MC68HC908JL3/JK3E/JK1E MC68HRC908JL3/JK3E/JK1E MC68HLC908JL3/JK3E/JK1E MC68HC903KL3E/KK3E MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E

Data Sheet

M68HC08 Microcontrollers

MC68HC908JL3E Rev. 4 10/2006

freescale.com

MC68HC908JL3/JK3E/JK1E MC68HRC908JL3/JK3E/JK1E MC68HLC908JL3/JK3E/JK1E MC68HC908KL3E/KK3E MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E

Data Sheet

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision History

Date	Revision Level	Description	Page Number(s)
		Table 4-1. Instruction Set Summary — Updated table to include the WAIT instruction.	42
		5.7.1 Break Status Register (BSR) — Updated for clarity.	63
		5.7.2 Reset Status Register (RSR) — Updated description for clarity.	Number(s) 42
October 2006		7.4 Security — Updated to reflect the correct RAM location (\$80) to determine if the security code has been entered correctly.	
October 2006	4	8.9.1 TIM Status and Control Register (TSC) — Added note to definition of TSTOP bit.	
		10.1 Introduction — Added note regarding 20-pin devices.	103
	Chapte	15.4.3 Break Status Register — Updated for clarity.	132
		Chapter 17 Mechanical Specifications — Updated package drawings to the latest available.	147
New 0004	0	Added appendix B for ROM parts.	159–166
Nov 2004	3	Added appendix C for ADC-less parts.	167–170
		Added appendix A for low-volt devices.	153–224
Dec 2002	2	Updated Monitor Mode Circuit (Figure 7-1) and Monitor Mode Entry Requirements and Options (Table 7-1) in Monitor ROM section.	76, 77
May 2002	1	First general release.	_

List of Chapters

Chapter 1 General Description15
Chapter 2 Memory
Chapter 3 Configuration Registers (CONFIG)
Chapter 4 Central Processor Unit (CPU)
Chapter 5 System Integration Module (SIM)
Chapter 6 Oscillator (OSC)
Chapter 7 Monitor ROM (MON)71
Chapter 8 Timer Interface Module (TIM)
Chapter 9 Analog-to-Digital Converter (ADC)
Chapter 10 Input/Output (I/O) Ports103
Chapter 11 External Interrupt (IRQ)113
Chapter 12 Keyboard Interrupt Module (KBI)117
Chapter 13 Computer Operating Properly (COP)123
Chapter 14 Low Voltage Inhibit (LVI)127
Chapter 15 Break Module (BREAK)129
Chapter 16 Electrical Specifications
Chapter 17 Mechanical Specifications147
Chapter 18 Ordering Information157
Appendix A MC68HLC908JL3E/JK3E/JK1E
Appendix B MC68H(R)C08JL3E/JK3E165
Appendix C MC68HC908KL3E/KK3E175

List of Chapters

Table of Contents

Chapter 1 General Description

1.1	Introduction	15
1.2	Features	16
1.3	MCU Block Diagram	17
1.4	Pin Assignments	18
1.5	Pin Functions	20

Chapter 2

Memory

2.1	Introduction
2.2	I/O Section
2.3	Monitor ROM
2.4	Random-Access Memory (RAM) 27
2.5	Flash Memory
2.6	Functional Description
2.7	Flash Control Register
2.8	Flash Page Erase Operation
2.9	Flash Mass Erase Operation
2.10	Flash Program Operation
2.11	Flash Protection
2.12	Flash Block Protect Register

Chapter 3

Configuration Registers (CONFIG)

3.1	Introduction	35
3.2	Functional Description	35
3.3	Configuration Register 1 (CONFIG1)	35
3.4	Configuration Register 2 (CONFIG2)	36

Chapter 4

Central Processor Unit (CPU)

4.1	Introduction	37
4.2	Features	37
4.3	CPU Registers	37
4.3.1	Accumulator	38
4.3.2	Index Register	38
4.3.3	Stack Pointer	39

Table of Contents

4.3.4 4.3.5	Program Counter	
4.4	Arithmetic/Logic Unit (ALU)	41
	Low-Power Modes	41
-	CPU During Break Interrupts	
4.7	Instruction Set Summary	42
4.8	Opcode Map	47

Chapter 5 System Integration Module (SIM)

