MICROCHIP

PIC18(L)F1XK22

20-Pin Flash Microcontrollerswith XL P Technology

High-Performance RISC CPU

* C Compiler Optimized Architecture:
- Optional extended instruction set designed to
optimize re-entrant code
+ 256 bytes Data EEPROM
* Up to 16 Kbytes Linear Program Memory
Addressing
* Up to 512 bytes Linear Data Memory Addressing
* Up to 16 MIPS Operation
» 16-bit Wide Instructions, 8-bit Wide Data Path
* Priority Levels for Interrupts
* 31-Level, Software Accessible Hardware Stack
» 8 x 8 Single-Cycle Hardware Multiplier

Flexible Oscillator Structure

* Precision 16 MHz Internal Oscillator Block:
- Factory calibrated to + 1%
- Software selectable frequencies range of
31 kHz to 16 MHz
- 64 MHz performance available using PLL —
no external components required
* Four Crystal modes up to 64 MHz
+ Two External Clock modes up to 64 MHz
* 4X Phase Lock Loop (PLL)
» Secondary Oscillator using Timer1 @ 32 kHz
+ Fail-Safe Clock Monitor
- Allows for safe shutdown if peripheral clock
stops
» Two-Speed Oscillator Start-up

Special Microcontroller Features

2.3V - 5.5V Operation — PIC18F1XK22

* 1.8V-3.6V Operation — PIC18LF1XK22

 Self-reprogrammable under Software Control

* Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)

* Programmable Brown-out Reset (BOR)

» Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 131s

* Programmable Code Protection

* In-Circuit Serial Programming™ (ICSP™) via
two pins

* In-Circuit Debug via Two Pins

Extreme Low-Power Management
PIC18LF1XK22 with XLP Technology
» Sleep mode: 34 nA

* Watchdog Timer: 460 nA
» Timer1 Oscillator: 650 nA @ 32 kHz

Analog Features

+ Analog-to-Digital Converter (ADC) module
- 10-bit resolution, 12 channels
- Auto-acquisition capability
- Conversion available during Sleep
* Analog Comparator module:
- Two rail-to-rail analog comparators
- Independent input multiplexing
- Inputs and outputs externally accessible
» Voltage Reference module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
- 5-bit rail-to-rail resistive Digital-to-Analog
Converter (DAC) with positive and negative
reference selection

Peripheral Highlights

* 17 1/0 Pins and 1 Input-only Pin:
- High current sink/source 25 mA/25 mA
- Programmable weak pull-ups
- Programmable interrupt-on- change
- Three external interrupt pins
* Four Timer modules:
- Three 16-bit timers/counters with prescaler
- One 8-bit timer/counter with 8-bit period
register, prescaler and postscaler
- Dedicated, low-power Timer1 oscillator
* Enhanced Capture/Compare/PWM (ECCP)
module:
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-shutdown and Auto-restart
- PWM output steering control
» Master Synchronous Serial Port (MSSP) module
- 3-wire SPI (supports all four SPI modes)
- I2C Master and Slave modes (Slave mode
address masking)
* Enhanced Universal Synchronous Asynchronous
Receiver Transmitter module (EUSART)
- Supports RS-232, RS-485 and LIN 2.0
- Auto-Baud Detect
- Auto Wake-up on Break
» SR Latch (555 Timer) module with:
- Configurable inputs and outputs
- Supports mTouch® capacitive sensing
applications
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PIC18(L)F1XK22 Family Types

3 Program Memory Data Memory "
el —_ =
3 - SR IR AR
Device ) ata | pins (/OB | = c | o ? 8
& | Bytes | Words SRAM 1 eeprom 28| 2 E= 10124 o
v (bytes) =) E | F2 o
o (bytes) =0 | q b 0
© ]
a
PIC18(L)F13K22 | (1) 8K 4K 256 256 20 18 | 12-ch 1/3 1 1 1 Yes
PIC18(L)F14K22 | (1) 16K 8K 512 256 20 18 | 12-ch 1/3 1 1 1 Yes

Note 1: One pin is input-only.
Data Sheet Index: (Unshaded devices are described in this document)
1. DS40001365 PIC18(L)F1XK22 20-Pin Flash Microcontrollers with XLP Technology

Note: For other small form-factor package availability and marking information, please visit
http://www.microchip.com/packaging or contact your local sales office.

Pin Diagrams

FIGURE 1: 20-PIN PDIP, SSOP, SOIC
VoD o1 N 207 Vss
RA5[] 2 19 RAO/PGD
RA4[] 3 NN 181 RA1/PGC
RA3/MCLR/VPP [] 4 E 170 RA2
RC5[] 5 oo 16[JRCO
RC4[] 6 ey 15[ ] RC1
RC3/PGM[] 7 X 14[JRC2
RC6[] 8 g g 13 1RB4
RC7[] 9 12[1RB5
RB7 []10 11[1RB6
Note: See Table 1 for location of all peripheral functions.
FIGURE 2: 20-PIN QFN (4x4)
a
[0
a
12882
‘e >>
e 2019181716
RA3/MCLR/VPP| 1 15| RA1/PGC
RC5] 2 pIC18(L)F13K22 14| RA2
RC4| 3 13| RCO
RC3/PGM| 4 PICI8(LF14K22 (71 0 <
RC6| 5 11|RC2
678910

Note: See Table 1 for location of all peripheral functions.
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TABLE 1: 20-PIN ALLOCATION TABLE (PIC18(L)F1XK22)
Q
o]
f
a Z S ) %)
2 & 2 s 2 o & o S 4 = 3 o
) 1% pd = I o o < ) ks ] 2 I ‘«
= |z | & | E g 3 9 2 4 2| E 5 |3 8
g 2 < 8 2 w ) = c o
{=
£
=}
«
RAO 19 16 ANO C1IN+ VREF-/ — — — — — IOC/INTO | Y PGD
CVREF(DAC10UT)
RA1 18 15 AN1 | C12INO- VREF+ — — — — — IOC/INT1 | Y PGC
RA2 17 14 AN2 | C10UT — — — — SRQ | TOCKI IOC/INT2 | Y —
RA3 4 1 — — — — — — — — I0C Y MCLR/VPP
RA4 3 20 AN3 — — — — — — — 10C Y | 0SC2/CLKOUT
RAS5 2 19 — — — — — — — T13CKI 10C Y | OSC1/CLKIN
RB4 13 10 AN10 — — — — SDI/SDA — — 10C Y —
RB5 12 9 AN11 — — — RX/DT — — — 10C Y —
RB6 1 8 — — — — — SCL/SCK — — 10C Y —
RB7 10 7 — — — — TX/CK — — — I0C Y —
RCO 16 13 AN4 C2IN+ — — — — — — — — —
RC1 15 12 AN5 | C12IN1- — — — — — — — — —
RC2 14 1 ANG6 | C12IN2- — P1D — — — — — — —
RC3 7 4 AN7 | C12IN3- — P1C — — — — — — PGM
RC4 6 3 — C20UT — P1B — — SRNQ — — — —
RC5 5 2 — — — CCP1/P1A — — — — — — —
RC6 8 5 ANS — — — — ss — — — — —
RC7 9 6 AN9 — — — — SDO — — — — —
— 1 18 — — — — — — — — — — VDD
— 20 17 — — — — — — — — — — Vss
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TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

* Microchip’s Worldwide Website; http://www.microchip.com

» Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.
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1.0 DEVICE OVERVIEW

This family offers the advantages of all PIC18
microcontrollers — namely, high computational
performance with the addition of high-endurance,
Flash program memory. On top of these features, the
PIC18(L)F1XK22 family introduces design
enhancements that make these microcontrollers a
logical choice for many high-performance, power
sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

All of the devices in the PIC18(L)F1XK22 family
incorporate a range of features that can significantly
reduce power consumption during operation. Key
items include:

* Multiple Idle Modes: The controller can also run
with its CPU core disabled but the peripherals still
active. In these states, power consumption can be
reduced even further, to as little as 4% of normal
operation requirements.

* On-the-fly Mode Switching: The
power-managed modes are invoked by user code
during operation, allowing the user to incorporate
power-saving ideas into their application’s
software design.

* Low Consumption in Key Modules: The
power requirements for both Timer1 and the
Watchdog Timer are minimized. See
Section 26.0 “Electrical Specifications”
for values.

1.1.2 MULTIPLE OSCILLATOR OPTIONS
AND FEATURES

All of the devices in the PIC18(L)F1XK22 family offer
ten different oscillator options, allowing users a wide
range of choices in developing application hardware.
These include:

» Four Crystal modes, using crystals or ceramic
resonators

» External Clock modes, offering the option of using
two pins (oscillator input and a divide-by-4 clock
output) or one pin (oscillator input, with the
second pin reassigned as general I/O)

» External RC Oscillator modes with the same pin
options as the External Clock modes

« An internal oscillator block which contains a
16 MHz HFINTOSC oscillator and a 31 kHz
LFINTOSC oscillator which together provide eight
user selectable clock frequencies, from 31 kHz to
16 MHz. This option frees the two oscillator pins
for use as additional general purpose I/O.

* A Phase Lock Loop (PLL) frequency multiplier,
available to both the high-speed crystal and
internal oscillator modes, which allows clock
speeds of up to 64 MHz. Used with the internal
oscillator, the PLL gives users a complete
selection of clock speeds, from 31 kHz to 64 MHz
— all without using an external crystal or clock
circuit.

Besides its availability as a clock source, the internal
oscillator block provides a stable reference source that
gives the family additional features for robust
operation:

» Fail-Safe Clock Monitor: This option constantly
monitors the main clock source against a
reference signal provided by the LFINTOSC. If a
clock failure occurs, the controller is switched to
the internal oscillator block, allowing for continued
operation or a safe application shutdown.

» Two-Speed Start-up: This option allows the
internal oscillator to serve as the clock source
from Power-on Reset, or wake-up from Sleep
mode, until the primary clock source is available.

DS40001365F-page 6
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1.2 Other Special Features

* Memory Endurance: The Flash cells for both
program memory and data EEPROM are rated to
last for many thousands of erase/write cycles — up to
10K for program memory and 100K for EEPROM.
Data retention without refresh is conservatively
estimated to be greater than 40 years.

» Self-programmability: These devices can write
to their own program memory spaces under
internal software control. Using a bootloader
routine located in the code protected Boot Block,
it is possible to create an application that can
update itself in the field.

» Extended Instruction Set: The PIC18(L)F1XK22
family introduces an optional extension to the
PIC18 instruction set, which adds eight new
instructions and an Indexed Addressing mode.
This extension has been specifically designed to
optimize re-entrant application code originally
developed in high-level languages, such as C.

* Enhanced CCP module: In PWM mode, this
module provides one, two or four modulated
outputs for controlling half-bridge and full-bridge
drivers. Other features include:

- Auto-Shutdown, for disabling PWM outputs
on interrupt or other select conditions

- Auto-Restart, to reactivate outputs once the
condition has cleared

- Output steering to selectively enable one or
more of four outputs to provide the PWM
signal.

* Enhanced Addressable USART: This serial
communication module is capable of standard
RS-232 operation and provides support for the LIN
bus protocol. Other enhancements include
automatic baud rate detection and a 16-bit Baud
Rate Generator for improved resolution.

» 10-bit A/D Converter: This module incorporates
programmable acquisition time, allowing for a
channel to be selected and a conversion to be
initiated without waiting for a sampling period and
thus, reduce code overhead.

» Extended Watchdog Timer (WDT): This
enhanced version incorporates a 16-bit
postscaler, allowing an extended time-out range
that is stable across operating voltage and
temperature. See Section 26.0 “Electrical
Specifications” for time-out periods.

1.3 Details on Individual Family
Members

Devices in the PIC18(L)F1XK22 family are available in
20-pin packages. Block diagrams for the two groups
are shown in Figure 1-1.

The devices are differentiated from each other in the
following ways:
1. Flash program memory:

» 8 Kbytes for PIC18(L)F13K22

* 16 Kbytes for PIC18(L)F14K22

All other features for devices in this family are identical.
These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1 and 1/0
description are in Table 1-2.

© 2009-2016 Microchip Technology Inc.
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TABLE 1-1: DEVICE FEATURES FOR THE PIC18(L)F1XK22 (20-PIN DEVICES)
Features PIC18F13K22 | PIC18LF13K22 | PIC18F14K22 | PIC18LF14K22
Voltage Range (1.8 - 5.5V) 2.3-5.5vV 1.8V-3.6V 2.3-5.5vV 1.8V-3.6V
Program Memory (Bytes) 8K 16K
Program Memory (Instructions) 4096 8192
Data Memory (Bytes) 256 512
Operating Frequency DC - 64 MHz
Interrupt Sources 30
1/0 Ports Ports A, B, C
Timers 4

Enhanced Capture/ Compare/PWM Modules

1

Serial Communications

MSSP, Enhanced USART

10-Bit Analog-to-Digital Module

12 Input Channels

Resets (and Delays)

POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT
(PWRT, OST)

Instruction Set

75 Instructions, 83 with Extended Instruction Set Enabled

Packages

20-Pin PDIP, SSOP, SOIC
QFN (4x4x0.9mm)

DS40001365F-page 8
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FIGURE 1-1: PIC18(L)F1XK22 BLOCK DIAGRAM
Data Bus<8>
Table Pointer<21>| |«
' 4 v
8 Data Latch PORTA
inc/dec logic RAO
Data Memory RA1
(512/768 bytes) RA1
RA3
Address Latch = RA4
RAS
Program Counter 12
Data Address<12>
[ 31-Level Stack |
Address Latch ﬁ 4
BSR
Program Memory STKPTR
Data Latch
PORTB
RB4
RB5
Table Latch RB6
' RB7
ROM Latch p | Address
Instruction Bus <16> Decode
Instruction State machine
Decode and control signals
Control
PORTC
RCO
RC1
RC2
RC3
Internal Power-up RC4
0sc1@ XF—>|| Oscillator Timer RS
Block RC6
TFINTOSG Oscillator RC7
0sC2® |X| ) Oscillator Start-up Timer
|| Power-on
016 '\I/I”—:Z Reset
() scillator
MCLR Xl > Watchdog
Single-Suppl Timer
ingle-Supply —
: P
Vop, Vss [X}—| | Programming Fail-Safe B;ﬁglsggr:) | _FVR
Clock Monitor Reference
= DAC
Data
BOR EEPROM Timer0 Timer1 Timer2 Timer3
%P ADC ¢ oR
CVRerF/DAC1_ | Comparator ECCP1 MSSP EUSART 10-bit | .CVREF/DAC1
Note 1: RAS3is only available when MCLR functionality is disabled.
2:  OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used
as digital I/0. Refer to Section 2.0 “Oscillator Module” for additional information.
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TABLE 1-2: PIC18(L)F1XK22 PIN SUMMARY
Pin
Number
o .
Pin Name 8 O Pin Buffer Description
035 E Type Type
oLw| o
[a)
o
RAO/ANO/CVREF/VREF-/C1IN+/INTO/PGD 19 16
RAO /0 TTL Digital 1/0
ANO | Analog ADC channel 0
CVREF/DAC10OUT (6] Analog DAC reference voltage output
VREF- | Analog ADC and DAC reference voltage (low) input
C1IN+ | Analog Comparator C1 noninverting input
INTO | ST External interrupt O
PGD 110 ST ICSP™ programming data pin
RA1/AN1/C12INO-/VREF+/INT1/PGC 18 15
RA1 /0 TTL Digital /0
AN1 | Analog ADC channel 1
C12INO- 1 Analog Comparator C1 and C2 inverting input
VREF+ | Analog ADC and DAC reference voltage (high) input
INT1 | ST External interrupt 1
PGC 110 ST ICSP programming clock pin
RA2/AN2/C10UT/TOCKI/INT2/SRQ 17 | 14
RA2 /o ST Digital I/0
AN2 I Analog ADC channel 2
C10UT - CMOS Comparator C1 output
TOCKI | ST Timer0 external clock input
INT2 | ST External interrupt 2
SRQ O | cmos SR latch output
RA3/MCLR/VPP 4 1
RA3 | ST Digital input
MCLR | ST Active-low Master Clear with internal pull-up
A P — High voltage programming input
RA4/AN3/OSC2/CLKOUT 3 |20
RA4 /0 TTL Digital 1/0
AN3 | Analog ADC channel 3
OSC2 (6] XTAL Oscillator crystal output. Connect to crystal or resonator
in Crystal Oscillator mode
CLKOUT (6] CMOS In RC mode, OSC2 pin outputs CLKOUT which
has 1/4 the frequency of OSC1 and denotes
the instruction cycle rate
RA5/0SC1/CLKIN/T13CKI 2 |19
RA5 /0 TTL Digital 1/0
OSC1 | XTAL Oscillator crystal input or external clock input
ST buffer when configured in RC mode; analog other
wise
CLKIN | CMOS External clock source input. Always associated with the
pin function OSC1 (See related OSC1/CLKIN, OSC2,
CLKOUT pins
T13CKI | ST Timer0 and Timer3 external clock input
RB4/AN10/SDI/SDA 13 |10
RB4 /0 TTL Digital /0
AN10 | Analog ADC channel 10
SDI | ST SPI data in
SDA /O ST 12C data I/O
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input | = Input
O = Output P = Power
XTAL= Crystal Oscillator

DS40001365F-page 10
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TABLE 1-2: PIC18(L)F1XK22 PIN SUMMARY (CONTINUED)

Pin
Number
o .
Pin Name 8 @) Pin Buffer Description
035 E Type Type
Lol o
[a)
o
RB5/AN11/RX/DT 12 19
RB5 /0 TLL Digital 1/0
AN11 | Analog ADC channel 11
RX | ST EUSART asynchronous receive
DT 1/0 ST EUSART synchronous data (see related RX/TX)
RB6/SCK/SCL n |8
RB6 /0 TLL Digital /0
SCK 110 ST Synchronous serial clock input/output for SPI mode
SCL /0 ST Synchronous serial clock input/output for 12C mode
RB7/TX/CK 10 |7
RB7 /0 TLL Digital /0
X o CMOS EUSART asynchronous transmit
CK 110 ST EUSART synchronous clock (see related RX/DT)
RCO/AN4/C2IN+ 16 13
RCO /0 ST Digital 1/0
AN4 | Analog ADC channel 4
C2IN+ | Analog Comparator C2 noninverting input
RC1/AN5/C12IN- 15 12
RC1 /0 ST Digital /0
AN5 | Analog ADC channel 5
C12IN- | Analog Comparator C1 and C2 inverting input
RC2/AN6/C12IN2-/P1D 14 1
RC2 /0 ST Digital /0
ANG6 | Analog ADC channel 6
C12IN2- | Analog Comparator C1 and C2 inverting input
P1D o CMOS Enhanced CCP1 PWM output
RC3/AN7/C12IN3-/P1C/PGM 7 4
RC3 /0 ST Digital /0
AN7 | Analog ADC channel 7
C12IN3- | Analog Comparator C1 and C2 inverting input
P1C o CMOS Enhanced CCP1 PWM output
PGM 1/0 ST Low-Voltage ICSP Programming enable pin
RC4/C20UT/P1B/SRNQ 6 3
RC4 /0 ST Digital 1/0
C20UT (0] CMOS Comparator C2 output
P1B e} CMOS Enhanced CCP1 PWM output
SRNQ o CMOS SR latch inverted output
RC5/CCP1/P1A 5 2
RC5 /0 ST Digital 1/0
CCP1 110 ST Capture 1 input/Compare 1 output/PWM 1 output
P1A O CMOS Enhanced CCP1 PWM output
RC6/AN8/SS 8 5
RC6 /0 ST Digital /0
AN8 | Analog ADC channel 8
SS | TTL SPI slave select input
RC7/AN9/SDO 9 6
RC7 /0 ST Digital 1/0
AN9 | Analog ADC channel 9
SDO o CMOS SPI data out
Vss 20 17 P — Ground reference for logic and I/O pins
VDD 1 18 P — Positive supply for logic and 1/0 pins
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input | = Input
O = Output P = Power

XTAL= Crystal Oscillator

© 2009-2016 Microchip Technology Inc.
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2.0 OSCILLATOR MODULE

2.1 Overview

The oscillator module has a variety of clock sources
and features that allow it to be used in a wide range of
applications, maximizing performance and minimizing
power consumption. Figure 2-1 illustrates a block
diagram of the oscillator module.

