

L6393

Half bridge gate driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability:
 - 290 mA source,
 - 430 mA sink
- Switching times 75/35 nsec rise/fall with 1 nF load
- 3.3 V, 5 V CMOS/TTL input comparators with hysteresis
- Integrated bootstrap diode
- Uncommitted comparator
- Adjustable deadtime
- Compact and simplified layout
- Bill of material reduction
- Flexible, easy and fast design

Application

- Motor driver for home appliances
- Factory automation
- Industrial drives and fans
- HID ballasts
- Power supply units

Description

The L6393 is a high voltage device manufactured with the BCD™ "offline" technology. It is a single chip half bridge gate driver for the N-channel power MOSFET or IGBT.

The high-side (floating) section is designed to stand a voltage rail up to 600 V.

The logic inputs are CMOS/TTL compatible down to 3.3 V for the easy interfacing microcontroller/DSP.

The IC embeds an uncommitted comparator available for protections against overcurrent, overtemperature, etc.

This is information on a product in full production.

Contents

1	Block	diagram	3
2	Pin co	onnection	4
3	Truth t	table	5
4	Electri	ical data	6
	4.1	Absolute maximum ratings	6
	4.2	Thermal data	6
	4.3	Recommended operating conditions	7
5	Electri	ical characteristics	8
	5.1	AC operation	8
	5.2	DC operation	10
6	Wavef	orm definition	12
7	Туріса	al application diagram	13
8	Bootst	trap driver	14
	C _{BOOT}	selection and charging	14
9	Packa	ge information	16
	SO-14	package information	16
10	Order	codes	18
11	Revisi	ion history	18

1 Block diagram

Figure 1. Block diagram

Table 4 Dis described

Pin no.	Pin name	Туре	1. Pin description Function
1 11 110:	1 III Hame	Турс	T unction
1	PHASE	I	Driver logic input (active high)
2	SD ⁽¹⁾	Ι	Shutdown input (active low)
3	BRAKE	Ι	Driver logic input (active low)
4	VCC	Р	Lower section supply voltage
5	DT	I	Deadtime setting
6	CPOUT	0	Comparator output (open drain)
7	GND	Р	Ground
8	CP-	Ι	Comparator negative input
9	CP+	I	Comparator positive input
10	LVG ⁽¹⁾	0	Low-side driver output
11	NC		Not connected
12	OUT	Р	High-side (floating) common voltage
13	HVG ⁽¹⁾	0	High-side driver output
		_	

BOOT Ρ Bootstrapped supply voltage 14

The circuit provides less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA), with V_{CC} > 3 V. This allows omitting the "bleeder" resistor connected between the gate and the source of the <u>ext</u>ernal MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition. 1.

LT

3 Truth table

	Inputs	Out	puts	
SD	PHASE	BRAKE	LVG	HVG
L	X ⁽¹⁾	X ⁽¹⁾	L	L
Н	L	L	Н	L
Н	L	Н	Н	L
Н	Н	L	Н	L
Н	Н	Н	L	Н

Table 2. Truth table

1. X: don't care.

In the L6393 IC the two input signals PHASE and BRAKE are fed into an AND logic port and the resulting signal is in phase with the high-side output HVG and in opposition of phase with the low-side output LVG. This means that if BRAKE is kept to a high level, the PHASE signal drives the half bridge in phase with the HVG output and in opposition of phase with the LVG output. If BRAKE is set to a low level, the low-side output LVG is always ON and the high-side output HVG is always OFF, whatever the PHASE signal. This kind of logic interface provides the possibility to control the power stages using the PHASE signal to select the current direction in the bridge and the BRAKE signal to perform current slow decay on the low-sides.

From the point of view of the logic operations the two signals PHASE and BRAKE are completely equivalent, that means the two signals can be exchanged without any change in the behavior on the resulting output signals (see *Figure 1*).

Note: The deadtime between the turn-OFF of one power switch and the turn-ON of the other power switch is defined by the resistor connected between the DT pin and the ground.

