | E2 | 0.83 | 0.93 | 1.03 | | | E3 | 4.57 | 4.67 | 4.77 | | | E4 | 1.05 | 1.15 | 1.25 | | | E5 | 0.60 | 0.70 | 0.80 | | | E6 | 1.98 | 2.08 | 2.18 | | | E7 | 0.10 | 0.20 | 0.30 | | | E8 | 0.83 | 0.93 | 1.03 | | | е | | 0.50 BSC | | | | n | | 56 | | 3 | | nD | | 15 | | | | nE | | 13 | | | | 2 × M B O - | СОММС | N<br>O<br>T<br>E | | | | | |-------------|-----------|------------------|------------|----|--|--| | Ľ | MIN. | NOM. | MAX. | E | | | | A1 | D | 0.02 | 0.05 | | | | | А3 | 0.20 REF. | | | | | | | TOL | ERANCES | OF FORM A | AND POSITI | ON | | | | aaa | 0.10 | | | | | | | bbb | | 0.10 | | | | | | ccc | | 0.10 | | | | | | ddd | 0.05 | | | | | | | eee | 0.08 | | | | | | **TERMINAL DETAILS** #### **PAD EDGE DETAILS** - 1. All dimensioins are in Millimeters - 2. Dimensions and tolerance per Jedec MO-220 Drwg No.: POD - 000000102 Revision: A # **Recommended Land Pattern and Stencil** #### RECOMMENDED STENCIL DESIGN - 1. All dimensioins are in Millimeters - 2. Dimensions and tolerance per Jedec MO-220 Drwg No. : POD - 000000102 Revision: A # Ordering Information(1) | Part Number | Operating Temperature Range | Lead-Free | Package | Packaging<br>Method | | | |-------------|--------------------------------|---------------------------------------------------|---------|---------------------|--|--| | XR79203EL-F | -40°C ≤ T <sub>J</sub> ≤ 125°C | -40°C ≤ T <sub>J</sub> ≤ 125°C Yes <sup>(2)</sup> | | Tray | | | | XR79203EVB | XR79203 evaluation board | | | | | | #### NOTE: - 1. Refer to <a href="www.exar.com/XR79203">www.exar.com/XR79203</a> for most up-to-date Ordering Information. - 2. Visit www.exar.com for additional information on Environmental Rating. ## **Revision History** | Revision | Date | Description | |----------|------------|--------------------------------------------------------------------------------------------------| | 1B | March 2016 | Initial Release | | 1C | June 2018 | Update to MaxLinear logo. Update format and Ordering Information format. Added Revision History. | Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com **High Performance Analog:** 1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101 www.exar.com The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc. Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances. MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated. © 2016 - 2018 MaxLinear, Inc. All rights reserved Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: <u>org@eplast1.ru</u> Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.