Key features of the oscillator module include:
» System Clocks
» System Clock Selection
- Primary External Oscillator
- Secondary External Oscillator
- Internal Oscillator
» Oscillator Start-up Timer
» System Clock Selection
» Clock Switching
» 4x Phase Lock Loop Frequency Multiplier
* CPU Clock Divider
» Two-Speed Start-up Mode
 Fail-Safe Clock Monitoring

2.2 System Clocks

The PIC18(L)F1XK22 can be operated in 13 different
oscillator modes. The user can program these using
the available Configuration bits. In addition, clock
support functions such as Fail-Safe and two Start-up
can also be configured.

The available Primary oscillator options include:
» External Clock, low power (ECL)

» External Clock, medium power (ECM)

» External Clock, high power (ECH)

» External Clock, low power, CLKOUT function on
RA4/0SC2 (ECCLKOUTL)

» External Clock, medium power, CLKOUT function
on RA4/0SC2 (ECCLKOUTM)

» External Clock, high power, CLKOUT function on
RA4/0SC2 (ECCLKOUTH)

» External Crystal (XT)

» High-speed Crystal (HS)

* Low-power crystal (LP)

» External Resistor/Capacitor (EXTRC)

» External RC, CLKOUT function on RA4/0SC2

* 31.25 kHz — 16 MHz internal oscillator (INTOSC)

e 31.25 kHz — 16 MHz internal oscillator, CLKOUT
function on RA4/0SC2

Additionally, the 4x PLL may be enabled in hardware or
software (under certain conditions) for increased
oscillator speed.

2.3 System Clock Selection

The SCS bits of the OSCCON register select between
the following clock sources:

» Primary External Oscillator

» Secondary External Oscillator

* Internal Oscillator

Note:  The frequency of the system clock will be
referred to as Fosc throughout this

document.
TABLE 2-1: SYSTEM CLOCK SELECTION
Configuration Selection
SCS <1:0> System Clock
1x Internal Oscillator
01 Secondary External Oscillator
00 Oscillator defined by
(Default after Reset) | FOSC<3:0>

The default state of the SCS bits sets the system clock
to be the oscillator defined by the FOSC bits of the
CONFIG1H Configuration register. The system clock
will always be defined by the FOSC bits until the SCS
bits are modified in software.

When the Internal Oscillator is selected as the system
clock, the IRCF bits of the OSCCON register and the
INTSRC bit of the OSCTUNE register will select either
the LFINTOSC or the HFINTOSC. The LFINTOSC is
selected when the IRCF<2:0> = 000 and the INTSRC
bit is clear. All other combinations of the IRCF bits and
the INTSRC bit will select the HFINTOSC as the
system clock.

2.4 Primary External Oscillator

The Primary External Oscillator’'s mode of operation is
selected by setting the FOSC<3:0> bits of the
CONFIG1H Configuration register. The oscillator can
be set to the following modes:

* LP: Low-Power Crystal

* XT: Crystal/Ceramic Resonator

» HS: High-Speed Crystal Resonator

* RC: External RC Oscillator

» EC: External Clock

Additionally, the Primary External Oscillator may be
shut down under firmware control to save power.

DS40001365F-page 12
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FIGURE 2-1: PIC® MCU CLOCK SOURCE BLOCK DIAGRAM
T Primary |
' Oscillatgr,n PIC18(L)F1XK22
: External :
, and Timer1/Timer3
OSC1/T13CKI .SSCO_Tldary.
' scillator:
M >
: Sleep IDLEN
. PCLKEN LP, XT, HS, RC, EC,
. PRI_SD 1 .
osczgl— = Secondary Osc. |, Sleep
T10SCEN Peripherals
Internal Osc. = | System
X3 Clock
= OCl
CPU
IRCF<2:0> Sieep
16 MHz \I\
________ 8 MHz
: Internal . 110
. Oscillator 4 MHz 101
v Block & 2 MHz
| Jemrz |, § 1 MHz 100 3 Clock | FOSC<3:0>
' [HFINTOSC| 9 011 = Control | SCS<1:0>
! ' Q 500 kHz —
'l 31kHz || 010
. | LFINTOSC | 250 kHz |4,
__________ 31 kHz W
INTSRC
Fail-Safe
Clock
W?—E?:grog Two-Speed
Start-up
Note: If using a low-frequency external oscillator

16 MHz.

and want to multiple it by 4 via PLL, the
ideal input frequency is from 4 MHz to

© 2009-2016 Microchip Technology Inc.
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241 PRIMARY EXTERNAL OSCILLATOR

SHUTDOWN

The Primary External Oscillator can be enabled or
disabled via software. To enable software control of the
Primary External Oscillator, the PCLKEN bit of the
CONFIG1H Configuration register must be set. With
the PCLKEN bit set, the Primary External Oscillator is
controlled by the PRI_SD bit of the OSCCONZ2 register.
The Primary External Oscillator will be enabled when
the PRI_SD bit is set, and disabled when the PRI_SD
bit is clear.

FIGURE 2-2:

QUARTZ CRYSTAL
OPERATION (LP, XT OR
HS MODE)

Note:  The Primary External Oscillator cannot be
shut down when it is selected as the
System Clock. To shut down the oscillator,
the system clock source must be either
the Secondary Oscillator or the Internal

Oscillator.

242 LP, XT AND HS OSCILLATOR

MODES

The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 2-2). The mode selects a low,
medium or high gain setting of the internal inverter-
amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is best suited
to drive resonators with a low drive level specification, for
example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.

HS Oscillator mode selects the highest gain setting of the
internal inverter-amplifier. HS mode current consumption
is the highest of the three modes. This mode is best
suited for resonators that require a high drive setting.

Figure 2-2 and Figure 2-3 show typical circuits for
quartz crystal and ceramic resonators, respectively.

PIC® MCU

OSC1/CLKIN ' !

C2

Note 1:

2:

Quartz
Crystal

OSC2/CLKOUT

Rs®

A series resistor (RS) may be required for
quartz crystals with low drive level.

The value of RF varies with the Oscillator mode
selected (typically between 2 MQ to 10 MQ).

Note 1:

Quartz  crystal characteristics  vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.

Always verify oscillator performance over

the VDD and temperature range that is

expected for the application.

For oscillator design assistance, reference

the following Microchip Applications Notes:

» AN826, Crystal Oscillator Basics and
Crystal Selection for rfPIC® and
PICmicro® Devices (DS00826)

* AN849, Basic PICmicro® Oscillator
Design (DS00849)

» AN943, Practical PICmicro® Oscillator
Analysis and Design (DS00943)

» AN949, Making Your Oscillator Work
(DS00949)

DS40001365F-page 14
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FIGURE 2-3: CERAMIC RESONATOR
OPERATION

(XT OR HS MODE)

PIC® MCU

OSC1/CLKIN

Rs) | OSC2/CLKOUT

C2 ceramic
Resonator

Note 1: A series resistor (RS) may be required for
ceramic resonators with low drive level.

2: The value of RF varies with the Oscillator mode
selected (typically between 2 MQ to 10 MQ).

3: An additional parallel feedback resistor (RP)
may be required for proper ceramic resonator
operation.

243 EXTERNAL RC

The External Resistor-Capacitor (RC) mode supports
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required. In RC mode, the RC circuit connects to OSC1,
allowing OSC2 to be configured as an /O or as
CLKOUT. The CLKOUT function is selected by the
FOSC bits of the CONFIG1H Configuration register.
When OSC2 is configured as CLKOUT, the frequency
at the pin is the frequency of the RC oscillator divided by
4. Figure 2-4 shows the external RC mode connections.

FIGURE 2-4: EXTERNAL RC MODES
Voo PIC® MCU
REXT
OSC1/CLKIN N Internal

l 1 Clock
CEXT I
Vss = -

Fosc/4 or <— 0SC2/CLKOUT®
/0@

Recommended values: 10 kQ < REXT < 100 kQ
CEXT > 20 pF

Note 1: Alternate pin functions are listed in
Section 1.0 “Device Overview”.

2:  Output depends upon RC or RCIO clock mode.

The RC oscillator frequency is a function of the supply
voltage, the resistor REXT, the capacitor CEXT and the
operating temperature. Other factors affecting the
oscillator frequency are:

* Input threshold voltage variation
« Component tolerances
« Variation in capacitance due to packaging

244 EXTERNAL CLOCK

The External Clock (EC) mode allows an externally
generated logic level clock to be used as the system’s
clock source. When operating in this mode, the
external clock source is connected to the OSC1
allowing OSC2 to be configured as an I/O or as
CLKOUT. The CLKOUT function is selected by the
FOSC bits of the CONFIG1H Configuration register.
When OSC2 is configured as CLKOUT, the frequency
at the pin is the frequency of the EC oscillator divided
by 4.

Three different power settings are available for EC
mode. The power settings allow for a reduced IDD of the
device, if the EC clock is known to be in a specific
range. If there is an expected range of frequencies for
the EC clock, select the power mode for the highest
frequency.

EC Low power 0 —250 kHz
EC Medium power 250 kHz —4 MHz
EC High power 4 —64 MHz

2.5 Secondary External Oscillator

The Secondary External Oscillator is designed to drive
an external 32.768 kHz crystal. This oscillator is
enabled or disabled by the T1OSCEN bit of the TICON
register. See Section 10.0 “Timerl Module” for more
information.

© 2009-2016 Microchip Technology Inc.
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2.6 Internal Oscillator

The internal oscillator module contains two independent
oscillators which are:

* LFINTOSC: Low-Frequency Internal Oscillator

* HFINTOSC: High-Frequency Internal Oscillator
When operating with either oscillator, OSC1 will be an
I/O and OSC2 will be either an I/O or CLKOUT. The
CLKOUT function is selected by the FOSC bits of the
CONFIG1H Configuration register. When OSC2 is
configured as CLKOUT, the frequency at the pin is the
frequency of the Internal Oscillator divided by 4.

2.6.1 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is
a 31kHz internal clock source. The LFINTOSC
oscillator is the clock source for:

* Power-up Timer

* Watchdog Timer

» Fail-Safe Clock Monitor

The LFINTOSC is enabled when any of the following
conditions are true:

* Power-up Timer is enabled (PWRTEN = 0)

» Watchdog Timer is enabled (WDTEN = 1)

» Watchdog Timer is enabled by software
(WDTEN =0 and SWDTEN =1)

» Fail-Safe Clock Monitor is enabled (FCMEM = 1)
* SCS1 =1 and IRCF<2:0> = 000 and INTSRC =0
* FOSC<3:0> selects the internal oscillator as the
primary clock and IRCF<2:0> = 000 and
INTSRC =0
* |IESO =1 (Two-Speed Start-up) and
IRCF<2:0> =000 and INTSRC =0

2.6.2 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is
a precision oscillator that is factory-calibrated to
operate at 16 MHz. The output of the HFINTOSC
connects to a postscaler and a multiplexer (see
Figure 2-1). One of eight frequencies can be selected
using the IRCF<2:0> bits of the OSCCON register. The
following frequencies are available from the
HFINTOSC:

* 16 MHZ

+ 8 MHZ

« 4 MHZ

« 2MHZ

* 1 MHZ (Default after Reset)

* 500 kHz

» 250 kHz

* 31kHz

The HFIOFS bit of the OSCCON register indicates
whether the HFINTOSC is stable.

Note 1: Selecting 31 kHz from the HFINTOSC
oscillator requires IRCF<2:0> =000 and
the INTSRC bit of the OSCTUNE register
to be set. If the INTSRC bit is clear, the
system clock will come from the
LFINTOSC.

2: Additional adjustments to the frequency
of the HFINTOSC can made via the
OSCTUNE registers. See Register 2-3
for more details.

The HFINTOSC is enabled if any of the following
conditions are true:

* SCS1 =1 and IRCF<2:0> = 000

+ SCS1=1andIRCF<2:0>=000and INTSRC =1

* FOSC<3:0> selects the internal oscillator as the
primary clock and

- IRCF<2:0> = 000 or
- IRCF<2:0> =000 and INTSRC =1
» |[ESO =1 (Two-Speed Start-up) and
- IRCF<2:0> = 000 or
- IRCF<2:0> =000 and INTSRC =1
+ FCMEM = 1 (Fail-Safe Clock Monitoring) and
- IRCF<2:0> = 000 or
- IRCF<2:0> =000 and INTSRC =1

DS40001365F-page 16
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2.7 Oscillator Control

The Oscillator Control (OSCCON) (Register 2-1) and the
Oscillator Control 2 (OSCCON2) (Register 2-2) registers
control the system clock and frequency selection
options.

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0 R/W-0 R/W-1 R/W-1 R-q R-0 R/W-0 R/W-0
IDLEN IRCF2 IRCF1 IRCFO osTs® HFIOFS SCS1 SCS0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ q = depends on condition
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 IDLEN: Idle Enable bit

1 = Device enters Idle mode on SLEEP instruction
0 = Device enters Sleep mode on SLEEP instruction

bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits

111 =16 MHz

110 =8 MHz

101 =4 MHz

100 =2 MHz

011 =1 MHZ®

010 =500 kHz

001 =250 kHz

000 = 31 kHz®

bit 3 OSTS: Oscillator Start-up Time-out Status bit(1)

1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register
0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)

bit 2 HFIOFS: HFINTOSC Frequency Stable bit
1 = HFINTOSC frequency is stable
0 = HFINTOSC frequency is not stable

bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary (Timer1) oscillator
00 = Primary clock (determined by CONFIGTH[FOSC<3:0>]).

Note 1: Reset state depends on state of the IESO Configuration bit.
2:  Source selected by the INTSRC bit of the OSCTUNE register, see text.
3: Default output frequency of HFINTOSC on Reset.

© 2009-2016 Microchip Technology Inc.
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REGISTER 2-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

uU-0 U-0 U-0 U-0 uU-0 R/W-1 R/W-0 R-x

— — — — — PRI_SD HFIOFL LFIOFS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ q = depends on condition
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-3 Unimplemented: Read as ‘0’
bit 2 PRI_SD: Primary Oscillator Drive Circuit shutdown bit

1 = Oscillator drive circuit on
0 = Oscillator drive circuit off (zero power)
bit 1 HFIOFL: HFINTOSC Frequency Locked bit
1= HFINTOSC is in lock
0 = HFINTOSC has not yet locked
bit 0 LFIOFS: LFINTOSC Frequency Stable bit

1= LFINTOSC is stable
0 = LFINTOSC is not stable

DS40001365F-page 18 © 2009-2016 Microchip Technology Inc.
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2.71 OSCTUNE REGISTER

The HFINTOSC is factory-calibrated, but can be
adjusted in software by writing to the TUN<5:0> bits of
the OSCTUNE register (Register 2-3).

The default value of the TUN<5:0> is ‘000000°’. The
value is a 6-bit two’s complement number.

When the OSCTUNE register is modified, the
HFINTOSC frequency will begin shifting to the new
frequency. Code execution continues during this shift,
while giving no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency.
The operation of features that depend on the LFINTOSC
clock source frequency, such as the Power-up Timer

(PWRT), Watchdog Timer (WDT), Fail-Safe Clock
Monitor (FSCM) and peripherals, are not affected by the
change in frequency.

The OSCTUNE register also implements the INTSRC
and PLLEN bits, which control certain features of the
internal oscillator block.

The INTSRC bit allows users to select which internal
oscillator provides the clock source when the 31 kHz
frequency option is selected. This is covered in greater
detail in Section 2.6.1 “LFINTOSC".