4 Electrical data

4.1 Absolute maximum ratings

C. mahal	Devenador	Va	Value			
Symbol	Parameter	Min.	Max.	Unit		
V _{CC}	Supply voltage	-0.3	21	V		
V _{OUT}	Output voltage	V _{BOOT} - 21	V _{BOOT} + 0.3	V		
V _{BOOT}	Bootstrap voltage	-0.3	620	V		
V _{hvg}	High-side gate output voltage	V _{OUT} - 0.3	V _{BOOT} + 0.3	V		
V _{lvg}	Low-side gate output voltage	-0.3	V _{CC} + 0.3	V		
V _{CP+}	Comparator positive input voltage	-0.3	V _{CC} + 0.3	V		
V _{CP-}	Comparator negative input voltage	-0.3	V _{CC} + 0.3	V		
Vi	Logic input voltage	-0.3	15	V		
V _{od}	Open drain voltage	-0.3	15	V		
dV _{OUT} /dt	Allowed output slew rate		50	V/ns		
P _{tot}	Total power dissipation ($T_A = 25 \ ^{\circ}C$)		800	mW		
TJ	Junction temperature		150	°C		
T _{STG}	Storage temperature	-50	150	°C		
ESD	Human body model		2	kV		

Table 3. Absolute maximum ratings

4.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	SO-14	Unit
$R_{th(JA)}$	Thermal resistance junction to ambient max.	120	°C/W

4.3 Recommended operating conditions

Table 5. Recommended o	perating conditions
------------------------	---------------------

Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
V _{CC}	4	Supply voltage		10	20	V
V _{BO} ⁽¹⁾	14 - 12	Floating supply voltage		9.8	20	V
V _{OUT}	12	DC output voltage		- 9 ⁽²⁾	580	V
V _{CP-}	8	Comparator negative input voltage	$V_{CP+} \le 2.5 V$		$V_{CC}^{(3)}$	V
V _{CP+}	9	Comparator positive input voltage	$V_{CP-} \le 2.5 \text{ V}$		$V_{CC}^{(3)}$	V
f _{sw}		Switching frequency	HVG, LVG load C _L = 1 nF		800	kHz
TJ		Junction temperature		-40	125	°C

1. $V_{BO} = V_{BOOT} - V_{OUT}$

2. LVG off. V_{CC} = 10 V. Logic is operational if V_{BOOT} > 5 V, refer to AN2785 for more details.

3. At least one of the comparator's input must be lower than 2.5 V to guarantee proper operation.

5 Electrical characteristics

5.1 AC operation

Table 6. AC operation electrical characteristics (V_{CC} = 15 V, T_{J} = +25 °C)

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
AC operation	ation						
t _{on}	1, 3 vs.	High/low-side driver turn- on propagation delay		50	125	200	ns
t _{off}	10, 13	High/low-side driver turn- off propagation delay	$V_{OUT} = 0 V$ $V_{BOOT} = V_{CC}$ $C_{I} = 1 nF$	50	125	200	ns
t _{sd}	2 vs. 10, 13	Shutdown to high/low-side propagation delay	$V_i = 0 \text{ to } 3.3 \text{ V}$ see <i>Figure 3</i>	50	125	200	ns
МТ		Delay matching, HS and LS turn-on/off				30	ns
			R _{DT} = 0, C _L = 1 nF	0.1	0.18	0.25	
рт	DT 5	5 Deadtime setting range ⁽¹⁾	R_{DT} = 37 kΩ, C_{L} = 1 nF, C_{DT} = 100 nF	0.48	0.6	0.72	μs
Ы			R_{DT} = 136 k Ω , C_{L} = 1 nF, C_{DT} = 100 nF	1.35	1.6	1.85	
		R_{DT} = 260 kΩ, C_L = 1 nF, C_{DT} = 100 nF	2.6	3.0	3.4	1	
			$R_{DT} = 0 \Omega; C_L = 1 nF$			80	
MDT		M (1) (1) (2)	R_{DT} = 37 kΩ; C_{L} = 1 nF; C_{DT} = 100 nF			120	
MDT	Match	Matching deadtime ⁽²⁾	R_{DT} = 136 kΩ; C _L = 1 nF; C _{DT} = 100 nF			250	ns
			R_{DT} = 260 kΩ; C_L = 1 nF; C_{DT} = 100 nF			400	
t _r	10 12	Rise time	C _L = 1 nF		75	120	ns
t _f	10, 13	Fall time	C _L = 1 nF		35	70	ns