5.1	Introduction	49
5.2	SIM Bus Clock Control and Generation	51
5.2.1	Bus Timing	51
5.2.2	Clock Start-Up from POR.	51
5.2.3	Clocks in Stop Mode and Wait Mode	51
5.3	Reset and System Initialization	
5.3.1	External Pin Reset	
5.3.2	Active Resets from Internal Sources	52
5.3.2.1	Power-On Reset.	53
5.3.2.2	Computer Operating Properly (COP) Reset	54
5.3.2.3	Illegal Opcode Reset	54
5.3.2.4	Illegal Address Reset	54
5.3.2.5	LVI Reset	55
5.4	SIM Counter.	55
5.4.1	SIM Counter During Power-On Reset	55
5.4.2	SIM Counter During Stop Mode Recovery	55
5.4.3	SIM Counter and Reset States	55
5.5	Exception Control.	55
5.5.1	Interrupts	55
5.5.1.1	Hardware Interrupts	57
5.5.1.2	SWI Instruction	58
5.5.2	Interrupt Status Registers	<mark>58</mark>
5.5.2.1	Interrupt Status Register 1	59
5.5.2.2	Interrupt Status Register 2	
5.5.2.3	Interrupt Status Register 3	60
5.5.3	Reset	
5.5.4	Break Interrupts	
5.5.5	Status Flag Protection in Break Mode	
5.6	Low-Power Modes	
5.6.1	Wait Mode	
5.6.2	Stop Mode	62
5.7	SIM Registers	63
5.7.1	Break Status Register (BSR)	63
5.7.2	Reset Status Register (RSR)	
5.7.3	Break Flag Control Register (BFCR)	65

Chapter 6 Oscillator (OSC)

6.1	Introduction	67
6.2	X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E)	67
6.3	RC Oscillator (MC68HRC908JL3E/JK3E/JK1E)	67
6.4	I/O Signals	69
6.4.1	Crystal Amplifier Input Pin (OSC1).	69
6.4.2	Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK).	69
6.4.3	Oscillator Enable Signal (SIMOSCEN)	69
6.4.4	X-tal Oscillator Clock (XTALCLK)	69
6.4.5	RC Oscillator Clock (RCCLK)	69
6.4.6	Oscillator Out 2 (2OSCOUT)	69
6.4.7	Oscillator Out (OSCOUT).	69
6.5	Low Power Modes	70
6.5.1	Wait Mode	
6.5.2	Stop Mode	70
6.6	Oscillator During Break Mode	70

Chapter 7 Monitor ROM (MON)

7.1	Introduction	1
7.2	Features	1
7.3	Functional Description	
7.3.1	Entering Monitor Mode	3
7.3.2	Baud Rate	
7.3.3	Data Format	6
7.3.4	Echoing	
7.3.5	Break Signal	6
7.3.6	Commands	7
7.4	Security	9

Chapter 8 Timer Interface Module (TIM)

8.1	Introduction 8	31
8.2	Features	31
8.3	Pin Name Conventions	31
8.4	Functional Description	
8.4.1	TIM Counter Prescaler	
8.4.2	Input Capture	34
8.4.3	Output Compare	
8.4.3.1	Unbuffered Output Compare 8	
8.4.3.2	Buffered Output Compare 8	34
8.4.4	Pulse Width Modulation (PWM) 8	35
8.4.4.1	Unbuffered PWM Signal Generation 8	36
8.4.4.2	Buffered PWM Signal Generation 8	36
8.4.4.3	PWM Initialization	37

Table of Contents

8.5	Interrupts	88
8.6	Low-Power Modes	
8.6.1	Wait Mode	
8.6.2	Stop Mode	88
8.7	TIM During Break Interrupts	88
8.8	I/O Signals	89
8.9	I/O Registers	89
8.9.1	TIM Status and Control Register (TSC)	89
8.9.2	TIM Counter Registers (TCNTH:TCNTL)	
8.9.3	TIM Counter Modulo Registers (TMODH:TMODL)	
8.9.4	TIM Channel Status and Control Registers (TSC0:TSC1)	92
8.9.5	TIM Channel Registers (TCH0H/L:TCH1H/L)	95

Chapter 9 Analog-to-Digital Converter (ADC)

9.1	Introduction
9.2	Features
9.3	Functional Description
9.3.1	ADC Port I/O Pins
9.3.2	Voltage Conversion
9.3.3	Conversion Time
9.3.4	Continuous Conversion
9.3.5	Accuracy and Precision
9.4	Interrupts
9.5	Low-Power Modes
9.5.1	Wait Mode
9.5.2	Stop Mode
9.6	I/O Signals
9.6.1	ADC Voltage In (ADCVIN) 100
9.7	I/O Registers
9.7.1	ADC Status and Control Register 100
9.7.2	ADC Data Register
9.7.3	ADC Input Clock Register 102