The PLLEN bit controls the operation of the frequency
multiplier. For more details about the function of the
PLLEN bit see Section 2.10 “4x Phase Lock Loop
Frequency Multiplier”.

REGISTER 2-3: OSCTUNE: OSCILLATOR TUNING REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
INTSRC PLLEN TUNS5S TUN4 TUN3 TUN2 TUN1 TUNO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit

1 = 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled)
0 = 31 kHz device clock derived directly from LFINTOSC internal oscillator

bit 6 PLLEN: Frequency Multiplier PLL bit

1 = PLL enabled (for HFINTOSC 8 MHz and 16 MHz only)

0 = PLL disabled

bit 5-0 TUN<5:0>: Frequency Tuning bits
011111 = Maximum frequency
011110 =
000001 =

000000 = Oscillator module is running at the factory-calibrated frequency.

111111 =

100000 = Minimum frequency

© 2009-2016 Microchip Technology Inc.
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2.8 Oscillator Start-up Timer

The Primary External Oscillator, when configured for
LP, XT or HS modes, incorporates an Oscillator Start-up
Timer (OST). The OST ensures that the oscillator starts
and provides a stable clock to the oscillator module.
The OST times out when 1024 oscillations on OSCA1
have occurred. During the OST period, with the system
clock set to the Primary External Oscillator, the program
counter does not increment suspending program
execution. The OST period will occur following:

» Power-on Reset (POR)

* Brown-out Reset (BOR)

» Wake-up from Sleep

» Oscillator being enabled

» Expiration of Power-up Timer (PWRT)

In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Start-up

mode can be selected. See Section 2.11 “ Two-Speed
Start-up Mode” for more information.

FIGURE 2-5: CLOCK SWITCH TIMING

2.9 Clock Switching

The device contains circuitry to prevent clock “glitches”
due to a change of the system clock source. To
accomplish this, a short pause in the system clock
occurs during the clock switch. If the new clock source
is not stable (e.g., OST is active), the device will
continue to execute from the old clock source until the
new clock source becomes stable. The timing of a
clock switch is as follows:

1. SCS<1:0> bits of the OSCCON register are
modified.

2. The system clock will continue to operate from
the old clock until the new clock is ready.

3. Clock switch circuitry waits for two consecutive
rising edges of the old clock after the new clock
is ready.

4. The system clock is held low, starting at the next
falling edge of the old clock.

5. Clock switch circuitry waits for an additional two
rising edges of the new clock.

6. On the next falling edge of the new clock, the
low hold on the system clock is release and the
new clock is switched in as the system clock.

7. Clock switch is complete.

Refer to Figure 2-5 for more details.

High Speed — Low Speed

Old Clock

Start-up Time®

Clock Sync Running

> <
N

New Clock NN :

— L. 1

New Clk Ready

IRCF <2:0> SelectOld ¥ Select New

System Clock M

Low Speed — High Speed

Old Clock |

Start-up Time® Clock Sync ! Running

New Clock m | I I B

New Clk Ready |

IRCF <2:0> Select OldY Select New

System Clock | [ L] 1. 1

Note 1: Start-up time includes TosT (1024 Tosc) for external clocks, plus TPLL (approx. 2 ms) for HSPLL mode.
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TABLE 2-2: EXAMPLES OF DELAYS DUE TO CLOCK SWITCHING
Switch From Switch To Oscillator Delay
Sleep/POR LFINTOSC Oscillator Warm-up Delay (TWARM)
HFINTOSC
Sleep/POR LP, XT, HS 1024 clock cycles
Sleep/POR EC,RC 8 Clock Cycles

2.10 4x Phase Lock Loop Frequency
Multiplier

A Phase Locked Loop (PLL) circuit is provided as an
option for users who wish to use a lower-frequency
external oscillator or to operate at 32 MHz or 64 MHz
with the HFINTOSC. The PLL is designed for an input
frequency from 4 MHz to 16 MHz. The PLL multiplies
its input frequency by a factor of four when the PLL is
enabled. This may be useful for customers who are
concerned with EMI, due to high-frequency crystals.

Two bits control the PLL: the PLL_EN bit of the
CONFIG1H Configuration register and the PLLEN bit of
the OSCTUNE register. The PLL is enabled when the
PLL_EN bit is set and it is under software control when
the PLL_EN bit is cleared. Refer to Table 2-3 and
Table 2-4 for more information.

TABLE 2-3: PLL CONFIGURATION
PLL_EN PLLEN PLL Status
1 X PLL enabled
0 1 PLL enabled
0 0 PLL disabled
TABLE 2-4: PLL CONFIG1H/SOFTWARE
ENABLE CLOCK SOURCE
RESTRICTIONS
Mode PLL CONFIG1H PLL Software
Enable (PLL_EN) | Enable (PLLEN)
LP Yes No
XT Yes No
HS Yes No
EC Yes No
EXTRC Yes No
LF INTOSC No No
HF INTOSC 8/16 MHz 8/16 MHz

2.11 Two-Speed Start-up Mode

Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
Oscillator Start-up Timer (OST) and code execution. In
applications that make heavy use of the Sleep mode,
Two-Speed Start-up will remove the OST period, which
can reduce the overall power consumption of the
device.

Two-Speed Start-up mode is enabled by setting the
IESO bit of the CONFIG1H Configuration register. With
Two-Speed Start-up enabled, the device will execute
instructions using the internal oscillator during the
Primary External Oscillator OST period.

When the system clock is set to the Primary External
Oscillator and the oscillator is configured for LP, XT or
HS modes, the device will not execute code during the
OST period. The OST will suspend program execution
until 1024 oscillations are counted. Two-Speed Start-up
mode minimizes the delay in code execution by
operating from the internal oscillator while the OST is
active. The system clock will switch back to the Primary
External Oscillator after the OST period has expired.

Two-speed Start-up will become active after:

* Power-on Reset (POR)

» Power-up Timer (PWRT), if enabled

» Wake-up from Sleep

The OSTS bit of the OSCCON register reports which
oscillator the device is currently using for operation.
The device is running from the oscillator defined by the
FOSC bits of the CONFIG1H Configuration register

when the OSTS bit is set. The device is running from
the internal oscillator when the OSTS bit is clear.

© 2009-2016 Microchip Technology Inc.
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2.12 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. The FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC and RC).

FIGURE 2-6: FSCM BLOCK DIAGRAM
Clock Monitor
Ext I Latch
xterna
Clock ¢ =St Q
r— - — — = — — 1
| [LFINTOSC .
| Oscillator 64
| 31kHz 488 Hz
| (~32 ps) (~2 ms)
| Sample Clock | Clock
Lo 1 )
Failure
Detected

2121 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 2-6. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire half-
cycle of the sample clock elapses before the primary
clock goes low.

2122 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.

The internal clock source chosen by the FSCM is
determined by the IRCF<2:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.

2123 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared by either one of the
following:

* Any Reset
» By toggling the SCS1 bit of the OSCCON register

Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.

2124 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.

Note: Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock switchover has  successfully
completed.
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FIGURE 2-7:

FSCM TIMING DIAGRAM

sampleClock _ | L[ 1 "1

System

Clock Monitor Output
@ V]

OSCFIF :
' Test ' Test ' Test
Note: The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in

Oscillator

Clock Failure

£
Output 3

Failure '
Detected ’;7

this example have been chosen for clarity.

TABLE 2-5: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
Reset
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Values on
page
CONFIG1H IESO FCMEN PCLKEN PLL_EN FOSC3 FOSC2 FOSC1 FOSCO 251
INTCON GIE/GIEH | PEIE/GIEL TMROIE INTOIE RABIE TMROIF INTOIF RABIF 245
OSCCON IDLEN IRCF2 IRCF1 IRCFO OSTS HFIOFS SCSH1 SCS0 246
OSCCON2 — — — — — PRI_SD | HFIOFL | LFIOFS 246
OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUNO 248
IPR2 OSCFIP C1IP c2Ip EEIP BCLIP — TMR3IP — 248
PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMRSIE — 248
PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 248
T1CON RD16 T1RUN T1CKPS1 | TICKPSO | T1IOSCEN | TISYNC | TMR1CS | TMR1ON 246
Legend: x =unknown, u = unchanged, — = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
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3.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced
microcontroller devices:

* Program Memory
+ Data RAM
» Data EEPROM

As Harvard architecture devices, the data and program
memories use separate busses; this allows for
concurrent access of the two memory spaces. The data
EEPROM, for practical purposes, can be regarded as
a peripheral device, since it is addressed and accessed
through a set of control registers.

Additional detailed information on the operation of the
Flash program memory is provided in Section 4.0
“Flash Program Memory”. Data EEPROM is
discussed separately in Section 5.0 “Data EEPROM
Memory”.

3.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program
counter, which is capable of addressing a 2-Mbyte
Program Memory (PC) space. Accessing a location
between the upper boundary of the physically
implemented memory and the 2-Mbyte address will
return all ‘0’s (a NOP instruction).

This family of devices contain the following:
» PIC18(L)F13K22: 8 Kbytes of Flash Memory, up to
4,096 single-word instructions
* PIC18(L)F14K22: 16 Kbytes of Flash Memory, up
to 8,192 single-word instructions
PIC18 devices have two interrupt vectors and one
Reset vector. The Reset vector address is at 0000h
and the interrupt vector addresses are at 0008h and
0018h.

The program memory map for PIC18(L)F1XK22
devices is shown in Figure 3-1. Memory block details
are shown in Figure 3-2.

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F1XK22 DEVICES
| PC<20:0> |
CALL, RCALL, RETURN 21
RETFI E, RETLW
Stack Level 1
Stack Level 31
Reset Vector 0000h 71
High Priority Interrupt Vector 0008h
Low Priority Interrupt Vector 0018h
On-Chip
Program Memory .
1FFFh b On-C'GIp
2000n rogram Memory
3FFFh
PIC18(L)F13K22 o )
(8]
PIC18(L)F14K22 g
%
Py
g
(0]
=
2
D
Read ‘0’ Read ‘0’
1FFFFFh §
200000h
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3.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21-bit wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 3.1.4.1 “Computed
GOTO”).

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit (LSb) of PCL is
fixed to a value of ‘0’. The PC increments by 2 to
address sequential instructions in the program
memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

3.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLWor a RETFI E instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.

The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space. The Stack Pointer
is readable and writable and the address on the top of
the stack is readable and writable through the Top-of-
Stack (TOS) Special File Registers. Data can also be
pushed to, or popped from the stack, using these
registers.

A CALL type instruction causes a push onto the stack;
the Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack; the contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.

The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits indicate if the stack is
full or has overflowed or has underflowed.

3.1.21 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
hold the contents of the stack location pointed to by the
STKPTR register (Figure 3-2). This allows users to
implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits
while accessing the stack to prevent inadvertent stack
corruption.

FIGURE 3-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS
Return Address Stack <20:0>
11111

. 11110 .
Top-of-Stack Registers 11101 Stack Pointer
TOSU TOSH TOSL b STKPTR<4:0>

[ 00h ] [ 1Ah ] [ 34h ] e | o 00010

- J

00011
001A34h | 00010

~ Top-of-Stack

000D58h | 00001
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3.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Figure 3-1) contains the Stack
Pointer value, the STKFUL (Stack Full) bit and the
STKUNF (Stack Underflow) bits. The value of the Stack
Pointer can be 0 through 31. The Stack Pointer
increments before values are pushed onto the stack
and decrements after values are popped off the stack.
On Reset, the Stack Pointer value will be zero. The
user may read and write the Stack Pointer value. This
feature can be used by a Real-Time Operating System
(RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without
popping any values off the stack), the STKFUL bit is
set. The STKOVF bit is cleared by software or by a
POR.

The action that takes place when the stack becomes
full depends on the state of the STVREN (Stack
Overflow Reset Enable) Configuration bit. (Refer to
Section 23.1 “Configuration Bits” for a description of
the device Configuration bits.) If STVREN is set
(default), the 31st push will push the (PC + 2) value
onto the stack, set the STKOVF bit and reset the
device. The STKOVF bit will remain set and the Stack
Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the
31st push and the Stack Pointer will increment to 31.
Any additional pushes will not overwrite the 31st push
and STKPTR will remain at 31.

When the stack has been popped enough times to
unload the stack, the next pop will return a value of zero
to the PC and sets the STKUNF bit, while the Stack
Pointer remains at zero. The STKUNF bit will remain
set until cleared by software or until a POR occurs.

Note:  Returning a value of zero to the PC on an
underflow has the effect of vectoring the
program to the Reset vector, where the
stack conditions can be verified and
appropriate actions can be taken. This is
not the same as a Reset, as the contents

of the SFRs are not affected.

3.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the
ability to push values onto the stack and pull values off
the stack without disturbing normal program execution
is a desirable feature. The PIC18 instruction set
includes two instructions, PUSH and POP, that permit
the TOS to be manipulated under software control.
TOSU, TOSH and TOSL can be modified to place data
or a return address on the stack.

The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack.

The POP instruction discards the current TOS by
decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.

REGISTER 3-1: STKPTR: STACK POINTER REGISTER
R/C-0 R/C-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STKOVF® | STKUNF®) — SP4 SP3 SP2 SP1 SPO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 STKOVF: Stack Overflow Flag bit™®
1 = Stack became full or overflowed
0 = Stack has not become full or overflowed
bit 6 STKUNF: Stack Underflow Flag bit(®
1 = Stack underflow occurred
0 = Stack underflow did not occur
bit 5 Unimplemented: Read as ‘0’
bit 4-0 SP<4:0>: Stack Pointer Location bits
Note 1: Bit7 and bit 6 are cleared by user software or by a POR.
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3.1.24 Stack Overflow and Underflow
Resets

Device Resets on Stack Overflow and Stack Underflow
conditions are enabled by setting the STVREN bit in
Configuration Register 4L. When STVREN is set, a full
or underflow will set the appropriate STKOVF or
STKUNF bit and then cause a device Reset. When
STVREN is cleared, a full or underflow condition will set
the appropriate STKOVF or STKUNF bit but not cause
a device Reset. The STKOVF or STKUNF bits are
cleared by the user software or a Power-on Reset.

3.1.3 FAST REGISTER STACK

A fast register stack is provided for the STATUS,
WREG and BSR registers, to provide a “fast return”
option for interrupts. The stack for each register is only
one level deep and is neither readable nor writable. It is
loaded with the current value of the corresponding
register when the processor vectors for an interrupt. All
interrupt sources will push values into the stack
registers. The values in the registers are then loaded
back into their associated registers if the
RETFI E, FAST instruction is used to return from the
interrupt.

If both low and high priority interrupts are enabled, the
stack registers cannot be used reliably to return from
low priority interrupts. If a high priority interrupt occurs
while servicing a low priority interrupt, the stack register
values stored by the low priority interrupt will be
overwritten. In these cases, users must save the key
registers by software during a low priority interrupt.

If interrupt priority is not used, all interrupts may use the
fast register stack for returns from interrupt. If no
interrupts are used, the fast register stack can be used
to restore the STATUS, WREG and BSR registers at
the end of a subroutine call. To use the fast register
stack for a subroutine call, a CALL | abel, FAST
instruction must be executed to save the STATUS,
WREG and BSR registers to the fast register stack. A
RETURN, FAST instruction is then executed to restore
these registers from the fast register stack.

Example 3-1 shows a source code example that uses
the fast register stack during a subroutine call and
return.
EXAMPLE 3-1: FAST REGISTER STACK
CODE EXAMPLE

; STATUS, WREG, BSR
; SAVED | N FAST REG STER
; STACK

CALL SuUB1, FAST

SUB1 .
L]
RETURN, FAST ; RESTORE VALUES SAVED
; I N FAST REG STER STACK

3.14 LOOK-UP TABLES IN PROGRAM
MEMORY

There may be programming situations that require the
creation of data structures, or look-up tables, in
program memory. For PIC18 devices, look-up tables
can be implemented in two ways:

» Computed GOTO
» Table Reads

3.14.1 Computed GOTO

A computed GOTOis accomplished by adding an offset
to the program counter. An example is shown in
Example 3-2.

A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW nn instructions. The
W register is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW nn
instructions that returns the value ‘nn’ to the calling
function.

The offset value (in WREG) specifies the number of
bytes that the program counter should advance and
should be multiples of 2 (LSb = 0).

In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.

EXAMPLE 3-2: COMPUTED GOTOUSING

AN OFFSET VALUE

MOVF OFFSET, W
CALL TABLE
ORG nn00h
TABLE ADDW PCL
RETLW nnh
RETLW nnh
RETLW nnh

3.14.2 Table Reads and Table Writes

A better method of storing data in program memory
allows two bytes of data to be stored in each instruction
location.

Look-up table data may be stored two bytes per
program word by using table reads and writes. The
Table Pointer (TBLPTR) register specifies the byte
address and the Table Latch (TABLAT) register
contains the data that is read from or written to program
memory. Data is transferred to or from program
memory one byte at a time.

Table read and table write operations are discussed
further in Section 4.1 “Table Reads and Table
Writes”.

© 2009-2016 Microchip Technology Inc.
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3.2 PIC18 Instruction Cycle

3.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an
internal or external source, is internally divided by four
to generate four non-overlapping quadrature clocks
(Q1, Q2, Q3 and Q4). Internally, the program counter is
incremented on every Q1; the instruction is fetched
from the program memory and latched into the
instruction register during Q4. The instruction is
decoded and executed during the following Q1 through
Q4. The clocks and instruction execution flow are
shown in Figure 3-3.

FIGURE 3-3:

3.2.2 INSTRUCTION FLOWY/PIPELINING

An “Instruction Cycle” consists of four Q cycles: Q1
through Q4. The instruction fetch and execute are
pipelined in such a manner that a fetch takes one
instruction cycle, while the decode and execute take
another instruction cycle. However, due to the
pipelining, each instruction effectively executes in one
cycle. If an instruction causes the program counter to
change (e.g., GOTO), then two cycles are required to
complete the instruction (Example 3-3).