1. See Figure 4.

2. MDT = I DT_{LH} - DT_{HL} I see *Figure 5 on page 12*.

LVG/HVG

90%

DocID14497 Rev 5

5.2 DC operation

V _{BO_hys} V _{BO_thON} V _{BO_thOFF}	4	Section V _{cc} UV hysteresis V _{cc} UV turn-ON threshold V _{cc} UV turn-OFF threshold Undervoltage quiescent supply current Quiescent current Oly voltage section ⁽¹⁾	$V_{CC} = 7 \text{ V}; \overline{\text{SD}} = 5 \text{ V}; \text{PHASE}$ and BRAKE = GND; $R_{DT} = 0 \Omega; \text{CP} + = \text{GND};$ CP - = 0.5 V $V_{CC} = 15 \text{ V}; \overline{\text{SD}} = 5 \text{ V}; \text{PHASE}$ and BRAKE = GND; $R_{DT} = 0 \Omega; \text{CP} + = \text{GND};$ CP - = 0.5 V	1.2 9 7.6	1.5 9.5 8 110	1.8 10 8.4 150	V V µA
V _{CC_thON} V _{CC_thOFF} I _{QCC} I _{QCC} Bootstrappe V _{BO_hys} V _{BO_thON} V _{BO_thOFF} I _{QBOU}		V _{cc} UV turn-ON threshold V _{cc} UV turn-OFF threshold Undervoltage quiescent supply current Quiescent current	and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$ CP - = 0.5 V $V_{CC} = 15 V; \overline{SD} = 5 V; PHASE$ and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$	9	9.5 8 110	10 8.4	V
V _{CC_thOFF} I _{QCC} I _{QCC} Bootstrappe V _{BO_hys} V _{BO_thON} V _{BO_thOFF} I _{QBOU}		V _{cc} UV turn-OFF threshold Undervoltage quiescent supply current Quiescent current	and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$ CP - = 0.5 V $V_{CC} = 15 V; \overline{SD} = 5 V; PHASE$ and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$	-	8 110	8.4	
I _{QCCU} I _{QCC} Bootstrappe V _{BO_hys} V _{BO_thON} V _{BO_thOFF} I _{QBOU}		Undervoltage quiescent supply current Quiescent current	and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$ CP - = 0.5 V $V_{CC} = 15 V; \overline{SD} = 5 V; PHASE$ and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$	7.6	110		
I _{QCC} Bootstrappe V _{BO_hys} V _{BO_thON} V _{BO_thOFF} I _{QBOU}		Current Quiescent current	and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$ CP - = 0.5 V $V_{CC} = 15 V; \overline{SD} = 5 V; PHASE$ and $\overline{BRAKE} = GND;$ $R_{DT} = 0 \Omega; CP + = GND;$			150	μA
Bootstrappe V _{BO_hys} V _{BO_thON} V _{BO_thOFF}	ed supp		and \overrightarrow{BRAKE} = GND; R _{DT} = 0 Ω ; CP + = GND;				μA
V _{BO_hys} V _{BO_thON} V _{BO_thOFF}	ed supp	ly voltage section ⁽¹⁾			600	1000	
V _{BO_thON} V _{BO_thOFF} I _{QBOU}		y volage section					
V _{BO_thOFF}	14	V _{BO} UV hysteresis		0.8	1.0	1.2	V
I _{QBOU}		V _{BO} UV turn-ON threshold		8.2	9	9.8	V
		V _{BO} UV turn-OFF threshold		7.3	8	8.7	V
1		Undervoltage V _{BOOT} quiescent current	$V_{BO} = 7 V \overline{SD} = 5 V$; PHASE and BRAKE = 5 V; R _{DT} = 0 Ω ; CP + = GND; CP - = 0.5 V		40	100	
I _{QBO}		V _{BOOT} quiescent current	$V_{BO} = 15 V \overline{SD} = 5 V$; PHASE and BRAKE = 5 V; R _{DT} = 0 Ω; CP + = GND; CP - = 0.5 V		140	210	μA
I _{LK}		High voltage leakage current	$V_{hvg} = V_{OUT} = V_{BOOT} = 600 V$			10	
R_{DSon}		Bootstrap driver on resistance ⁽²⁾	LVG ON		120		Ω
Driving buff	fers sec	tion	+				
I _{so}	10 10	High/low-side source short-circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	200	290		mA
I _{si}	10, 13	High/low-side sink short-circuit current	$V_{IN} = V_{il} (t_p < 10 \ \mu s)$	250	430		mA
Logic input	s						
V _{il}	1 0 0	Low level logic threshold voltage		0.8		1.1	V
V _{ih}	1, 2, 3	High level logic threshold voltage		1.9		2.25	V

Table 7. DC operation electrical characteristics (V_{CC} = 15 V; T_{J} = +25 °C)

