TPS76030, TPS76032, TPS76033, TPS76038, TPS76050 LOW-POWER 50-mA LOW-DROPOUT LINEAR REGULATORS SLVS144D - JULY 1998 - REVISED MAY 2001 - 50-mA Low-Dropout Regulator - Fixed Output Voltage Options: 5 V, 3.8 V, 3.3 V, 3.2 V, and 3 V - Dropout Typically 120 mV at 50 mA - Thermal Protection - Less Than 1-μA Quiescent Current in Shutdown - -40°C to 125°C Operating Junction Temperature Range - 5-Pin SOT-23 Package - ESD Protection Verified to 1.5 kV Human Body Model (HBM) per MIL-STD-883C # DBV PACKAGE (TOP VIEW) EN GND IN 3 2 1 4 5 NC OUT NC - No internal connection #### description The TPS760xx is a 50 mA, low dropout (LDO) voltage regulator designed specifically for battery-powered applications. A proprietary BiCMOS fabrication process allows the TPS760xx to provide outstanding performance in all specifications critical to battery-powered operation. The TPS760xx is available in a space-saving SOT–23 package and operates over a junction temperature range of –40°C to 125°C. #### **AVAILABLE OPTIONS** | TJ | VOLTAGE | PACKAGE | PART NUMBER | SYMBOL | |----------------|---------|---------|--------------|--------| | | 3 V | | TPS76030DBVR | PAGI | | | 3.2 V | | TPS76032DBVR | PAOI | | -40°C to 125°C | 3.3 V | SOT-23 | TPS76033DBVR | PAHI | | | 3.8 V | | TPS76038DBVR | PAJI | | | 5 V | | TPS76050DBVR | PANI | NOTE: The DBV package is available taped and reeled only. #### functional block diagram † Current sense Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # **TPS76030, TPS76032, TPS76033, TPS76038, TPS76050 LOW-POWER 50-mA LOW-DROPOUT LINEAR REGULATORS** SLVS144D - JULY 1998 - REVISED MAY 2001 #### **Terminal Functions** | TERMINAL | | 1/0 | DESCRIPTION | | | | | | | |----------|-----|-----|--------------------------|--|--|--|--|--|--| | NAME | NO. | 1/0 | DESCRIPTION | | | | | | | | EN | 3 | I | Enable input | | | | | | | | GND | 2 | | Ground | | | | | | | | IN | 1 | I | Input voltage | | | | | | | | NC | 4 | | No connection | | | | | | | | OUT | 5 | 0 | Regulated output voltage | | | | | | | #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Input voltage range, V _I [‡] | –0.3 V to 16 V | |--|------------------------------| | Voltage range at EN | | | Peak output current | internally limited | | Continuous total dissipation | See Dissipation Rating Table | | Operating junction temperature range, T _J | –40°C to 150°C | | Storage temperature range, T _{stg} | –65°C to 150°C | | ESD rating, HBM | 1.5 kV | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **DISSIPATION RATING TABLE** | BOARD | PACKAGE | $R_{ heta}$ JC | $R_{ heta JA}$ | R_{θ} JA DERATING FACTOR ABOVE $T_A = 25^{\circ}C$ I | | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | | |---------|---------|----------------|----------------|---|--------|---------------------------------------|---------------------------------------|--| | Low K§ | DBV | 65.8 °C/W | 259 °C/W | 3.9 mW/°C | 386 mW | 212 mW | 154 mW | | | High K¶ | DBV | 65.8 °C/W | 180 °C/W | 5.6 mW/°C | 555 mW | 305 mW | 222 mW | | [§] The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the board. ¶ The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground planes and 2 ounce copper traces on top and bottom of the board. #### recommended operating conditions | | | MIN | NOM MAX | UNIT | |-------------------------------|----------|-----|---------|------| | Input voltage, V _I | TPS76030 | 3.2 | 16 | | | | TPS76032 | | 16 | 1 | | | TPS76033 | 3.5 | 16 | V | | | TPS76038 | 4 | 16 | 1 | | | TPS76050 | 5.2 | 16 | | | Continuous output current, IC |) | 0 | 50 | mA | | Operating junction temperatu | re, TJ | -40 | 125 | °C | [‡] All voltages are with respect to device GND pin. SLVS144D - JULY 1998 - REVISED MAY 2001 # electrical characteristics over recommended operating free-air temperature range, $V_I = V_{O(nom)} + 1$ V, $I_O = 1$ mA, EN = V_I , $C_O = 2.2$ μF (unless otherwise noted) | | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | |---------------------------------|---------------------------------------|---------------|--|------|-----|------|-------|--|--|--| | | | | T _J = 25°C | 2.96 | 3 | 3.04 | | | | | | | | TPS76030 | $T_J = 25^{\circ}C$, 1 mA < I_O < 50 mA | 2.92 | | 3.04 | V | | | | | | | | 1 mA < I _O < 50 mA | 2.91 | | 3.07 | | | | | | | | | T _J = 25°C | 3.16 | 3.2 | 3.24 | | | | | | | | TPS76032 | $T_J = 25^{\circ}C$, 1 mA < I_O < 50 mA | 3.13 | | 3.24 | V | | | | | | | | 1 mA < I _O < 50 mA | 3.1 | | 3.3 | | | | | | | | | T _J = 25°C | 3.26 | 3.3 | 3.34 | | | | | | Vo | Output voltage | TPS76033 | $T_J = 25^{\circ}C$, 1 mA < I_O < 50 mA | 3.23 | | 3.34 | V | | | | | | | | 1 mA < I _O < 50 mA | 3.2 | | 3.4 | 1 | | | | | | | | T _J = 25°C | 3.76 | 3.8 | 3.84 | | | | | | | | TPS76038 | $T_J = 25^{\circ}C$, 1 mA < I_O < 50 mA | 3.73 | | 3.84 | V | | | | | | | | 1 mA < I _O < 50 mA | 3.7 | | 3.9 | | | | | | | | | T _J = 25°C | 4.95 | 5 | 5.05 | | | | | | | | TPS76050 | $T_J = 25^{\circ}C$, 1 mA < I_O < 50 mA | 4.91 | - | 5.05 | V | | | | | | | | 1 mA < I _O < 50 mA | 4.89 | - | 5.1 | | | | | | I(standby) | Standby current | • | EN = 0 V | | | 1 | μΑ | | | | | (otariaby) | · · · · · · · · · · · · · · · · · · · | | $I_{O} = 0 \text{ mA}, T_{J} = 25^{\circ}\text{C}$ | | 90 | 115 | | | | | | | | | I _O = 0 mA | | | 130 | | | | | | | | | $I_O = 1 \text{ mA}, \qquad T_J = 25^{\circ}\text{C}$ | | 100 | 130 | | | | | | | | | I _O = 1 mA | | | 170 | | | | | | Quiescent current (GND current) | | | $I_{O} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$ | | 190 | 215 | μΑ | | | | | | | | I _O = 10 mA | | - | 260 | | | | | | | | | $I_{O} = 50 \text{ mA}, T_{J} = 25^{\circ}\text{C}$ | | 850 | 1100 | | | | | | | | | I _O = 50 mA | | - | 1200 | | | | | | | | TPS76030 | $4 \text{ V} < \text{V}_{\text{I}} < 16$, $I_{\text{O}} = 1 \text{ mA}$ | | 3 | 10 | | | | | | | | TPS76032 | 4.2 V < V _I < 16, I _O = 1 mA | | 3 | 10 | | | | | | | Input regulation | TPS76033 | 4.3 V < V _I < 16, I _O = 1 mA | | 3 | 10 | m∨ | | | | | | . 0 | TPS76038 | 4.8 V < V _I < 16, I _O = 1 mA | | 3 | 10 | - | | | | | | | TPS76050 | $6 \text{ V} < \text{V}_1 < 16, \qquad \text{I}_0 = 1 \text{ mA}$ | | 3 | 10 | | | | | | Vn | Output noise voltage | •
• | BW = 300 Hz to 50 kHz, $C_0 = 10 \mu F$, $T_J = 25^{\circ}C$ | | 190 | | μVrms | | | | | | Ripple rejection | | $f = 1 \text{ kHz}, C_O = 10 \mu\text{F}, T_J = 25^{\circ}\text{C}$ | | 63 | | dB | | | | | | , | | I _O = 0 mA T _J = 25°C | | 1 | 3 | | | | | | | | | I _O = 0 mA | | | 5 | 1 | | | | | | | | $I_O = 1 \text{ mA},$ $T_J = 25^{\circ}\text{C}$ | | 7 | 10 | | | | | | | | | I _O = 1 mA | | | 15 | ١ | | | | | | Dropout voltage | | $I_{O} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$ | | 40 | 60 | mV | | | | | | | | I _O = 10 mA | | - | 90 | 1 | | | | | | | | I _O = 50 mA | | 120 | 150 | 1 | | | | | | | | I _O = 50 mA | | - | 180 | | | | | | | Peak output current | current limit | | 100 | 125 | 135 | mA | | | | | | High level enable in | | | 2 | - | | V | | | | | | Low level enable inp | | | - | - | 0.8 | V | | | | | | | | EN = 0 V | -1 | 0 | 1 | μΑ | | | | | l _I | Input current (EN) | | EN = V _I | | 2.5 | 5 | μA | | | | # **TPS76030, TPS76032, TPS76033, TPS76038, TPS76050 LOW-POWER 50-mA LOW-DROPOUT LINEAR REGULATORS** SLVS144D - JULY 1998 - REVISED MAY 2001 ### **Table of Graphs** | | | | FIGURE | |----------------|-------------------------|-------------------------|---------| | V- | Output valtage | vs Output current | 1, 2, 3 | | Vo | Output voltage | vs Free-air temperature | 4, 5, 6 | | | Ground current | vs Free-air temperature | 7, 8, 9 | | | Output noise | vs Frequency | 10 | | Z _o | Output impedance | vs Frequency | 11 | | VDO | Dropout voltage | vs Free-air temperature | 12 | | | Line transient response | | 13, 15 | | | Load transient response | | 14, 16 | I_O – Output Current – mA Figure 3 T_A - Free-Air Temperature - °C Figure 4 T_A - Free-Air Temperature - °C Figure 8 T_A – Free-Air Temperature – $^{\circ}$ C Figure 7 Figure 10 **TPS76030** Figure 16 Figure 15 SLVS144D - JULY 1998 - REVISED MAY 2001 #### APPLICATION INFORMATION Figure 17. TPS760xx Typical Application #### over current protection The over current protection circuit forces the TPS760xx into a constant current output mode when the load is excessive or the output is shorted to ground. Normal operation resumes when the fault condition is removed. An overload or short circuit may also activate the over temperature protection if the fault condition persists. #### over temperature protection The thermal protection system shuts the TPS760xx down when the junction temperature exceeds 160°C. The device recovers and operates normally when the temperature drops below 155°C. #### input capacitor A 0.047 μF or larger ceramic decoupling capacitor with short leads connected between IN and GND is recommended. The decoupling capacitor may be omitted if there is a 1 μF or larger electrolytic capacitor