A fetch cycle begins with the Program Counter (PC)
incrementing in Q1.

In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

CLOCK/INSTRUCTION CYCLE

Q1 a1

| Q2 | @3 | Q4

0OSC1
Q1

| Q2 | Q3 | Q4 I Qf |

| Q@2 | Q3 | Q4

Q2

Internal

Q3

Phase

Q4

|
|
|| Clock
/ |

PC

OSC2/CLKOUT
(RC mode)

Execute INST (PC — 2)

Fetch INST (PC)

Execute INST (PC)

Fetch INST (PC + 2) Execute INST (PC + 2)

Fetch INST (PC + 4)

EXAMPLE 3-3:

INSTRUCTION PIPELINE FLOW

Tcy0 Tcy1

Tcy2 Tcy3 Tcy4 Tcy5

MOVLW 55h Fetch 1 Execute 1

MOVWF PORTB Fetch 2

Execute 2

BRA SUB 1
BSF PORTA, BI T3 (Forced NOP)
Instruction @address SUB_1

a > wbh e

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction
is “flushed” from the pipeline while the new instruction is being fetched and then executed.

Fetch 3 Execute 3

Fetch 4

Flush (NCP)
Fetch SUB_1

Execute SUB_1

DS40001365F-page 28

© 2009-2016 Microchip Technology Inc.



PIC18(L)F1XK22

3.2.3 INSTRUCTIONS IN PROGRAM

MEMORY

The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte (LSB)
of an instruction word is always stored in a program
memory location with an even address (LSb = 0). To
maintain alignment with instruction boundaries, the PC
increments in steps of 2 and the LSb will always read
‘0’ (see Section 3.1.1 “Program Counter”).

Figure 3-4 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 3-4 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 24.0 “Instruction Set Summary”
provides further details of the instruction set.

FIGURE 3-4: INSTRUCTIONS IN PROGRAM MEMORY
Word Address
LSB=1 LSB=0 J
Program Memory 000000h
Byte Locations — 000002h
000004h
000006h
Instruction 1:  MOVLW 055h OFh 55h 000008h
Instruction 2:  GOTO 0006h EFh 03h 00000Ah
FOh 00h 00000Ch
Instruction 3:  MOVFF 123h, 456h C1h 23h 00000Eh
F4h 56h 000010h
000012h
000014h
3.24 TWO-WORD INSTRUCTIONS and used by the instruction sequence. If the first word

The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LSFR In all
cases, the second word of the instruction always has
‘1111’ as its four Most Significant bits (MSb); the other
12 bits are literal data, usually a data memory address.

The use of ‘1111’ in the 4 MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence — immediately after the
first word — the data in the second word is accessed

EXAMPLE 3-4:

TWO-WORD INSTRUCTIONS

is skipped for some reason and the second word is
executed by itself, a NOP is executed instead. This is
necessary for cases when the two-word instruction is
preceded by a conditional instruction that changes the
PC. Example 3-4 shows how this works.

See Section 3.6 “PIC18 Instruction
Execution and the Extended Instruc-
tion Set” for information on two-word
instructions in the extended instruction set.

Note:

CASE 1:

Object Code Source Code

0110 0110 0000 0000 | TSTFSZ REGL

1100 0001 0010 0011 | MOVFF REGL, REG2
1111 0100 0101 0110

0010 0100 0000 0000 | ADDWF REG3

)

is RAM | ocation 0?

No, skip this word

Execute this word as a NOP
conti nue code

CASE 2:

Object Code Source Code

0110 0110 0000 0000 | TSTFSZ REGL

1100 0001 0010 0011 | MOVFF REGL, REG2
1111 0100 0101 0110

0010 0100 0000 0000 | ADDWF REG3

)

is RAM | ocation 07?

Yes, execute this word
2nd word of instruction
conti nue code

© 2009-2016 Microchip Technology Inc.
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3.3 Data Memory Organization

Note:  The operation of some aspects of data
memory are changed when the PIC18
extended instruction set is enabled. See
Section 3.5 “Data Memory and the
Extended Instruction Set” for more
information.

The data memory in PIC18 devices is implemented as
static RAM. Each register in the data memory has a
12-bit address, allowing up to 4096 bytes of data
memory. The memory space is divided into as many as
16 banks that contain 256 bytes each. Figure 3-5 and
Figure 3-6 show the data memory organization for the
PIC18(L)F1XK22 devices.

The data memory contains Special Function Registers
(SFRs) and General Purpose Registers (GPRs). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. Any read of an unimplemented location will
read as ‘O’s.

The instruction set and architecture allow operations
across all banks. The entire data memory may be
accessed by Direct, Indirect or Indexed Addressing
modes. Addressing modes are discussed later in this
subsection.

To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle, PIC18
devices implement an Access Bank. This is a 256-byte
memory space that provides fast access to SFRs and
the lower portion of GPR Bank 0 without using the Bank
Select Register (BSR). Section 3.3.2 “Access Bank”
provides a detailed description of the Access RAM.

3.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient
addressing scheme to make rapid access to any
address possible. Ideally, this means that an entire
address does not need to be provided for each read or
write operation. For PIC18 devices, this is
accomplished with a RAM banking scheme. This
divides the memory space into 16 contiguous banks of
256 bytes. Depending on the instruction, each location
can be addressed directly by its full 12-bit address, or
an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use
of the Bank Pointer, known as the Bank Select Register
(BSR). This SFR holds the 4 Most Significant bits of a
location’s address; the instruction itself includes the
8 Least Significant bits. Only the four lower bits of the
BSR are implemented (BSR<3:0>). The upper four bits
are unused; they will always read ‘0’ and cannot be
written to. The BSR can be loaded directly by using the
MOVLB instruction.

The value of the BSR indicates the bank in data
memory; the 8 bits in the instruction show the location
in the bank and can be thought of as an offset from the
bank’s lower boundary. The relationship between the
BSR’s value and the bank division in data memory is
shown in Figure 3-5 and Figure 3-6.

Since up to 16 registers may share the same low-order
address, the user must always be careful to ensure that
the proper bank is selected before performing a data
read or write. For example, writing what should be
program data to an 8-bit address of F9h while the BSR
is OFh will end up resetting the program counter.

While any bank can be selected, only those banks that
are actually implemented can be read or written to.
Writes to unimplemented banks are ignored, while
reads from unimplemented banks will return ‘0’s. Even
so, the STATUS register will still be affected as if the
operation was successful. The data memory maps in
Figure 3-5 and Figure 3-6 indicate which banks are
implemented.

In the core PIC18 instruction set, only the MOVFF
instruction fully specifies the 12-bit address of the
source and target registers. This instruction ignores the
BSR completely when it executes. All other instructions
include only the low-order address as an operand and
must use either the BSR or the Access Bank to locate
their target registers.
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FIGURE 3-5: DATA MEMORY MAP FOR PIC18(L)F13K22 DEVICES
BSR<3:0> Data Memory Map When "a’ = 0:
The BSR is ignored and the
- 0000 00h Access RAM 8222 Access Bank is used.
Bank0 [ — — — — 7 060h The first 96 bytes are
GPR
FFh OFFh general purpose RAM
= 0001 00h 100h (from Bank 0).
» Bank 1 The second 160 bytes are
FFh 1FFh Special Function Registers
=0010 00h 200h (from Bank 15).
Bank 2
FFh 2FFh When ‘a’ = 1:
- 300h
= 0011 Bank 3 00h The BSR specifies the Bank
FEh 3FFh used by the instruction.
_ 00h 400h
= 0100 Bank 4
FFh 4FFh
=0101 00h 500h
Bank 5
FFh 5FFh
=011 00h 600h
0110 Bank 6
FFh 6FFh Access Bank
=0111 00h 700h 00h
Bank 7 Access RAM Low 5Fh
FFh R‘éggsggh 7FFh 'Acess RAM High| 60h
- 00h 800h SFRs
1000 Bank 8 (SFRs) FFh
FFh 8FFh
=1001 00h 900h
Bank 9
FFh 9FFh
= 00h AOOh
1010 Bank 10
FFh AFFh
= 00h BOOh
1011 Bank 11
FFh BFFh
- CO00h
=1100 Bank 12 00h
CFFh
FFh
=1101 00h DOOh
Bank 13
DFFh
FFh
=1110 00h E00h
Bank 14
FFh EFFh
00h Unused Fooh
T I F53h
1
Bank 15 L S_FRQ | F5Fn
F60h
FFh SFR FFFh

Note 1: SFRs occupying F53h to F5Fh address space are not in the virtual bank.

© 2009-2016 Microchip Technology Inc.
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FIGURE 3-6: DATA MEMORY MAP FOR PIC18(L)F14K22 DEVICES
BSR<3:0> Data Memory Map When ‘a’ = 0:
The BSR is ignored and the
- 0000 00h Access RAM 8222 Access Bank is used.
Bank0 [ — — — — 7 060h The first 96 bytes are
FFh GPR OFFh general purpose RAM
= 0001 00h 100h (from Bank 0).
» Bank 1 GPR The second 160 bytes are
FFh 1FFh Special Function Registers
=0010 00h 200h (from Bank 15).
Bank 2
FFh 2FFh When ‘a’ = 1:
- 300h
= 0011 Bank3 OO" The BSR specifies the Bank
FEh 3FFh used by the instruction.
_ 00h 400h
=0100 Bank 4
FFh 4FFh
=0101 00h 500h
Bank 5
FFh 5FFh
=0110 00h 600h
Bank 6
FFh 6FFh Access Bank
=0111 00h 700h 00h
Bank 7 Access RAM Low 5Fh
FFh gggrr: |Access RAM High| 60h
= 00h SFRs
1000 Bank 8 (SFRs) FFh
Unused
FFh 8FFh
Read 00h
=1001 00h 900h
Bank 9
FFh 9FFh
= 00h AOOh
1010 Bank 10
FFh AFFh
= 00h BOOh
1011 Bank 11
FFh BFFh
- CO00h
=1100 Bank 12 00h
FFh CFFh
= D0OOh
1101 Bank 13 00N
DFFh
FFh
= 1110 00h E00h
Bank 14
FFh EFFh
00h Unused Fooh
=1111 T T aee() | F58h
L » Banki15 L S_FR_ | FsFh
F60h
FFh SFR FFFh

Note 1: SFRs occupying F53h to F5Fh address space are not in the virtual bank.
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FIGURE 3-7: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)
BSR® Data Memory From Opcode®
’ 0 000h 00h 7 0
[o]ofoJofo]of1]o Bank0 e ([ 2[2[2]1[1]1]1]
Bank 1 oon —~
Bank Select® FFh
200h 00h
Bank 2
FFh <
300h 00h
Bank 3
through NN
A Bank13 I
FFh
EOOh 00h
Bank 14
FFh
FOOh 00h
Bank 15
FFFh FFh
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to
the registers of the Access Bank.
2.  The MOVFF instruction embeds the entire 12-bit address in the instruction.
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3.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of
memory (00h-5Fh) in Bank 0 and the last 160 bytes of
memory (60h-FFh) in Block 15. The lower half is known
as the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are mapped.
These two areas are mapped contiguously in the
Access Bank and can be addressed in a linear fashion
by an 8-bit address (Figure 3-5 and Figure 3-6).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely.

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 3.5.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

3.3.3 GENERAL PURPOSE REGISTER
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

3.34 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F60h to FFFh). A list of
these registers is given in Table 3-1 and Table 3-2.

The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and Interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.

The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘O’s.
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TABLE 3-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F1XK22 DEVICES

Address Name Address Name Address Name Address Name Address Name

FFFh TOSU FD7h| TMROH FAFh| SPBRG F87h —@ F5Fh —@
FFEh TOSH FD6h| TMROL FAEh| RCREG F86h —@ F5Eh —@
FFDh TOSL FD5h| TOCON FADh| TXREG F85h —@ F5Dh —@
FFCh| STKPTR FD4h —@ FACh| TXSTA F84h —@ F5Ch —@
FFBh| PCLATU FD3h| OSCCON FABh| RCSTA F83h () F5Bh —O
FFAh| PCLATH FD2h| OSCCON2 FAAh —@ F82h| PORTC F5Ah —@
FF9h PCL FD1h| WDTCON FASh| EEADR F81h| PORTB F59h —@
FF8h| TBLPTRU FDOh| RCON FA8h| EEDATA F80h| PORTA F58h —@
FF7h| TBLPTRH FCFh| TMR1H FA7h| EECON2W F7Fh| ANSELH F57h —@
FF6h| TBLPTRL FCEh| TMRIL FA6h| EECONT F7Eh| ANSEL F56h —@
FF5h|  TABLAT FCDh| T1CON FA5h —@ F7Dh () F55h —O
FF4h| PRODH FCCh TMR2 FA4h —@ F7Ch —@ F54h —@
FF3h PRODL FCBh PR2 FA3h —@ F7Bh —@ F53h —@
FF2h| INTCON FCAh| T2CON FA2h IPR2 F7Ah IOCB
FF1h| INTCON2 FC9h| SSPBUF FA1h PIR2 F79h IOCA
FFOh| INTCON3 FC8h| SSPADD FAOh PIE2 F78h| WPUB
FEFh| INDFO® FC7h| SSPSTAT FO9Fh IPR1 F77h| WPUA
FEEh | POSTINCO® FC6h| SSPCON1 F9Eh PIR1 F76h| SLRCON
FEDh | POSTDECO® FC5h| SSPCON2 F9Dh PIE1 F75h —@
FECh| PREINCO® FC4h| ADRESH F9Ch —@ F74h —@
FEBh| PLUSWOW FC3h| ADRESL F9Bh| OSCTUNE F73h —@
FEAh FSROH FC2h| ADCONO F9Ah —@ F72h —@
FE9h FSROL FC1h| ADCON1 F99h —@ F71h ()
FE8h WREG FCOh| ADCON2 F98h —@ F70h —@
FE7h| INDF1® FBFh| CCPR1H F97h —@ F6Fh| SSPMASK
FE6h | POSTINC1® FBEh| CCPRIL Fo6h —@ F6Eh —@
FE5h | POSTDEC1® FBDh| CCP1CON F95h —@ F6Dh| CM1CONO
FE4h| PREINC1® FBCh| VREFCON2 F94h| TRISC F6Ch| CM2CON1
FE3h| PLUSW1® FBBh | VREFCON1 F93h| TRISB F6Bh | CM2CONO
FE2h FSR1H FBAh | VREFCONO F92h| TRISA F6A —@
FE1h FSR1IL FBOh| PSTRCON F91h —@ F69h| SRCON1
FEOh BSR FB8h | BAUDCON F90h —@ F68h| SRCONO
FDFh| INDF2®) FB7h| PWM1CON F8Fh —@ F67h —@
FDEh | POSTINC2( FB6h| ECCP1AS F8Eh —@ F66h —@
FDDh | POSTDEC2() FB5h —@ F8Dh —@ F65h ()
FDCh| PREINC2® FB4h —@ F8Ch —@ F64h —@
FDBh| PLUSW2(® FB3h| TMR3H F8Bh LATC F63h —@
FDAh FSR2H FB2h| TMRS3L F8Ah LATB F62h —@
FD9h FSR2L FB1h| T3CON F89h LATA F61h —@
FD8h| STATUS FBOh| SPBRGH F88h —@ F60h ()

Legend: = Unimplemented data memory locations, read as ‘0’,

Note 1: Thisis not a physical register.
2:  Unimplemented registers are read as ‘0.
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TABLE 3-2: REGISTER FILE SUMMARY (PIC18(L)F1XK22)