Tab		operation electrical characte	13103 (VCC - 10 V, 1) - 120	0) (0	onun	ueuj	
Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{PHASEh}	1	PHASE logic "1" input bias current	PHASE = 15 V	20	40	100	
I _{PHASEI}	I	PHASE logic "0" input bias current	PHASE = 0 V			1	
IBRAKEh	3	BRAKE logic "1" input bias current	BRAKE = 15 V	20	40	100	
I _{BRAKEI}	3	BRAKE logic "0" input bias current	BRAKE = 0 V			1	μA
I _{SDh}	2	SD logic "1" input bias current	<u>SD</u> = 15 V	10	30	100	
I _{SDI}	2	SD logic "0" input bias current	<u>SD</u> = 0 V			1	

Table 7. DC operation electrical characteristics (V_{CC} = 15 V: T₁ = +25 °C) (continued)

1. $V_{BO} = V_{BOOT} - V_{OUT}$

2. R_{DSon} is tested in the following way: $R_{DSon} = [(V_{CC} - V_{BOOT1}) - (V_{CC} - V_{BOOT2})] / [I_1(V_{CC}, V_{BOOT1}) - I_2(V_{CC}, V_{BOOT2})]$ where I_1 is the pin 14 current when $V_{BOOT} = V_{BOOT1}$, I_2 when $V_{BOOT} = V_{BOOT2}$.

Symbol	Pin	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{io}	8, 9	Input offset voltage		-15		15	mV
I _{ib}		Input bias current	V _{CP+} = 1 V			1	μA
V _{ol}	6	Open drain low level output voltage	l _{od} = - 3 mA			0.5	V
t _{d_comp}		Comparator delay	R_{pu} = 100 kΩ to 5 V; V _{CP-} = 0.5 V		90	130	ns
SR	6	Slew rate	C _L = 180 pF, R _{pu} = 5 kΩ		60		V/µs

Table 8. Sense comparator ($V_{CC} = 15 \text{ V}, \text{ T}_{\text{J}} = +25 \text{ °C}$)⁽¹⁾

1. The comparator is disabled when $V_{\mbox{\scriptsize CC}}$ is in UVLO condition.

Waveform definition 6

7 Typical application diagram

Figure 6. Application diagram

8 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure* 7.a). In the L6393 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure* 7.b. An internal charge pump (*Figure* 7.b) provides the DMOS driving voltage.

C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOSFET can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOSFET total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

E.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage and quiescent losses.

E.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 1 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has a great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSon} (typical value: 120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 2

$$V_{drop} = I_{charge} R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}} R_{dson}$$

where Q_{gate} is the gate charge of the external power MOSFET, R_{DSon} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOSFET with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 µs. In fact:

Equation 3

$$V_{drop} = \frac{30nC}{5\mu S} \cdot 120\Omega \sim 0.7V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

SO-14 package information

Figure 8. SO-14 package outline

	Dimensions					
Symbol	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1		L	45° (†	typ.)	1	1
D	8.55		8.75	0.336		0.344
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S		1	8° (m	iax.)		

Table 9. SO-14 package mechanical data

Figure 9. SO-14 footprint

10 Order codes

Order codes	Package	Packaging		
L6393D	SO-14	Tube		
L6393DTR	30-14	Tape and reel		

Table 10. Order codes

11 Revision history

Date	Revision	Changes	
03-Mar-2008	1	Initial release	
18-Mar-2008	2	Cover page updated	
17-Nov-2009	3	Updated: Cover page, <i>Table 4 on page 6, Table 6 on page 7, Table on page 8, Table 8 on page 10, Table 9 on page 11</i>	
11-Aug-2010	4	Updated: Table 1 on page 1, Table 5 on page 7 and Table 7 on page 10.	
18-Sep-2015	5	Removed DIP-14 package from the entire document. Updated <i>Table 3 on page 6</i> (added ESD parameter and value, removed note below <i>Table 3</i>). Updated <i>Table 4 on page 6</i> (updated $R_{th(JA)}$ value). Updated <i>Table 7 on page 10</i> (updated V_{il} and V_{in} parameters and values, updated note 2. below <i>Table 7 -</i> replaced V_{CBOOTx} by V_{BOOTx}). Updated <i>Table 8 on page 11</i> (added conditions to title and note 1.). Named and numbered <i>Equation 1 on page 14</i> , <i>Equation 2 on page 14</i> and <i>Equation 3 on page 15</i> . Updated <i>Section 9 on page 16</i> (added/updated titles, reversed order of <i>Figure 8</i> and <i>Table 9</i> , updated header of <i>Table 9</i> , added <i>Figure 9</i>). Updated <i>Table 10 on page 18</i> (moved from page 1 to page 18, added and updated titles). Updated cross-references throughout document. Minor modifications throughout document.	

Table 11. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14497 Rev 5

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.