Chapter 10 Input/Output (I/O) Ports

10.1	Introduction	103
10.2	Port A.	105
	Port A Data Register (PTA)	105
10.2.2		
10.2.3	Port A Input Pull-up Enable Register (PTAPUE)	107
10.3	Port B.	108
10.3.1	Port B Data Register (PTB)	108
10.3.2	Data Direction Register B (DDRB)	108

10.4	Port D.	110
10.4.1	Port D Data Register (PTD)	110
10.4.2	Data Direction Register D (DDRD)	111
10.4.3	Port D Control Register (PDCR)	112

Chapter 11

External Interrupt (IRQ)

11.1	Introduction
11.2	Features
11.3	Functional Description
	IRQ Pin
11.4	IRQ Module During Break Interrupts 115
11.5	IRQ Status and Control Register (INTSCR) 116

Chapter 12 Keyboard Interrupt Module (KBI)

12.1	Introduction
12.2	Features
12.3	I/O Pins
12.4	Functional Description
12.4.1	Keyboard Initialization
	Keyboard Interrupt Registers 119
12.5.1	Keyboard Status and Control Register 120
12.5.2	Keyboard Interrupt Enable Register 121
	Low-Power Modes
12.6.1	Wait Mode
12.6.2	Stop Mode
12.7	Keyboard Module During Break Interrupts 121

Chapter 13 Computer Operating Properly (COP)

13.1	Introduction
13.2	Functional Description
13.3	I/O Signals
13.3.1	2OSCOUT
13.3.2	COPCTL Write
13.3.3	Power-On Reset
13.3.4	Internal Reset
13.3.5	Reset Vector Fetch
13.3.6	COPD (COP Disable)
13.3.7	COPRS (COP Rate Select) 125
13.4	COP Control Register
13.5	Interrupts
13.6	Monitor Mode
13.7	Low-Power Modes

Table of Contents

13.7.1	Wait Mode	126
13.7.2	Stop Mode	126
13.8	COP Module During Break Mode	126

Chapter 14

Low Voltage Inhibit (LVI)

14.1	Introduction	127
14.2	Features	127
14.3	Functional Description	127
14.4	LVI Control Register (CONFIG2/CONFIG1)	128
	Low-Power Modes	
	Wait Mode	
14.5.2	Stop Mode	128

Chapter 15

Break Module (BREAK)

15.1	Introduction	29
15.2	Features 1	29
15.3	Functional Description	29
15.3.1	Flag Protection During Break Interrupts 1	30
15.3.2	CPU During Break Interrupts 1	30
15.3.3	TIM During Break Interrupts 1	30
15.3.4	COP During Break Interrupts 1	30
15.4	Break Module Registers 1	31
15.4.1	Break Status and Control Register (BRKSCR) 1	31
15.4.2	Break Address Registers 1	32
15.4.3		
15.4.4	Break Flag Control Register (BFCR) 1	33
15.5	Low-Power Modes	33
15.5.1	Wait Mode	33
15.5.2	Stop Mode	33

Chapter 16

Electrical Specifications

16.1		135
16.2	Absolute Maximum Ratings	135
16.3	Functional Operating Range	136
16.4	Thermal Characteristics	136
16.5	5V DC Electrical Characteristics	137
16.6	5V Control Timing	
16.7	5V Oscillator Characteristics	139
	3V DC Electrical Characteristics	
16.9	3V Control Timing	141
	3V Oscillator Characteristics	
16.11	Typical Supply Currents	143

16.12	ADC Characteristics	144
16.13	Memory Characteristics	145

Chapter 17

Mechanical Spe	cifications
----------------	-------------

17.1	Introduction	147
17.2	Package Dimensions	147

Chapter 18 Ordering Information

18.1	Introduction	157
18.2	MC Order Numbers	157

Appendix A MC68HLC908JL3E/JK3E/JK1E

A.1	Introduction	159
A.2	Flash Memory	159
A.3	Low-Voltage Inhibit	159
A.4	Oscillator Options.	159
A.5	Electrical Specifications	159
A.5.1	Functional Operating Range	
A.5.2	DC Electrical Characteristics.	
A.5.3	Control Timing	161
A.5.4	Oscillator Characteristics.	
A.5.5	ADC Characteristics	
A.5.6	Memory Characteristics.	163
A.6	MC Order Numbers	164

Appendix B MC68H(R)C08JL3E/JK3E

B.1	Introduction
B.2	MCU Block Diagram 165
B.3	Memory Map 167
B.4	Reserved Registers
B.5	Mask Option Registers
B.5.1	Functional Description
B.5.2	Mask Option Register 1 (MOR1) 168
B.5.3	Mask Option Register 2 (MOR2) 169
B.6	Monitor ROM
B.7	Electrical Specifications
B.7.1	DC Electrical Characteristics
B.7.2	5V Oscillator Characteristics
B.7.3	Memory Characteristics
B.8	MC Order Numbers