) . . . . . . . . Value on Details
File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR pgge:
TOSU — — — Top-of-Stack Upper Byte (TOS<20:16>) ---0 0000|245, 25
TOSH Top-of-Stack, High Byte (TOS<15:8>) 0000 0000|245, 25
TOSL Top-of-Stack, Low Byte (TOS<7:0>) 0000 0000|245, 25
STKPTR STKOVF STKUNF — SP4 SP3 | SP2 | SP1 SPO 00- 0 0000|245, 26
PCLATU — — — Holding Register for PC<20:16> ---0 0000|245, 25
PCLATH Holding Register for PC<15:8> 0000 0000|245, 25
PCL PC, Low Byte (PC<7:0>) 0000 0000|245, 25
TBLPTRU — | — | —  [Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) -0 0000|245, 48
TBLPTRH |Program Memory Table Pointer, High Byte (TBLPTR<15:8>) 0000 0000|245, 48
TBLPTRL |Program Memory Table Pointer, Low Byte (TBLPTR<7:0>) 0000 0000|245, 48
TABLAT Program Memory Table Latch 0000 0000|245, 48
PRODH Product Register, High Byte XXXX XXXX |245, 58
PRODL Product Register, Low Byte XXXX XXXX |245, 58
INTCON GIE/GIEH | PEIE/GIEL | TMROIE INTOIE RABIE TMROIF INTOIF RABIF {0000 000x |245, 62
INTCON2 RABPU INTEDGO | INTEDG1 INTEDG2 — TMROIP — RABIP  |1111 -1-1|245,63
INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF  |11-0 0-00|245, 64
INDFO Uses contents of FSRO to address data memory — value of FSRO not changed (not a physical register) N/A 245, 41
POSTINCO |Uses contents of FSRO to address data memory — value of FSRO post-incremented (not a physical register) N/A 245, 41
POSTDECO |Uses contents of FSRO to address data memory — value of FSRO post-decremented (not a physical register) N/A 245, 41
PREINCO |Uses contents of FSRO to address data memory — value of FSRO pre-incremented (not a physical register) N/A 245, 41
PLUSWO (L)stg;;gng(fefg;st E;IWRO to address data memory — value of FSRO pre-incremented (not a physical register) — value N/A 245, 41
FSROH — — — — Indirect Data Memory Address Pointer 0, High Byte ---- 0000|245, 41
FSROL Indirect Data Memory Address Pointer 0, Low Byte XXXX XXXX |245, 41
WREG Working Register XXXX XXXX |245
INDF1 Uses contents of FSR1 to address data memory — value of FSR1 not changed (not a physical register) N/A 245, 41
POSTINC1 |Uses contents of FSR1 to address data memory — value of FSR1 post-incremented (not a physical register) N/A 245, 41
POSTDEC1 |Uses contents of FSR1 to address data memory — value of FSR1 post-decremented (not a physical register) N/A 245, 41
PREINCA1 Uses contents of FSR1 to address data memory — value of FSR1 pre-incremented (not a physical register) N/A 245, 41
PLUSWA (L)stg;;ﬁng?fg;st g;l?ﬁm to address data memory — value of FSR1 pre-incremented (not a physical register) — value N/A 245, 41
FSRTH — | — T —= ] = [mdirect Data Memory Address Pointer 1, High Byte ---- 0000|246, 41
FSR1L Indirect Data Memory Address Pointer 1, Low Byte XXXX XXXX |246, 41
BSR — | — T —= ] = [BankselectRegister ---- 0000|246, 30
INDF2 Uses contents of FSR2 to address data memory — value of FSR2 not changed (not a physical register) N/A 246, 41
POSTINC2 |Uses contents of FSR2 to address data memory — value of FSR2 post-incremented (not a physical register) N/A 246, 41
POSTDEC2 | Uses contents of FSR2 to address data memory — value of FSR2 post-decremented (not a physical register) N/A 246, 41
PREINC2 |Uses contents of FSR2 to address data memory — value of FSR2 pre-incremented (not a physical register) N/A 246, 41
PLUSW?2 (L)stg;;gn;?fg;st gfylWRZ to address data memory — value of FSR2 pre-incremented (not a physical register) — value N/A 246, 41
FSR2H — | — | —= | = |mdirect Data Memory Address Pointer 2, High Byte ---- 0000|246, 41
FSR2L Indirect Data Memory Address Pointer 2, Low Byte XXXX XXXX |246, 41
STATUS - | = 1 = 1 ~ [ ov z DC c ---X XXxx|246, 39
Legend: X =unknown, u = unchanged, —= unimplemented, q = value depends on condition
Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See
Section 22.4 “Brown-out Reset (BOR)".
2: The RA3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RA3 reads as ‘0’. This bit is
read-only.
3: Unimplemented, read as ‘1’.
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TABLE 3-2:  REGISTER FILE SUMMARY (PIC18(L)F1XK22) (CONTINUED)
) . . . . . . ; . Value on Details
File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR pgge:
TMROH Timer0 Register, High Byte 0000 0000 (246, 92
TMROL Timer0 Register, Low Byte XXXX XXXX |246, 92
TOCON TMROON TO8BIT TOCS TOSE PSA TOPS2 TOPS1 TOPSO 1111 1111 (246, 91
OSCCON IDLEN IRCF2 IRCF1 IRCFO OSTS HFIOFS SCS1 SCS0 0011 qq00|246, 17
OSCCON2 — — — — — PRI_SD HFIOFL LFIOFS |[---- -10x 246,18
WDTCON — — — — — — — SWDTEN | --- --- 0 (246, 260
RCON IPEN SBOREN(® — RI TO PD POR BOR |0g-1 11q0 gié: 7
TMR1H Timer1 Register, High Byte XXXX XXXX |246, 94
TMR1L Timer1 Register, Low Bytes XXXX XXXX |246, 94
T1CON RD16 | T1RUN | T1CKPS1 | T1CKPSO | T10SCEN | T1SYNC TMR1CS | TMR1ON |0000 0000|246, 94
TMR2 Timer2 Register 0000 0000 (246, 100
PR2 Timer2 Period Register 1111 1111|246, 100
T2CON — | 120UTPs3 | T20UTPS2 | T20UTPS1 | T20UTPSO | TMR20N | T2CKPS1 | T2CKPSO |-000 0000246, 100
SSPBUF SSP Receive Buffer/Transmit Register XXXX XXXX fgg 130
SSPADD SSP Address Register in I2C Slave Mode. SSP Baud Rate Reload Register in 12C Master Mode. 0000 0000 (246, 147
SSPSTAT SMP CKE D/A P s RIW UA BF  |0000 0000 f‘z‘g: 137
SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0O |0000 0000 fgg 138
SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 |246, 139
ADRESH A/D Result Register, High Byte XXXX XXXX |247,197
ADRESL A/D Result Register, Low B XXXX XXXX |247,197
ADCONO = = CHS3 CHS2 CHS1 CHSO0 GO/DONE ADON --00 0000 (247, 203
ADCON1 — — — — PVCFG1 PVCFGO NVCFG1 NVCFGO |---- 0000|247, 204
ADCON2 ADFM — ACQT2 ACQT1 ACQTO ADCS2 ADCS1 ADCS0 |0-00 0000|247, 205
CCPR1H Capture/Compare/PWM Register 1, High Byte XXXX XXXX |247,126
CCPR1L Capture/Compare/PWM Register 1, Low Byte XXXX XXXX |247,126
CCP1CON P1M1 P1MO DC1B1 DC1B0O CCP1M3 CCP1M2 CCP1M1 CCP1MO |0000 0000|247, 106
VREFCON2 — — = DAC1R<4:0> ---0 0000 (247, 236
VREFCON1 D1EN D1LPS DAC10E D1PSS<1:0> — D1NSS |000- 00-0|247,235
VREFCONO| FVR1EN FVR1ST FVR1S<1:0> — — = = 0001 ---- (247,232
PSTRCON — — — STRSYNC STRD STRC STRB STRA ---0 0001 (247,123
BAUDCON | ABDOVF RCIDL DTRXP CKTXP BRG16 — WUE ABDEN [0100 0- 00247, 181
PWM1CON | PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDCO 0000 0000 (247, 122
ECCP1AS | ECCPASE | ECCPAS2 | ECCPAS1 | ECCPASO PSSAC1 PSSACO PSSBD1 PSSBDO |0000 0000|247, 118
TMR3H Timer3 Register, High Byte XXXX XXXX|247,102
TMR3L Timer3 Register, Low Byte XXXX XXXX|247,102
T3CON RD16 — T3CKPS1 | T3CKPSO | T3CCP1 T3SYNC TMR3CS | TMR3ON [0-00 0000|247, 102
Legend: X =unknown, u = unchanged, — unimplemented, q = value depends on condition
Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See
Section 22.4 “Brown-out Reset (BOR)".
2:  The RA3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RA3 reads as ‘0’. This bit is
read-only.
3: Unimplemented, read as ‘1’.
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TABLE 3-2: REGISTER FILE SUMMARY (PIC18(L)F1XK22) (CONTINUED)

) . . . . . . ; . Value on Details
File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR pgge:
SPBRGH EUSART Baud Rate Generator Register, High Byte 0000 0000|247, 182
SPBRG EUSART Baud Rate Generator Register, Low Byte 0000 0000|247, 182
RCREG EUSART Receive Register 0000 0000 (247,175
TXREG EUSART Transmit Register 0000 0000 (247,172
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010|247, 179
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x |247, 180
EEADR EEADR7 EEADRG6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADRO |0000 0000 227 45,
EEDATA |EEPROM Data Register 0000 0000 gf' 45,
EECON2 EEPROM Control Register 2 (not a physical register) 0000 0000 237 45,
EECON1 EEPGD CFGS — FREE WRERR WREN WR RD xx-0 x000 227 45,
IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 1111 1-1- {248,70
PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMR3IF — 0000 0-0- |248, 66
PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 0000 0-0- |248, 68
IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP  |-111 1111248, 69
PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF |- 000 0000|248, 65
PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE |- 000 0000 |248, 67
OSCTUNE INTSRC PLLEN TUN5 TUN4 TUN3 TUN2 TUN1 TUNO 0000 0000|248, 19
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISCO (1111 1111|248, 84
TRISB TRISB7 TRISB6 TRISB5 TRISB4 — — — — 1111 ---- |248,80
TRISA — — TRISA5 TRISA4 —© TRISA2 TRISA1 TRISAO0 |--11 1111(248,75
LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATCO  [xxxx Xxxxx |248, 85
LATB LATB7 LATB6 LATBS LATB4 — — — — XXXX ---- 248, 80
LATA — — LATA5 LATA4 — LATA2 LATA1 LATAO - - XX - XXX |248,76
PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO XXXX XXXX |248, 84
PORTB RB7 RB6 RB5 RB4 — — — — XXXX ---- 248,80
PORTA — — RA5 RA4 RA3®) RA2 RA1 RAOQ - - XX XXXX|248, 75
ANSELH — — — — ANS11 ANS10 ANS9 ANS8 ---- 1111|248, 89
ANSEL ANS7 ANS6 ANS5 ANS4 ANS3 ANS2 ANS1 ANSO 1111 1111 (248,88
10CB 10CB7 10CB6 10CB5 10CB4 — — — — 0000 ----|248, 81
IOCA — — IOCA5 I0CA4 I0CA3 I0CA2 I0CA1 IOCAO |--00 0000|248, 76
WPUB WPUB7 WPUB6 WPUBS5 WPUB4 — — — — 1111 ---- |248, 81
WPUA — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUAO |--11 1111|245,76
SLRCON — — — — — SLRC SLRB SLRA ---- -111|248,90
SSPMSK MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSKO 1111 1111 (248, 146
CM1CONO C10N Cc10UT C10E C1POL C1SP C1R C1CH1 C1CHO |0000 0000 (248, 216
CM2CON1 MC10UT MC20UT C1RSEL C2RSEL C1HYS C2HYS C1SYNC C2SYNC |0000 0000|248, 220
CM2CONO C20N C20UT C20E C2POL C2SP C2R C2CH1 C2CHO |0000 0000 (248, 217
SRCON1 SRSPE SRSCKE SRSC2E SRSC1E SRRPE SRRCKE SRRC2E SRRC1E [0000 0000|248, 230
SRCONO SRLEN SRCLK2 SRCLK1 SRCLKO SRQEN SRNQEN SRPS SRPR 0000 0000 |248, 229

Legend: X =unknown, u = unchanged, —= unimplemented, q = value depends on condition
Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as ‘0’. See
Section 22.4 “Brown-out Reset (BOR)".
2:  The RAS3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RA3 reads as ‘0’. This bit is
read-only.
3: Unimplemented, read as ‘1’.
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3.3.5 STATUS REGISTER

The STATUS register, shown in Register 3-2, contains
the arithmetic status of the ALU. As with any other SFR,
it can be the operand for any instruction.

If the STATUS register is the destination for an
instruction that affects the Z, DC, C, OV or N bits, the
results of the instruction are not written; instead, the
STATUS register is updated according to the
instruction performed. Therefore, the result of an
instruction with the STATUS register as its destination
may be different than intended. As an example, CLRF
STATUS will set the Z bit and leave the remaining
Status bits unchanged (‘000u uluu’).

REGISTER 3-2: STATUS: STATUS REGISTER

It is recommended that only BCF, BSF, SWAPF, MOVFF
and MOWAF instructions are used to alter the STATUS
register, because these instructions do not affect the Z,
C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see
the instruction set summaries in Table 24-2 and
Table 24-3.

Note:  The C and DC bits operate as the borrow
and digit borrow bits, respectively, in

subtraction.

u-0 U-0 u-0 R/W-x

R/W-x R/W-x R/W-x R/W-x

— — — N

ov Z pc® c®

bit 7

bit 0

Legend:
R = Readable bit W = Writable bit
-n = Value at POR ‘1" = Bit is set

‘0’ = Bit is cleared

U = Unimplemented bit, read as ‘0’

X = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’
bit 4 N: Negative bit

This bit is used for signed arithmetic (two’s complement). It indicates whether the result was negative

(ALU MSB =1).
1 = Result was negative
0 = Result was positive

bit 3 OV: Overflow bit

This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the 7-bit
magnitude which causes the sign bit (bit 7 of the result) to change state.

1 = Overflow occurred for signed arithmetic (in this arithmetic operation)

0 = No overflow occurred

bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW SUBLW SUBWF instructions)(®)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
bit O C: Carry/Borrow bit (ADDWF, ADDLW SUBLW SUBWF instructions)®
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
Note 1:

For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the

second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.
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3.4 Data Addressing Modes

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 3.5 “Data Memory
and the Extended Instruction Set” for
more information.

While the program memory can be addressed in only
one way — through the program counter — information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.

The addressing modes are:

* Inherent
 Literal
» Direct
 Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 3.5.1 “Indexed
Addressing with Literal Offset”.

3.4.1 INHERENT AND LITERAL
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW

Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLWand MOVLW which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

3.4.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-
oriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 3.3.3 “General

Purpose Register File”) or a location in the Access
Bank (Section 3.3.2 “Access Bank”) as the data
source for the instruction.

The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 3.3.1 “Bank Select Register (BSR)") are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d” argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

3.4.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data
structures, such as tables and arrays in data memory.

The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 3-5.
EXAMPLE 3-5: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

LFSR FSRO, 100h ;
NEXT CLRF POSTI NCO ; Clear | NDF
; register then
; inc pointer
BTFSS FSROH, 1 ; Al done with
; Bank1?
BRA NEXT ; NO clear next
CONTI NUE . YES, continue
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3.4.3.1 FSR Registers and the INDF

Operand

At the core of indirect addressing are three sets of
registers: FSR0O, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. Each FSR
pair holds a 12-bit value, therefore the four upper bits
of the FSRnH register are not used. The 12-bit FSR
value can address the entire range of the data memory
in a linear fashion. The FSR register pairs, then, serve
as pointers to data memory locations.

Indirect addressing is accomplished with a set of
Indirect File Operands, INDFO through INDF2. These
can be thought of as “virtual” registers: they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.

3.4.3.2 FSR Registers and POSTINC,

POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers which cannot be directly
read or written. Accessing these registers actually
accesses the location to which the associated FSR
register pair points, and also performs a specific action
on the FSR value. They are:

+ POSTDEC: accesses the location to which the
FSR points, then automatically decrements the
FSR by 1 afterwards

» POSTINC: accesses the location to which the
FSR points, then automatically increments the
FSR by 1 afterwards

* PREINC: automatically increments the FSR by 1,
then uses the location to which the FSR points in
the operation

* PLUSW: adds the signed value of the W register
(range of -127 to 128) to that of the FSR and uses
the location to which the result points in the
operation.

In this context, accessing an INDF register uses the
value in the associated FSR register without changing
it. Similarly, accessing a PLUSW register gives the
FSR value an offset by that in the W register; however,
neither W nor the FSR is actually changed in the

operation. Accessing the other virtual registers
changes the value of the FSR register.
FIGURE 3-8: INDIRECT ADDRESSING
000h
Using an instruction with one of the ADDWE, | NDF1, 1 Bank 0
indirect addressing registers as the 100h
operand.... Bank 1
200h
Bank 2
) 300h
...uses the 12-bit address stored in FSR1H:FSRIL
the.FSR pair associated with that 7 0 7 0
register.... Bank 3
[x[x[x[x[1[1]2[o] []1]o[o]1[s]o[o] trough
NN N
I\ ) NN Bank 13 N
...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains EOOh
ECCh. This means the contents of > Bank 14
location ECCh will be added to that FOOh
of the W register and stored back in Bank 15
ECCh. FFFh

Data Memory
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Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair; that is,
rollovers of the FSRnL register from FFh to 00h carry
over to the FSRnH register. On the other hand, results
of these operations do not change the value of any
flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form
of indexed addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.

3.4.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations. As a
specific case, assume that FSROH:FSROL contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1 using INDFO as an operand will
return 00h. Attempts to write to INDF1 using INDFO as
the operand will result in a NOP.

On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to either
the INDF2 or POSTDEC2 register will write the same
value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, particularly if their code
uses indirect addressing.

Similarly, operations by indirect addressing are generally
permitted on all other SFRs. Users should exercise the
appropriate caution that they do not inadvertently change
settings that might affect the operation of the device.

3.5 Data Memory and the Extended
Instruction Set

Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing.
Specifically, the use of the Access Bank for many of the
core PIC18 instructions is different; this is due to the
introduction of a new addressing mode for the data
memory space.

What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect addressing
with FSRO and FSR1 also remain unchanged.

3.5.1 INDEXED ADDRESSING WITH
LITERAL OFFSET

Enabling the PIC18 extended instruction set changes
the behavior of indirect addressing using the FSR2
register pair within Access RAM. Under the proper
conditions, instructions that use the Access Bank — that
is, most bit-oriented and byte-oriented instructions —
can invoke a form of indexed addressing using an
offset specified in the instruction. This special
addressing mode is known as Indexed Addressing with
Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this
addressing mode requires the following:

» The use of the Access Bank is forced (‘a’ = 0) and

» The file address argument is less than or equal to
5Fh.

Under these conditions, the file address of the
instruction is not interpreted as the lower byte of an
address (used with the BSR in direct addressing), or as
an 8-bit address in the Access Bank. Instead, the value
is interpreted as an offset value to an Address Pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation.

3.5.2 INSTRUCTIONS AFFECTED BY
INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct
addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set.
Instructions that only use Inherent or Literal Addressing
modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions
are not affected if they do not use the Access Bank
(Access RAM bit is ‘1’), or include a file address of 60h
or above. Instructions meeting these criteria will
continue to execute as before. A comparison of the
different possible addressing modes when the
extended instruction set is enabled is shown in
Figure 3-9.

Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode should
note the changes to assembler syntax for this mode.
This is described in more detail in Section 24.2.1
“Extended Instruction Syntax”.
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FIGURE 3-9: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 Olda ffff ffff)

When ‘a’ =0 and f > 60h: 000h
The instruction executes in 060h
Direct Forced mode. f is Bank 0
interpreted as a location in the 100h
Access RAM between 060h 00h
and OFFh. This is the same as tﬁfgng son
locations F60h to FFFh SR Bank 14 A ,
(Bank 15) of data memory. Va"%ﬁ?ff'ge
Locations below 60h are not FFh
available in this addressing Fooh Access RAM
mode. Bank 15

F6Oh| — — — = — — — 1

SFRs
FFFh
Data Memory
When ‘a’ =0 and f <5Fh: 000h
The instruction executes in
Indexed Literal Offset mode. ‘f 060h
is interpreted as an offset to the Bank 0
address value in FSR2. The 100h [001001da [fFFFFFff |
two are added together to Bank 1
obtain the address of the target - through
“ Bank 14 -

register for the instruction. The
address can be anywhere in | FSRaH | FSRaL |
the data memory space.

FOOh

Note that in this mode, the Bank 15
correct syntax is now: FBOhE — — — — — — — 1
ADDWF [k], d SFRs
where ‘K’ is the same as f’. FFFh
Data Memory
BSR
When ‘@’ =1 (all values of f): 000h
The instruction executes in S
. 060h -
Direct mode (also known as Bank 0
Direct Long mode). f is 100h D
interpreted as a location in
one of the 16 banks of the data Bank 1 [001001da [fFFFFFFf |
memory space. The bank is 2 tB*;r?E%Z N
designated by the Bank Select
Register (BSR). The address
can be in any implemented Fooh
bank in the data memory Bank 15
space. F6Oh| — — — — — — — |
SFRs
FFFh

Data Memory
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3.5.3 MAPPING THE ACCESS BANK IN
INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower
boundary of the addresses mapped into the window,
while the upper boundary is defined by FSR2 plus 95
(5Fh). Addresses in the Access RAM above 5Fh are
mapped as previously described (see Section 3.3.2
“Access Bank”). An example of Access Bank
remapping in this addressing mode is shown in
Figure 3-10.

Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bitis ‘1") will
continue to use direct addressing as before.

3.6 PIC18 Instruction Execution and
the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 24.2 “Extended Instruction Set”.

REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET

—_—
Bank 1 “Window”

)J

FIGURE 3-10:
ADDRESSING
Example Situation:
ADDWF f, d, a 000h
FSR2H:FSR2L = 120h
Bank 0
Locations in the region
from the FSR2 pointer 100h
(120h) to the pointer plus 120nF — B_f‘”'ﬂ _
05Fh (17Fh) are mapped  17gp, Window
to the bottom of the [~ L . = |
Bank 1
Access RAM (000h-05Fh). 200h
Special File Registers at
F60h through FFFh are J
mapped to 60h through ) Bank 2 N
FFh, as usual. through
Bank 0 addresses below Bank 14
5Fh can still be addressed
by using the BSR.
FOOh
Bank 15
F60h| — — — — —
SFRs
FFFh
Data Memory

_______ 5Fh
60h

SFRs

FFh

Access Bank
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40 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD
range.

A read from program memory is executed one byte at
a time. A write to program memory is executed on
blocks of 16 or 8 bytes at a time depending on the
specific device (See Table 4-1). Program memory is
erased in blocks of 64 bytes at a time. The difference
between the write and erase block sizes requires from
4 to 8 block writes to restore the contents of a single
block erase. A Bulk Erase operation can not be issued
from user code.

TABLE 4-1: WRITE/ERASE BLOCK SIZES

Device Write Block Erase Block

Size (bytes) Size (bytes)
PIC18(L)F13K22 8 64
PIC18(L)F14K22 16 64

Writing or erasing program memory will cease
instruction fetches until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases.

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

FIGURE 4-1: TABLE READ OPERATION

4.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data RAM:

» Table Read (TBLRD)
* Table Write (TBLWI)

The program memory space is 16-bit wide, while the
data RAM space is 8-bit wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).

The table read operation retrieves one byte of data
directly from program memory and places it into the
TABLAT register. Figure 4-1 shows the operation of a
table read.

The table write operation stores one byte of data from the
TABLAT register into a write block holding register. The
procedure to write the contents of the holding registers
into program memory is detailed in Section 4.5 “Writing
to Flash Program Memory”. Figure 4-2 shows the
operation of a table write with program memory and data
RAM.

Table operations work with byte entities. Tables
containing data, rather than program instructions, are
not required to be word-aligned. Therefore, a table can
start and end at any byte address. If a table write is being
used to write executable code into program memory,
program instructions will need to be word-aligned.

Table Pointer(")

Instruction: TBLRD*

Program Memory

TBLPTRU : TBLPTRH ; TBLPTRL

—

Program Memory
(TBLPTR)

Table Latch (8-bit)

TABLAT
ﬁ—)

Note 1: Table Pointer register points to a byte in program memory.
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FIGURE 4-2:

TABLE WRITE OPERATION

Instruction: TBLWI'™*

Program Memory

Holding Registers

Table Pointer(®)

TBLPTRU ;: TBLPTRH . TBLPTRL

]

Program Memory

(TBLPTR<MSBs>) -

Table Latch (8-bit)
. 4 TABLAT

Note 1: During table writes the Table Pointer does not point directly to Program Memory. The LSBs of TBLPRTL
actually point to an address within the write block holding registers. The MSBs of the Table Pointer
determine where the write block will eventually be written. The process for writing the holding registers
to the program memory array is discussed in Section 4.5 “Writing to Flash Program Memory”.

4.2 Control Registers

Several control registers are used in conjunction with
the TBLRD and TBLWI instructions. These include the:

+ EECONT1 register
+ EECONZ2 register
» TABLAT register

* TBLPTR registers

4.2.1 EECON1 AND EECON2 REGISTERS

The EECONT1 register (Register 4-1) is the control
register for memory accesses. The EECON2 register is
not a physical register; it is used exclusively in the
memory write and erase sequences. Reading
EECON2 will read all ‘O’s.

The EEPGD control bit determines if the access will be
a program or data EEPROM memory access. When
EEPGD is clear, any subsequent operations will
operate on the data EEPROM memory. When EEPGD
is set, any subsequent operations will operate on the
program memory.

The CFGS control bit determines if the access will be
to the Configuration/Calibration registers or to program
memory/data EEPROM memory. When CFGS is set,
subsequent operations will operate on Configuration
registers regardless of EEPGD (see Section 23.0
“Special Features of the CPU”). When CFGS is clear,
memory selection access is determined by EEPGD.

The FREE bit allows the program memory erase
operation. When FREE is set, an erase operation is
initiated on the next WR command. When FREE is
clear, only writes are enabled.

The WREN bit, when set, will allow a write operation.
The WREN bit is clear on power-up.

The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete.

Note:  During normal operation, the WRERR is
read as ‘1’. This can indicate that a write
operation was prematurely terminated by
a Reset, or a write operation was
attempted improperly.

The WR control bit initiates write operations. The WR
bit cannot be cleared, only set, by firmware. Then WR
bit is cleared by hardware at the completion of the write
operation.

Note:  The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
The EEIF flag stays set until cleared by
firmware.
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REGISTER 4-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0
EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory
bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit
1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory
bit 5 Unimplemented: Read as ‘0’
bit 4 FREE: Flash Row (Block) Erase Enable bit
1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)
0 = Perform write-only
bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit™®)
1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)
0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit
1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM
bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD =1 or CFGS =1.)
0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
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422 TABLAT — TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.

423 TBLPTR — TABLE POINTER

REGISTER

The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL). These three
registers join to form a 22-bit wide pointer. The low-
order 21 bits allow the device to address up to 2 Mbytes
of program memory space. The 22nd bit allows access
to the device ID, the user ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the
TBLRD and TBLWI instructions. These instructions can
update the TBLPTR in one of four ways based on the
table operation. These operations are shown in
Table 4-2. These operations on the TBLPTR affect only
the low-order 21 bits.

424 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the
Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
directly into the TABLAT register.

When a TBLWI is executed the byte in the TABLAT
register is written, not to Flash memory but, to a holding
register in preparation for a program memory write. The
holding registers constitute a write block which varies
depending on the device (See Table 4-1).The 3, 4, or 5
LSbs of the TBLPTRL register determine which specific
address within the holding register block is written to.
The MSBs of the Table Pointer have no effect during
TBLW operations.

When a program memory write is executed the entire
holding register block is written to the Flash memory at
the address determined by the MSbs of the TBLPTR.
The 3, 4, or 5 LSBs are ignored during Flash memory
writes. For more detail, see Section 4.5 “Writing to
Flash Program Memory”.

When an erase of program memory is executed, the
16 MSbs of the Table Pointer register (TBLPTR<21:6>)
point to the 64-byte block that will be erased. The Least
Significant bits (TBLPTR<5:0>) are ignored.

Figure 4-3 describes the relevant boundaries of
TBLPTR based on Flash program memory operations.

TABLE 4-2: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWI' INSTRUCTIONS
Example Operation on Table Pointer

TBLRD* . o
TBLW* TBLPTR is not modified
TBLRD* + o .
TBLWI* + TBLPTR is incremented after the read/write
TBLRD* - . .
TBLW* - TBLPTR is decremented after the read/write
TBLRD+* o .
TBLWE+* TBLPTR is incremented before the read/write
FIGURE 4-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

21 TBLPTRU 16 15 TBLPTRH 8 7 TBLPTRL

A A A

TABLE ERASE/WRITE TABLE WRITE
TBLPTR<21:n+1>W TBLPTR<n:0>®
TABLE READ - TBLPTR<21:0>
Note 1: n =3, 4,5, or 6 for block sizes of 8, 16, 32 or 64 bytes, respectively.
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4.3 Reading the Flash Program
Memory

The TBLRD instruction retrieves data from program
memory and places it into data RAM. Table reads from
program memory are performed one byte at a time.

TBLPTR points to a byte address in program space.
Executing TBLRD places the byte pointed to into
TABLAT. In addition, TBLPTR can be modified
automatically for the next table read operation.

The internal program memory is typically organized by
words. The Least Significant bit of the address selects
between the high and low bytes of the word. Figure 4-4
shows the interface between the internal program
memory and the TABLAT.

FIGURE 4-4: READS FROM FLASH PROGRAM MEMORY

(Even Byte Address)

Program Memory

(Odd Byte Address)

Instruction Register
(IR) —— FETCH

TBLPTR = xxxxx1 TBLPTR = xxxxx0

TABLAT
Read Register

TBLRD ——

EXAMPLE 4-1: READING A FLASH PROGRAM MEMORY WORD

MOVLW CODE_ADDR_UPPER
NOVVE TBLPTRU
MOVLW CODE_ADDR_HI GH
NOVVE TBLPTRH
MOVLW CODE_ADDR_LOW
NOVVE TBLPTRL
READ_WORD
TBLRD* +
MOVF TABLAT, W
MOVVE WORD_EVEN
TBLRD* +
NOVFW TABLAT, W
MOVF WORD_ODD

Load TBLPTR with the base
address of the word

read into TABLAT and i ncrenent
get data

read into TABLAT and i ncrenent
get data
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4.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP control, can larger blocks of program memory be
bulk erased. Word erase in the Flash array is not
supported.

When initiating an erase sequence from the
Microcontroller itself, a block of 64 bytes of program
memory is erased. The Most Significant 16 bits of the
TBLPTR<21:6> point to the block being erased. The
TBLPTR<5:0> bits are ignored.

The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.

The write initiate sequence for EECON2, shown as
steps 4 through 6 in Section 4.4.1 “Flash Program
Memory Erase Sequence”, is used to guard against
accidental writes. This is sometimes referred to as a
long write.

A long write is necessary for erasing the internal
Flash. Instruction execution is halted during the long
write cycle. The long write is terminated by the internal
programming timer.

EXAMPLE 4-2:

4.4.1 FLASH PROGRAM MEMORY
ERASE SEQUENCE

The sequence of events for erasing a block of internal
program memory is:

1. Load Table Pointer register with address of
block being erased.

2. Setthe EECON1 register for the erase operation:

» set EEPGD bit to point to program memory;

* clear the CFGS bit to access program memory;

« set WREN bit to enable writes;

« set FREE bit to enable the erase.

Disable interrupts.

Write 55h to EECONZ2.

Write 0AAh to EECON2.

Set the WR bit. This will begin the block erase
cycle.

7. The CPU will stall for duration of the erase
(about 2 ms using internal timer).

8. Re-enable interrupts.

o0k

ERASING A FLASH PROGRAM MEMORY BLOCK

MOVLW  CODE_ADDR_UPPER
MOWE  TBLPTRU
MOVLW  CODE_ADDR_HI GH
MOWAE  TBLPTRH
MOVLW  CODE_ADDR_LOW
MOWAE  TBLPTRL
ERASE_BLOCK

BSF EECONL, EEPGD
BCF EECONL, CFGS
BSF EECONL, WAREN
BSF EECON1, FREE

BCF INTCON, G E
Requi r ed MOVLW  55h
Sequence MOVWF  EECON2
MOVLW  OAAh

MOVW  EECON2
BSF EECON1, WR
BSF INTCON, G E

; load TBLPTR with the base
address of the menory bl ock

; point to Flash program nmenory
; access Flash program nmenory

; enable wite to nmenory

; enabl e block Erase operation
; disable interrupts

write 55h
; Wwite 0AAh

; start erase (CPU stall)
; re-enable interrupts
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4.5 Writing to Flash Program Memory

The programming block size is 8 or 16 bytes,
depending on the device (See Table 4-1). Word or byte
programming is not supported.

Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes
in a write block (See Table 4-1).

Since the Table Latch (TABLAT) is only a single byte,
the TBLWI instruction may need to be executed 8, or 16
times, depending on the device, for each programming
operation. All of the table write operations will
essentially be short writes because only the holding
registers are written. After all the holding registers have
been written, the programming operation of that block
of memory is started by configuring the EECON1
register for a program memory write and performing the
long write sequence.

FIGURE 4-5:

TABLE WRITES TO FLASH PROGRAM MEMORY

The long write is necessary for programming the
internal Flash. Instruction execution is halted during a
long write cycle. The long write will be terminated by
the internal programming timer.

The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

Note: The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit froma ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.

TABLAT
Write Register

TBLPTR = xxxx00

TBLPTR = xxxx01

TBLPTR = xxxx02

Holding Register |

Holding Register |

Holding Register |

Program Memory

Note 1: YY = x7 or xF for 8 or 16 byte write blocks, respectively.

451 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal

program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer register with address being
erased.

4. Execute the block erase procedure.

5. Load Table Pointer register with address of first
byte being written.

6. Write the 8 or 16 byte block into the holding
registers with auto-increment.

7. Setthe EECON1 register for the write operation:
» set EEPGD bit to point to program memory;
* clear the CFGS bit to access program memory;
» set WREN to enable byte writes.

8. Disable interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for duration of the write (about
2 ms using internal timer).

13. Re-enable interrupts.

14. Repeat steps 6 to 13 for each block until all 64
bytes are written.

15. Verify the memory (table read).

This procedure will require about 6 ms to update each

write block of memory. An example of the required code
is given in Example 4-3.

Note:  Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
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EXAMPLE 4-3: WRITING TO FLASH PROGRAM MEMORY

MOVLW D 64’ ; nunber of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR _HI GH ; point to buffer
MOVWF FSROH
MOVLW BUFFER_ADDR_LOW
MOVWF FSROL
MOVLW CODE_ADDR_UPPER ; Load TBLPTR wi th the base
MOVWF TBLPTRU ; address of the menory bl ock
MOVLW CODE_ADDR_HI GH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD* + ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTI NCO ; Sstore data
DECFSZ COUNTER ; done?
BRA READ_BLOCK , repeat

MCDI FY_WORD
MOVLW BUFFER_ADDR_HI GH ; point to buffer
MOVWF FSROH
MOVLW BUFFER_ADDR_LOW
MOVWF FSROL
MOVLW NEW DATA LOW ; update buffer word
MOVWF PCSTI NCO
MOVLW NEW DATA_HI GH
MOVWF | NDFO

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the menory bl ock
MOVLW CODE_ADDR_HI GH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BSF EECON1, EEPGD ; point to Flash program nenory
BCF EECON1, CFGS ; access Flash program nmenory
BSF EECON1, WREN ; enable wite to nmenory
BSF EECON1, FREE ; enabl e Erase operation
BCF INTCON, G E ; disable interrupts
MOVLW 55h

Requi r ed MOVWF EECON2 ; write 55h

Sequence MOVLW 0AAh
MOVW\F EECON2 ; wite OAAh
BSF EECON1, WR ; start erase (CPU stall)
BSF INTCON, G E ; re-enable interrupts
TBLRD* - ; dummy read decrenent
MOVLW BUFFER_ADDR_HI GH ; point to buffer
MOVWF FSROH
MOVLW BUFFER_ADDR_LOW
MOVWF FSROL

VRl TE_BUFFER_BACK
MOVLW Bl ockSi ze ; nunmber of bytes in holding register
MOVWF COUNTER
MOVLW D 64’ / Bl ockSi ze ; nunber of wite blocks in 64 bytes
MOVWF COUNTER2

WRI TE_BYTE_TO_HREGS
MOVF PCSTI NCO, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWI+* wite data, performa short wite

to internal TBLW hol ding register.
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EXAMPLE 4-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)
DECFSZ COUNTER loop until holding registers are full
BRA WRI TE_WORD_TO_HREGS
PROGRAM_MEMORY
BSF EECON1, EEPCD point to Flash program nmenory
BCF EECON1, CFGS access Fl ash program nenory
BSF EECON1, WREN enable wite to nmenory
BCF INTCON, G E di sable interrupts
MOVLW  55h
Requi r ed MOV EECON2 ; wite 55h
Sequence MOVLW  O0AAh
MOVWF  EECON2 ; write OAAh
BSF EECON1, WR ; start program (CPU stall)
DCFSZ  COUNTER2 repeat for renmmining wite bl ocks
BRA WRI TE_BYTE_TO_HREGS
BSF INTCON, G E re-enable interrupts
BCF EECON1, WREN di sable wite to nenory
452 WRITE VERIFY 454 PROTECTION AGAINST
SPURIOUS WRITES

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

453 UNEXPECTED TERMINATION OF

WRITE OPERATION

If a write is terminated by an unplanned event, such as
loss of power or an unexpected Reset, the memory
location just programmed should be verified and
reprogrammed if needed. If the write operation is
interrupted by a MCLR Reset or a WDT Time-out Reset
during normal operation, the WRERR bit will be set
which the user can check to decide whether a rewrite
of the location(s) is needed.