connected between IN and GND and located reasonably close to the TPS760xx. However, the small ceramic device is desirable even when the larger capacitor is present, if there is a lot of high frequency noise present in the system. #### output capacitor Like all low dropout regulators, the TPS760xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 2.2 μF and the ESR (equivalent series resistance) must be between 0.1 Ω and 20 Ω . Capacitor values of 2.5- μF or larger are acceptable, provided the ESR is less than 20 Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described above. Most of the commercially available 2.2- μF surface-mount solid-tantalum capacitors, including devices from Sprague, Kemet, and Nichicon, meet the ESR requirements stated above. Multilayer ceramic capacitors should have minimum values of 2.5 μF over the full operating temperature range of the equipment. #### enable (EN) A logic zero on the enable input shuts the TPS760xx off and reduces the supply current to less than 1 μ A. Pulling the enable input high causes normal operation to resume. If the enable feature is not used, EN should be connected to IN to keep the regulator on all of the time. The EN input must not be left floating. #### reverse current path The power transistor used in the TPS760xx has an inherent diode connected between IN and OUT as shown in the functional block diagram. This diode conducts current from the OUT terminal to the IN terminal whenever IN is lower than OUT by a diode drop. This condition does not damage the TPS760xx, provided the current is limited to 100 mA. 30-Jul-2011 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | TPS76030DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76030DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76030DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76030DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76032DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76032DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76033DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76033DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76033DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76033DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76038DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76038DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76038DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76038DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76050DBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76050DBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | TPS76050DBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | #### PACKAGE OPTION ADDENDUM 30-Jul-2011 | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | TPS76050DBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## PACKAGE MATERIALS INFORMATION www.ti.com 24-Sep-2011 #### TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### TAPE DIMENSIONS | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS76030DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS76030DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS76032DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS76033DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS76033DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS76038DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS76038DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TPS76050DBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | TPS76050DBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | www.ti.com 24-Sep-2011 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS76030DBVR | SOT-23 | DBV | 5 | 3000 | 182.0 | 182.0 | 20.0 | | TPS76030DBVT | SOT-23 | DBV | 5 | 250 | 182.0 | 182.0 | 20.0 | | TPS76032DBVR | SOT-23 | DBV | 5 | 3000 | 182.0 | 182.0 | 20.0 | | TPS76033DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | TPS76033DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | TPS76038DBVR | SOT-23 | DBV | 5 | 3000 | 182.0 | 182.0 | 20.0 | | TPS76038DBVT | SOT-23 | DBV | 5 | 250 | 182.0 | 182.0 | 20.0 | | TPS76050DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | TPS76050DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | # DBV (R-PDSO-G5) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: #### Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors www.ti.com/omap Wireless Connctivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.