Table of Contents

Appendix C MC68HC908KL3E/KK3E

C.1	Introduction	175
C.2	MCU Block Diagram	175
C.3	Pin Assignments	175
C.4	Reserved Registers	178
C.5	Reserved Vectors	178
C.6	Order Numbers	178

Chapter 1 General Description

1.1 Introduction

The MC68H(R)C908JL3E is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

A list of MC68H(R)C908JL3E device variations is shown in Table 1-1.

Device Type	Operating Voltage	LVI	ADC	Oscillator Option	Memory	Pin Count	Device					
					4,096 bytes Flash	28	MC68HC908JL3E					
				XTAL	4,090 bytes Flash	20	MC68HC908JK3E					
Flash	3V, 5V	Yes	Yes		1,536 bytes Flash	20	MC68HC908JK1E					
	30, 50	ies	Tes	res	4,096 bytes Flash	28	MC68HRC908JL3E					
					RC	RC			MC68HRC908JK3E			
								1,536 bytes Flash	20	MC68HRC908JK1E		
	2.2 to 5.5V			XTAL	4,096 bytes Flash	28	MC68HLC908JL3E					
Low Voltage Flash ⁽¹⁾		No	Yes		XTAL	XTAL	XTAL	4,090 bytes Flash	20	MC68HLC908JK3E		
											1,536 bytes Flash	20
				XTAL		28	MC68HC08JL3E					
ROM ⁽²⁾	3V, 5V	Yes	Voc	Yes			XIAL	XIAL	4,096 bytes ROM	20	MC68HC08JK3E	
ROM ^{,-,}	30,30	165	165			28	MC68HRC08JL3E					
				RC		20	MC68HRC08JK3E					
Flash,	3V, 5V	Yes	No	XTAL			MC68HC908KL3E					
ADC-less ⁽³⁾	39,39	162	NU	AIAL	4,096 bytes Flash	20	MC68HC908KK3E					

1. Low-voltage Flash devices are documented in Appendix A MC68HLC908JL3E/JK3E/JK1E.

2. ROM devices are documented in Appendix B MC68H(R)C08JL3E/JK3E.

3. Flash, ADC-less devices are documented in Appendix C MC68HC908KL3E/KK3E.

All references to the MC68H(R)C908JL3E in this data book apply equally to the MC68H(R)C908JK3E and MC68H(R)C908JK1E, unless otherwise stated.

General Description

1.2 Features

Features of the MC68H(R)C908JL3E include the following:

- EMC enhanced version of MC68H(R)C908JL3/JK3/JK1
- High-performance M68HC08 architecture
- Fully upward-compatible object code with M6805, M146805, and M68HC05 Families
- Low-power design; fully static with stop and wait modes
- Maximum internal bus frequency:
 - 8-MHz at 5V operating voltage
 - 4-MHz at 3V operating voltage
- Oscillator options:
 - Crystal oscillator for MC68HC908JL3E/JK3E/JK1E
 - RC oscillator for MC68HRC908JL3E/JK3E/JK1E
- User program Flash memory with security⁽¹⁾ feature
 - 4,096 bytes for MC68H(R)C908JL3E/JK3E
 - 1,536 bytes for MC68H(R)C908JK1E
- 128 bytes of on-chip RAM
- 2-channel, 16-bit timer interface module (TIM)
- 12-channel, 8-bit analog-to-digital converter (ADC)
- 23 general purpose I/O ports for MC68H(R)C908JL3E:
 - 7 keyboard interrupt with internal pull-up
 - (6 keyboard interrupt for MC68HC908JL3E)
 - 10 LED drivers (sink)
 - 2 × 25mA open-drain I/O with pull-up
- 15 general purpose I/O ports for MC68H(R)C908JK3E/JK1E:
 - 1 keyboard interrupt with internal pull-up (MC68HRC908JK3E/JK1E only)
 - 4 LED drivers (sink)
 - 2 × 25mA open-drain I/O with pull-up
 - 10-channel ADC
- System protection features:
 - Optional computer operating properly (COP) reset
 - Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation
 - Illegal opcode detection with reset
 - Illegal address detection with reset
- Master reset pin with internal pull-up and power-on reset
- IRQ with schmitt-trigger input and programmable pull-up
- 28-pin PDIP, 28-pin SOIC, and 48-pin LQFP packages for MC68H(R)C908JL3E
- 20-pin PDIP and 20-pin SOIC packages for MC68H(R)C908JK3E/JK1E

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the Flash difficult for unauthorized users.