To protect against spurious writes to Flash program
memory, the write initiate sequence must also be
followed. See Section 23.0 “Special Features of the
CPU” for more detail.

4.6 Flash Program Operation During

Code Protection

See Section 23.3 “Program Verification and Code
Protection” for details on code protection of Flash
program memory.

TABLE 4-3: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Reset

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 |Valueson

page
EECON1 EEPGD CFGS — FREE WRERR WREN WR RD 247
EECON2 |EEPROM Control Register 2 (not a physical register) 247
INTCON | GIE/GIEH |PEIE/GIEL| TMROIE| INTOIE RABIE TMROIF INTOIF RABIF 245
IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248
PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMRSIE — 248
PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMRS3IF — 248
TABLAT  |Program Memory Table Latch 245
TBLPTRL |Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 245
TBLPTRU — — | bit 21 ‘ Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) 245
TBPLTRH |Program Memory Table Pointer High Byte (TBLPTR<15:8>) 245
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.
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5.0 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array,
separate from the data RAM and program memory,
which is used for long-term storage of program data. It
is not directly mapped in either the register file or
program memory space but is indirectly addressed
through the Special Function Registers (SFRs). The
EEPROM is readable and writable during normal
operation over the entire VDD range.

Four SFRs are used to read and write to the data
EEPROM as well as the program memory. They are:

+ EECON1
« EECON2
+ EEDATA
+ EEADR

The data EEPROM allows byte read and write. When
interfacing to the data memory block, EEDATA holds
the 8-bit data for read/write and the EEADR register
holds the address of the EEPROM location being
accessed.

The EEPROM data memory is rated for high erase/write
cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write).
The write time is controlled by an on-chip timer; it will
vary with voltage and temperature as well as from chip-
to-chip. Please refer to parameter US122 (Table 26-24)
for exact limits.

51 EEADR Register

The EEADR register is used to address the data
EEPROM for read and write operations. The 8-bit
range of the register can address a memory range of
256 bytes (00h to FFh).

5.2 EECON1 and EECON2 Registers

Access to the data EEPROM is controlled by two
registers: EECON1 and EECON2. These are the same
registers which control access to the program memory
and are used in a similar manner for the data
EEPROM.

The EECONT1 register (Register 5-1) is the control
register for data and program memory access. Control
bit EEPGD determines if the access will be to program
or data EEPROM memory. When the EEPGD bit is
clear, operations will access the data EEPROM
memory. When the EEPGD bit is set, program memory
is accessed.

Control bit, CFGS, determines if the access will be to
the Configuration registers or to program memory/data
EEPROM memory. When the CFGS bit is set,
subsequent operations access Configuration registers.
When the CFGS bit is clear, the EEPGD bit selects
either program Flash or data EEPROM memory.

The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear.

The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete.

Note:  During normal operation, the WRERR
may read as ‘1’. This can indicate that a
write  operation was  prematurely
terminated by a Reset, or a write

operation was attempted improperly.

The WR control bit initiates write operations. The bit
can be set but not cleared by software. Itis cleared only
by hardware at the completion of the write operation.

Note:  The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.

It must be cleared by software.

Control bits, RD and WR, start read and erase/write
operations, respectively. These bits are set by firmware
and cleared by hardware at the completion of the
operation.

The RD bit cannot be set when accessing program
memory (EEPGD = 1). Program memory is read using
table read instructions. See Section 4.1 “Table Reads
and Table Writes” regarding table reads.

The EECONZ2 register is not a physical register. It is
used exclusively in the memory write and erase
sequences. Reading EECON2 will read all ‘O’s.
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REGISTER 5-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

R/W-x R/W-x U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0
EEPGD CFGS — FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit

S = Bit can be set by software, but not cleared U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit

1 = Access Flash program memory
0 = Access data EEPROM memory
bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select bit
1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory
bit 5 Unimplemented: Read as ‘0’
bit 4 FREE: Flash Row (Block) Erase Enable bit
1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)
0 = Perform write-only
bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit™®)
1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)
0 = The write operation completed

bit 2 WREN: Flash Program/Data EEPROM Write Enable bit
1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM
bit 1 WR: Write Control bit

1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)

0 = Write cycle to the EEPROM is complete

bit 0 RD: Read Control bit

1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD =1 or CFGS =1.)
0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
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5.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD
control bit of the EECON1 register and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

The basic process is shown in Example 5-1.

54 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data
written to the EEDATA register. The sequence in
Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly
followed (write 55h to EECONZ2, write O0AAh to
EECONZ2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

EXAMPLE 5-1: DATA EEPROM READ

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, EECON1,
EEADR and EEDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared by hardware and the EEPROM Interrupt Flag
bit, EEIF, is set. The user may either enable this
interrupt or poll this bit. EEIF must be cleared by
software.

5.5 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

MOVLW DATA_EE ADDR
MOWFF  EEADR ;
BCF EECON1, EEPGD

Data Menory Address to read
Poi nt to DATA nenory

BCF EECON1, CFGS ; Access EEPROM
BSF EECON1, RD EEPROM Read
MOVF EEDATA, W W = EEDATA

EXAMPLE 5-2: DATA EEPROM WRITE

MOVLW DATA EE_ADDR LON
MOWE  EEADR :
MOVLW DATA EE_DATA

BCF EECON1, EEPGD
BCF EECON1, CFGS

Sequence MOVLW  0AAh
MOV EECON2

BSF INTCON, G E

BCF EECON1, WREN

Data Menory Address to wite

MOWAWF  EEDATA ; Data Menory Value to wite
Point to DATA nenory
Access EEPROM

BSF EECON1, WREN ; Enable wites

BCF INTCON, G E Di sable Interrupts
MOVLW  55h :
Requi red MOV EECON2 ; Wite 55h

; Wite 0AAh
BSF EECON1, WR ; Set WR bit to begin wite
; Enable Interrupts

; User code execution
; Disable wites on wite conplete (EEIF set)
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5.6

Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.

Operation During Code-Protect

The microcontroller itself can both read and write to the
internal data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 23.0

“Special Features of the CPU” for additional
information.
5.7 Protection Against Spurious Write

There are conditions when the user may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte
addressable array that has been optimized for the
storage of frequently changing information (e.g.,
program variables or other data that are updated often).
When variables in one section change frequently, while
variables in another section do not change, it is possible
to exceed the total number of write cycles to the
EEPROM without exceeding the total number of write
cycles to a single byte. If this is the case, then an array
refresh must be performed. For this reason, variables
that change infrequently (such as constants, IDs,
calibration, etc.) should be stored in Flash program
memory.

A simple data EEPROM refresh routine is shown in
Example 5-3.

during the Power-up Timer period (TPWRT, Note: If data EEPROM is only used to store
parameter 33). constants and/or data that changes rarely,
The write initiate sequence and the WREN bit together an array refresh is likely not required. See
help prevent an accidental write during brown-out, specification.
power glitch or software malfunction.
EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

CLRF EEADR ; Start at address 0

BCF EECON1, CFGS Set for menory

BCF EECON1, EEPGD Set for Data EEPROM

BCF I NTCON, G E Di sabl e interrupts

BSF EECON1, WREN Enable wites
Loop Loop to refresh array

BSF EECON1, RD Read current address

MOVLW 55h ;

MOVWF EECON2 ; Wite 55h

MOVLW 0AAh ;

MOVWF EECON2 ; Wite 0AAh

BSF EECON1, WR ; Set WR bit to begin wite

BTFSC EECON1, WR ; Wait for wite to conplete

BRA $-2

I NCFSZ EEADR, F I ncrement address

BRA LooP Not zero, do it again

BCF EECON1, WREN Di sable writes

BSF I NTCON, G E Enabl e interrupts
TABLE 5-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Reset
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Values
on page

EEADR EEADR7 EEADR6 | EEADR5 | EEADR4 | EEADR3 | EEADR2 | EEADR1 | EEADRO 247
EECON1 EEPGD CFGS — FREE | WRERR | WREN WR RD 247
EECON2 |EEPROM Control Register 2 (not a physical register) 247
EEDATA EEPROM Data Register 247
INTCON GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE RABIE | TMROIF | INTOIF RABIF 245
IPR2 OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP — 248
PIE2 OSCFIE C1IE C2IE EEIE BCLIE — TMR3IE — 248
PIR2 OSCFIF C1IF C2IF EEIF BCLIF — TMRS3IF — 248
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.
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6.0 8x8 HARDWARE MULTIPLIER EXAMPLE 6-1: 8 x 8 UNSIGNED
MULTIPLY ROUTINE

6.1 Introduction MOVF  ARGL, W -

All PIC18 devices include an 8 x 8 hardware multiplier MLVE - ARG e 7

as part of the ALU. The multiplier performs an unsigned

operation and yields a 16-bit result that is stored in the

product register pair, PRODH:PRODL. The multiplier’'s EXAMPLE 6-2: 8 x 8 SIGNED MULTIPLY

operation does not affect any flags in the STATUS ROUTINE

register. NOVE ARGL, W

Making multiplication a hardware operation allows it to MULW  ARR ; ARGL * ARX ->

be completed in a single instruction cycle. This has the ;  PRODH: PRODL

advantages of higher computational throughput and BTFSC AR®, SB ; Test Sign Bit

reduced code size for multiplication algorithms and SUBW  PRODH, F  ; PRODH = PRODH

allows the PIC18 devices to be used in many OF ARG W ; - ARGL

applications previously reserved for digital signal BTFSC ARGL SB : Test Sign Bit

processors. A comparlgon of varlou.s hardwar.e aqd SUBWE PRODH F ' PRODH = PRODH
software multiply operations, along with the savings in . - AR®
memory and execution time, is shown in Table 6-1.

6.2 Operation

Example 6-1 shows the instruction sequence for an 8 x 8
unsigned multiplication. Only one instruction is required
when one of the arguments is already loaded in the
WREG register.

Example 6-2 shows the sequence to do an 8 x 8 signed
multiplication. To account for the sign bits of the
arguments, each argument’s Most Significant bit (MSb)
is tested and the appropriate subtractions are done.

TABLE 6-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

Program Cveles Time
Routine Multiply Method Memory y
words) | M) | @40MHz | @ 10 MHz | @ 4 MHz
. Without hardware multiply 13 69 6.9 us 27.6 us 69 us
8 x 8 unsigned -
Hardware multiply 1 1 100 ns 400 ns 1us
. Without hardware multiply 33 91 9.1 us 36.4 us 91 us
8 x 8 signed -
Hardware multiply 6 6 600 ns 2.4 us 6 us
) Without hardware multiply 21 242 24.2 us 96.8 us 242 ps
16 x 16 unsigned -
Hardware multiply 28 28 28 s 11.2 us 28 us
. Without hardware multiply 52 254 25.4 us 102.6 us 254 us
16 x 16 signed -
Hardware multiply 35 40 4.0 ps 16.0 us 40 ps
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Example 6-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 6-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES<3:0>).

EQUATION 6-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

ARG1H:ARGIL » ARG2H:ARG2L

(ARG1H e ARG2H o 2%6) +

(ARG1H o ARG2L o 28) +

(ARGLL e ARG2H o 28) +

(ARGIL o ARG2L)

RES3:RESO

EXAMPLE 6-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE
MOVF  ARGLL, W
MILW  ARG2L ; ARGLL * ARG2L- >
;  PRODH: PRODL
MOVFF  PRODH, RES1 ;
MOVFF  PRODL, RESO ;

MOVF ARGLIH, W

MILWF  ARG2H ; ARGIH * ARGRH- >
; PRODH: PRODL

MOVFF  PRODH, RES3 ;

MOVFF  PRODL, RES2 ;

MOVF ARGLL, W

MULW  ARG2H . ARGLL * ARRZH >
;. PRODH: PRODL

MOVF PRODL, W ;

ADDW RES1, F ; Add cross

MOVF PRODH, W ; products

ADDWC RES2, F ;

CLRF VWREG ;
ADDWC RES3, F ;

MOVF ARGLIH, W ;

MILWF  ARG2L ; ARGLH * ARGR2L- >
;  PRODH: PRODL

MOV PRODL, W ;

ADDW  RES1, F ; Add cross

MOVF PRODH, W ; products

ADDWC RES2, F ;

CLRF WREG ;

ADDWC RES3, F ;

Example 6-4 shows the sequence to do a 16 x 16
signed multiply. Equation 6-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES<3:0>). To account for the sign bits of the
arguments, the MSb for each argument pair is tested
and the appropriate subtractions are done.

EQUATION 6-2: 16 x 16 SIGNED

MULTIPLICATION
ALGORITHM

RES3:RESO

ARGIH:ARGIL  ARG2H:ARG2L
(ARG1H ¢ ARG2H o 216) +

(ARG1H e ARG2L  28) +

(ARGIL e ARG2H e 28) +

(ARGIL e ARG2L) +

(-1 ¢ ARG2H<7> ¢ ARGIH:ARGIL » 216) +
(-1 e ARGIH<7> ¢ ARG2H:ARG2L o 216)

EXAMPLE 6-4: 16 x 16 SIGNED

MULTIPLY ROUTINE

MOVF
MULWF

MOVFF
MOVFF

MOVF
MULWF

MOVFF
MOVFF

MOVF
MULWF

MOVF

MOVF
ADDWFC
CLRF
ADDWFC

MOVF
MULWF

MOVF

MOVF
ADDWFC
CLRF
ADDWFC

BTFSS
BRA
MOVF
SUBWF
MOVF
SUBWFB

SI GN_ARGL
BTFSS
BRA
MOVF
SUBWF
MOVF
SUBWFB

CONT_CODE

ARGIL, W

ARG2L ; ARGIL * ARG2L ->
;  PRODH: PRODL

PRODH, RES1 ;

PRCDL, RESO ;

ARGLH, W

ARGH ; ARGIH * ARG2H ->
;  PRODH: PRODL

PRODH, RES3 ;

PRCDL, RES2 ;

ARGIL, W

ARG2H ; ARGLIL * ARG2H - >
;  PRODH: PRODL

PRODL, W ;

RES1, F ; Add cross

PRODH, W ; products

RES2, F ;

WREG :

RES3, F ;

ARGIH, W

ARG2L ; ARGIH * ARG2L - >
;  PRODH: PRODL

PRODL, W

RES1, F ; Add cross

PRODH, W ; products

RES2, F ;

WREG :

RES3, F ;

ARG2H, 7 ; ARGH: ARGL neg?
SI GN_ARGL ; no, check ARGL
ARGLL, W

RES2 ;

ARGLH, W ;

RES3

ARG1H, 7 ; ARGLH: ARGLL neg?
CONT_CODE ; no, done

ARG2L, W )

RES2 ;

ARGH, W

RES3
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7.0 INTERRUPTS

The PIC18(L)F1XK22 devices have multiple interrupt
sources and an interrupt priority feature that allows
most interrupt sources to be assigned a high priority
level or a low priority level. The high priority interrupt
vector is at 0008h and the low priority interrupt vector is
at 0018h. A high priority interrupt event will interrupt a
low priority interrupt that may be in progress.

There are twelve registers which are used to control
interrupt operation. These registers are:

+ RCON

* INTCON

* INTCON2
* INTCON3
* PIR1, PIR2
* PIE1, PIE2
* IPR1, IPR2

It is recommended that the Microchip header files
supplied with MPLAB® IDE be used for the symbolic bit
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.

In general, interrupt sources have three bits to control
their operation. They are:

» Flag bit to indicate that an interrupt event
occurred

« Enable bit that allows program execution to
branch to the interrupt vector address when the
flag bit is set

* Priority bit to select high priority or low priority

7.1 Mid-Range Compatibility

When the IPEN bit is cleared (default state), the interrupt
priority feature is disabled and interrupts are compatible
with PIC® microcontroller mid-range devices. In
Compatibility mode, the interrupt priority bits of the IPRx
registers have no effect. The PEIE bit of the INTCON
register is the global interrupt enable for the peripherals.
The PEIE bit disables only the peripheral interrupt
sources and enables the peripheral interrupt sources
when the GIE bit is also set. The GIE bit of the INTCON
register is the global interrupt enable which enables all
non-peripheral interrupt sources and disables all
interrupt sources, including the peripherals. All interrupts
branch to address 0008h in Compatibility mode.

7.2 Interrupt Priority

The interrupt priority feature is enabled by setting the
IPEN bit of the RCON register. When interrupt priority
is enabled the GIE and PEIE global interrupt enable
bits of Compatibility mode are replaced by the GIEH
high priority, and GIEL low priority, global interrupt
enables. When set, the GIEH bit of the INTCON
register enables all interrupts that have their associated
IPRx register or INTCONX register priority bit set (high
priority). When clear, the GIEL bit disables all interrupt
sources including those selected as low priority. When
clear, the GIEL bit of the INTCON register disables only
the interrupts that have their associated priority bit
cleared (low priority). When set, the GIEL bit enables
the low priority sources when the GIEH bit is also set.

When the interrupt flag, enable bit and appropriate
global interrupt enable bit are all set, the interrupt will
vector immediately to address 0008h for high priority,
or 0018h for low priority, depending on level of the
interrupting source’s priority bit. Individual interrupts
can be disabled through their corresponding interrupt
enable bits.

7.3 Interrupt Response

When an interrupt is responded to, the global interrupt
enable bit is cleared to disable further interrupts. The
GIE bit is the global interrupt enable when the IPEN bit
is cleared. When the IPEN bit is set, enabling interrupt
priority levels, the GIEH bit is the high priority global
interrupt enable and the GIEL bit is the low priority
global interrupt enable. High-priority interrupt sources
can interrupt a low-priority interrupt. Low-priority
interrupts are not processed while high-priority
interrupts are in progress.

The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address (0008h
or 0018h). Once in the Interrupt Service Routine, the
source(s) of the interrupt can be determined by polling
the interrupt flag bits in the INTCONx and PIRx
registers. The interrupt flag bits must be cleared by
software before re-enabling interrupts to avoid
repeating the same interrupt.

The “return-from-interrupt” instruction, RETFI E, exits
the interrupt routine and sets the GIE bit (GIEH or GIEL
if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or
the PORTB interrupt-on-change, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one-cycle or two-cycle
instructions. Individual interrupt flag bits are set,
regardless of the status of their corresponding enable
bits or the global interrupt enable bit.
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Note: Do not use the MOVFF instruction to
modify any of the interrupt control
registers while any interrupt is enabled.
Doing SO may cause erratic

microcontroller behavior.

FIGURE 7-1: PIC18 INTERRUPT LOGIC
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7.4 INTCON Registers

The INTCON registers are readable and writable
registers, which contain various enable, priority and
flag bits.

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software should ensure
the appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x

GIE/GEH | PEEGIEL | TMROE | INTOE | RABE |  TMROF INTOIF RABIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 GIE/GIEH: Global Interrupt Enable bit

When IPEN = 0:

1 = Enables all unmasked interrupts

0 = Disables all interrupts including peripherals
When IPEN =1;

1 = Enables all high priority interrupts

0 = Disables all interrupts including low priority

bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit
When IPEN = 0;
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts
When IPEN =1;
1 = Enables all low priority interrupts
0 = Disables all low priority interrupts

bit 5 TMROIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO overflow interrupt
0 = Disables the TMRO overflow interrupt

bit 4 INTOIE: INTO External Interrupt Enable bit
1 = Enables the INTO external interrupt
0 = Disables the INTO external interrupt

bit 3 RABIE: RA and RB Port Change Interrupt Enable bit®
1 = Enables the RA and RB port change interrupt
0 = Disables the RA and RB port change interrupt

bit 2 TMROIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared by software)
0 = TMRO register did not overflow

bit 1 INTOIF: INTO External Interrupt Flag bit
1 = The INTO external interrupt occurred (must be cleared by software)
0 = The INTO external interrupt did not occur

bit 0 RABIF: RA and RB Port Change Interrupt Flag bit(?)
1 = At least one of the RA <5:0> or RB<7:4> pins changed state (must be cleared by software)
0 = None of the RA<5:0> or RB<7:4> pins have changed state

Note 1: A mismatch condition will continue to set the RABIF bit. Reading PORTA and PORTB will end the mismatch condition and allow the bit to
be cleared.
2: RA and RB port change interrupts also require the individual pin IOCA and IOCB enable.
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REGISTER 7-2: INTCONZ2: INTERRUPT CONTROL 2 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 u-0 R/W-1 U-0 R/W-1
RABPU INTEDGO INTEDGH1 INTEDG2 — TMROIP — RABIP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 RABPU: PORTA and PORTB Pull-up Enable bit

1 = PORTA and PORTB pull-ups are disabled
0 = PORTA and PORTB pull-ups are enabled provided that the pin is an input and the corresponding
WPUA and WPUB bits are set.
bit 6 INTEDGO: External Interrupt 0 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 5 INTEDG1: External Interrupt 1 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 4 INTEDG2: External Interrupt 2 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 3 Unimplemented: Read as ‘0’
bit 2 TMROIP: TMRO Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1 Unimplemented: Read as ‘0’
bit 0 RABIP: RA and RB Port Change Interrupt Priority bit
1 = High priority
0 = Low priority

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software might ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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REGISTER 7-3: INTCON3: INTERRUPT CONTROL 3 REGISTER

R/W-1 R/W-1 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 INT2IP: INT2 External Interrupt Priority bit

1 = High priority
0 = Low priority
bit 6 INT1IP: INT1 External Interrupt Priority bit
1 = High priority
0 = Low priority
bit 5 Unimplemented: Read as ‘0’
bit 4 INT2IE: INT2 External Interrupt Enable bit

1 = Enables the INT2 external interrupt
0 = Disables the INT2 external interrupt

bit 3 INT1IE: INT1 External Interrupt Enable bit
1 = Enables the INT1 external interrupt
0 = Disables the INT1 external interrupt
bit 2 Unimplemented: Read as ‘0’
bit 1 INT2IF: INT2 External Interrupt Flag bit
1 = The INT2 external interrupt occurred (must be cleared by software)
0 = The INT2 external interrupt did not occur
bit 0 INT1IF: INT1 External Interrupt Flag bit

1 = The INT1 external interrupt occurred (must be cleared by software)
0 = The INT1 external interrupt did not occur

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software might ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
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7.5 PIR Registers Note 1: Interrupt flag bits are set when an
interrupt condition occurs, regardless of
the state of its corresponding enable bit or
the Global Interrupt Enable bit, GIE of the
INTCON register.

2: User software might ensure the
appropriate interrupt flag bits are cleared
prior to enabling an interrupt and after
servicing that interrupt.

The PIR registers contain the individual flag bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are two Peripheral Interrupt
Request Flag registers (PIR1 and PIR2).

REGISTER 7-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

u-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

— ADIF RCIF TXIF | sSPF | ccPlF | TMR2F | TMRIIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0’
bit 6 ADIF: A/D Converter Interrupt Flag bit

1 = An A/D conversion completed (must be cleared by software)
0 = The A/D conversion is not complete or has not been started
bit 5 RCIF: EUSART Receive Interrupt Flag bit
1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The EUSART receive buffer is empty
bit 4 TXIF: EUSART Transmit Interrupt Flag bit
1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)
0 = The EUSART transmit buffer is full
bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared by software)
0 = Waiting to transmit/receive
bit 2 CCPL1IF: CCP1 Interrupt Flag bit

Capture mode:

1= A TMR1 register capture occurred (must be cleared by software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared by software)
0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit

1 = TMR2 to PR2 match occurred (must be cleared by software)
0 = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit

1 = TMRH1 register overflowed (must be cleared by software)
0 = TMR1 register did not overflow

Note 1: The PSPIF bit is unimplemented on 28-pin devices and will read as ‘0’.
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REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 uU-0 R/W-0 uU-0
OSCFIF C1IF C2IF EEF | BCLF | — | TMR3F —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared x = Bit is unknown
bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit

1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software)
0 = Device clock operating

bit 6 C1IF: Comparator C1 Interrupt Flag bit
1 = Comparator C1 output has changed (must be cleared by software)
0 = Comparator C1 output has not changed

bit 5 C2IF: Comparator C2 Interrupt Flag bit

1 = Comparator C2 output has changed (must be cleared by software)
0 = Comparator C2 output has not changed

bit 4 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit

1 = The write operation is complete (must be cleared by software)
0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit

1 = A bus collision occurred (must be cleared by software)
0 = No bus collision occurred

bit 2 Unimplemented: Read as ‘0’
bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit

1 = TMRa3 register overflowed (must be cleared by software)
0 = TMRS register did not overflow

bit 0 Unimplemented: Read as ‘0’
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7.6 PIE Registers

The PIE registers contain the individual enable bits for
the peripheral interrupts. Due to the number of
peripheral interrupt sources, there are two Peripheral
Interrupt Enable registers (PIE1 and PIE2). When IPEN
= 0, the PEIE bit must be set to enable any of these
peripheral interrupts.

REGISTER 7-6: PIE1l: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1

uU-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— ADIE RCIE TXIE SSPIE | CCP1IE ‘ TMR2IE TMR1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0’
bit 6 ADIE: A/D Converter Interrupt Enable bit

1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit 5 RCIE: EUSART Receive Interrupt Enable bit

1 = Enables the EUSART receive interrupt
0 = Disables the EUSART receive interrupt

bit 4 TXIE: EUSART Transmit Interrupt Enable bit
1 = Enables the EUSART transmit interrupt
0 = Disables the EUSART transmit interrupt
bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit

1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit

1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit

1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit

1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
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REGISTER 7-7: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 u-0 R/W-0 U-0
OSCFIE C1IE C2IE EEIE BCLIE | — | TMRS3IE —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit

bit 6

bit 5

bit 4

bit 3

bit 2
bit 1

bit 0

1 = Enabled

0 = Disabled

C1IE: Comparator C1 Interrupt Enable bit
1 = Enabled

0 = Disabled

C2IE: Comparator C2 Interrupt Enable bit
1 = Enabled

0 = Disabled

EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit
1 = Enabled

0 = Disabled

BCLIE: Bus Collision Interrupt Enable bit
1= Enabled

0 = Disabled

Unimplemented: Read as ‘0’
TMRS3IE: TMR3 Overflow Interrupt Enable bit

1 = Enabled
0 = Disabled

Unimplemented: Read as ‘0’
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7.7 IPR Registers

The IPR registers contain the individual priority bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are two Peripheral Interrupt
Priority registers (IPR1 and IPR2). Using the priority bits
requires that the Interrupt Priority Enable (IPEN) bit be

set.
REGISTER 7-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1
U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
— ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 Unimplemented: Read as ‘0’
bit 6 ADIP: A/D Converter Interrupt Priority bit

1 = High priority
0 = Low priority
bit 5 RCIP: EUSART Receive Interrupt Priority bit
1 = High priority
0 = Low priority
bit 4 TXIP: EUSART Transmit Interrupt Priority bit
1 = High priority
0 = Low priority
bit 3 SSPIP: Master Synchronous Serial Port Interrupt Priority bit
1 = High priority
0 = Low priority
bit 2 CCPL1IP: CCP1 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1 TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0 TMR1IP: TMR1 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
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REGISTER 7-9: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U-0 R/W-1 U-0
OSCFIP C1IP C2IP EEIP BCLIP — TMR3IP —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 7 OSCFIP: Oscillator Fail Interrupt Priority bit

bit 6

bit 5

bit 4

bit 3

bit 2
bit 1

bit 0

1 = High priority

0 = Low priority

C1IP: Comparator C1 Interrupt Priority bit

1 = High priority

0 = Low priority

C2IP: Comparator C2 Interrupt Priority bit

1 = High priority

0 = Low priority

EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit
1 = High priority

0 = Low priority

BCLIP: Bus Collision Interrupt Priority bit

1 = High priority

0 = Low priority

Unimplemented: Read as ‘0’

TMR3IP: TMR3 Overflow Interrupt Priority bit
1 = High priority

0 = Low priority

Unimplemented: Read as ‘0’
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7.8 RCON Register

The RCON register contains flag bits which are used to
determine the cause of the last Reset or wake-up from
Idle or Sleep modes. RCON also contains the IPEN bit
which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag
bits is discussed in more detail in Section 22.1 “RCON
Register”.

REGISTER 7-10: RCON: RESET CONTROL REGISTER

R/W-0 R/W-1 u-0 R/W-1 R-1 R-1 R/W-0 R/W-0
IPEN SBOREN®) — RI TO PD POR®@ BOR®)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 IPEN: Interrupt Priority Enable bit

1 = Enable priority levels on interrupts

0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6 SBOREN: BOR Software Enable bit()

If BOREN<1:0> = 01;

1 =BORis enabled

0 =BOR is disabled

If BOREN<1:0> =00, 10 or 11:
Bit is disabled and read as ‘0’.
bit 5 Unimplemented: Read as ‘0’
bit 4 RI: RESET Instruction Flag bit
1 = The RESET instruction was not executed (set by firmware or Power-on Reset)
0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a
code-executed Reset occurs)
bit 3 TO: Watchdog Time-out Flag bit
1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = AWDT Time-out occurred
bit 2 PD: Power-down Detection Flag bit

1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit(®

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0 BOR: Brown-out Reset Status bit(®)

1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)

Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0.

2:  The actual Reset value of POR is determined by the type of device Reset. See the notes following this
register and Section 22.6 “Reset State of Registers” for additional information.

3. See Table 22-3.
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7.9 INTX Pin Interrupts

External interrupts on the INTO, INT1 and INT2 pins are
edge-triggered. If the corresponding INTEDGx bit in the
INTCONZ2 register is set (= 1), the interrupt is triggered
by a rising edge; if the bit is clear, the trigger is on the
falling edge. When a valid edge appears on the INTx
pin, the corresponding flag bit, INTxF, is set. This
interrupt can be disabled by clearing the corresponding
enable bit, INTxE. Flag bit, INTxF, must be cleared by
software in the Interrupt Service Routine before re-
enabling the interrupt.

All external interrupts (INTO, INT1 and INT2) can wake-
up the processor from Idle or Sleep modes if bit INTXE
was set prior to going into those modes. If the Global
Interrupt Enable bit, GIE, is set, the processor will
branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by
the value contained in the interrupt priority bits,
INT1IP and INT2IP of the INTCONS register. There is
no priority bit associated with INTO. It is always a high-
priority interrupt source.

7.10 TMRO Interrupt

In 8-bit mode (which is the default), an overflow in the
TMRO register (FFh — 00h) will set flag bit, TMROIF. In
16-bit mode, an overflow in the TMROH:TMROL
register pair (FFFFh — 0000h) will set TMROIF. The
interrupt can be enabled/disabled by setting/clearing
enable bit, TMROIE of the INTCON register. Interrupt
priority for TimerO is determined by the value contained
in the interrupt priority bit, TMROIP of the INTCON2
register. See Section 9.0 “Timer0 Module” for further
details on the TimerO module.

7.11 PORTA and PORTB Interrupt-on-
Change

An input change on PORTA or PORTB sets flag bit,
RABIF of the INTCON register. The interrupt can be
enabled/disabled by setting/clearing enable bit, RABIE
of the INTCON register. Pins must also be individually
enabled with the IOCA and IOCB register. Interrupt
priority for PORTA and PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RABIP of the INTCON2 register.

7.12 Context Saving During Interrupts

During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the fast return stack. If a fast
return from interrupt is not used (see Section 3.3
“Data Memory Organization”), the user may need to
save the WREG, STATUS and BSR registers on entry
to the Interrupt Service Routine. Depending on the
user’s application, other registers may also need to be
saved. Example 7-1 saves and restores the WREG,
STATUS and BSR registers during an Interrupt Service
Routine.

EXAMPLE 7-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM
MOVWF W TEMP ; WTEMP is in virtual bank
MOVFF STATUS, STATUS_TEMP STATUS_TEMP | ocat ed anywhere

BSR_TMEP | ocat ed anywhere

MOVFF BSR, BSR_TEMWP
USER | SR CODE

MOVFF BSR_TEMP, BSR

MOVF WTEMP, W
MOVFF STATUS_TEMP, STATUS

Rest ore BSR
Rest ore WREG
Rest ore STATUS
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8.0 I/OPORTS

There are up to three ports available. Some pins of the
I/O ports are multiplexed with an alternate function from
the peripheral features on the device. In general, when
a peripheral is enabled, that pin may not be used as a
general purpose 1/O pin.

Each port has three registers for its operation. These
registers are:
* TRIS register (data direction register)

» PORT register (reads the levels on the pins of the
device)

» LAT register (output latch)
The PORTA Data Latch (LATA register) is useful for

read-modify-write operations on the value that the 1/0
pins are driving.

A simplified model of a generic 1/O port, without the
interfaces to other peripherals, is shown in Figure 8-1.

FIGURE 8-1: GENERIC I/O PORT
OPERATION
e

RD LAT N
Data
Bus D Q } ° EZ'
WR LAT /0 pin(l)
or Port E CK_\_

Data Latch

o— D Q

WR TRIS ) KL

TRIS Latch Input
[ Buffer

]
RD TRIS ~

/‘ Q D

EN
RD Port >C _|

Note 1: /O pins have diode protection to VDD and Vss.

8.1 PORTA, TRISA and LATA Registers

PORTA is a 6-bit wide, bidirectional port, with the
exception of RA3, which is input-only and its TRIS bit
will always read as ‘1. The corresponding data
direction register is TRISA. Setting a TRISA bit (= 1)
will make the corresponding PORTA pin an input (i.e.,
disable the output driver). Clearing a TRISA bit (= 0)
will make the corresponding PORTA pin an output (i.e.,
enable the output driver and put the contents of the
output latch on the selected pin).

Reading the PORTA register reads the status of the
pins, whereas writing to it, will write to the PORT latch.

The PORTA Data Latch (LATA) register is also memory
mapped. Read-modify-write operations on the LATA
register read and write the latched output value for
PORTA.

All of the PORTA pins are individually configurable as
interrupt-on-change pins. Control bits in the IOCA
register enable (when set) or disable (when clear) the
interrupt function for each pin.

When set, the RABIE bit of the INTCON register
enables interrupts on all pins which also have their
corresponding IOCA bit set. When clear, the RABIE
bit disables all interrupt-on-changes.

Only pins configured as inputs can cause this interrupt
to occur (i.e., any pin configured as an output is
excluded from the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are
compared with the old value latched on the last read of
PORTA. The ‘mismatch’ outputs of the last read are
OR’d together to set the PORTA Change Interrupt flag
bit (RABIF) in the INTCON register.
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This interrupt can wake the device from the Sleep mode,
or any of the Idle modes. The user, in the Interrupt
Service Routine, can clear the interrupt in the following
manner:

a) Any read or write of PORTA to clear the
mismatch condition (except when PORTA is the
source or destination of a MOVFF instruction).

b) Clear the flag bit, RABIF.

A mismatch condition will continue to set the RABIF flag
bit. Reading or writing PORTA will end the mismatch
condition and allow the RABIF bit to be cleared. The latch
holding the last read value is not affected by a MCLR nor
Brown-out Reset. After either one of these Resets, the