1.3 MCU Block Diagram

Figure 1-1 shows the structure of the MC68H(R)C908JL3E.

Figure 1-1. MCU Block Diagram

General Description

1.4 Pin Assignments

MC68H(R)C908JL3E

MC68H(R)C908JK3E/JK1E

Pin Assignments

NC: No connection

Figure 1-4. 48-Pin LQFP Pin Assignment

General Description

1.5 Pin Functions

Description of the pin functions are provided in Table 1-2.

PIN NAME	PIN DESCRIPTION	IN/OUT	VOLTAGE LEVEL
V _{DDJL3JL3}	Power supply.	In	5V or 3V
V _{SS}	Power supply ground	Out	0V
RST	RESET input, active low. With Internal pull-up and Schmitt trigger input.	Input	V_{DD} to V_{TST}
ĪRQ	External IRQ pin. With software programmable internal pull-up and schmitt trigger input. This pin is also used for mode entry selection.	Input	V_{DD} to V_{TST}
OSC1	X-tal or RC oscillator input.	In	Analog
OSC2	MC68HC908JL3E/JK3E/JK1E: X-tal oscillator output, this is the inverting OSC1 signal.	Out	Analog
	MC68HRC908JL3E/JK3E/JK1E: Default is RC oscillator clock output, RCCLK. Shared with PTA6/KBI6, with programmable pull-up.	In/Out	V _{DD}
	7-bit general purpose I/O port.	In/Out	V _{DD}
	Shared with 7 keyboard interrupts KBI[0:6].	In	V _{DD}
PTA[0:6]	Each pin has programmable internal pull-up device.	In	V _{DD}
	PTA[0:5] have LED direct sink capability	In	V _{SS}
PTB[0:7]	8-bit general purpose I/O port.	In/Out	V _{DD}
	Shared with 8 ADC inputs, ADC[0:7].	In	Analog
	8-bit general purpose I/O port.	In/Out	V _{DD}
	PTD[3:0] shared with 4 ADC inputs, ADC[8:11].	Input	Analog
PTD[0:7]	PTD[4:5] shared with TIM channels, TCH0 and TCH1.	In/Out	V _{DD}
	PTD[2:3], PTD[6:7] have LED direct sink capability	In	V _{SS}
	PTD[6:7] can be configured as 25mA open-drain output with pull-up.	In/Out	V _{DD}

Table 1-2. Pin Functions

NOTE

On the MC68H(R)C908JK3E/JK1E, the following pins are not available: PTA0, PTA1, PTA2, PTA3, PTA4, PTA5, PTD0, and PTD1.

Chapter 2 Memory

2.1 Introduction

The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:

- 4,096 bytes of user Flash MC68H(R)C908JL3E/JK3E
- 1,536 bytes of user Flash MC68H(R)C908JK1E
- 128 bytes of RAM
- 48 bytes of user-defined vectors
- 960 bytes of Monitor ROM

2.2 I/O Section

Addresses \$0000–\$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have the following addresses:

- \$FE00; Break Status Register, BSR
- \$FE01; Reset Status Register, RSR
- \$FE03; Break Flag Control Register, BFCR
- \$FE04; Interrupt Status Register 1, INT1
- \$FE05; Interrupt Status Register 2, INT2
- \$FE06; Interrupt Status Register 3, INT3
- \$FE08; Flash Control Register, FLCR
- \$FE09; Flash Block Protect Register, FLBPR
- \$FE0C; Break Address Register High, BRKH
- \$FE0D; Break Address Register Low, BRKL
- \$FE0E; Break Status and Control Register, BRKSCR
- \$FFFF; COP Control Register, COPCTL

2.3 Monitor ROM

The 960 bytes at addresses \$FC00-\$FDFF and \$FE10-\$FFCF are reserved ROM addresses that contain the instructions for the monitor functions. (See Chapter 7 Monitor ROM (MON).)

Memory

Figure 2-1. Memory Map

Monitor ROM

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0000	Port A Data Register (PTA)	Read: Write:	0	PTA6	PTA5	PTA4	PTA3	PTA2	PTA1	PTA0
	()	Reset:			1	Unaffecte	d by reset	Γ	Γ	
\$0001	Port B Data Register (PTB)	Read: Write:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0
	()	Reset:				Unaffecte	d by reset			
\$0002	Unimplemented	Read: Write:								
\$0003	Port D Data Register (PTD)	Read: Write:	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0
		Reset:		1		Unaffecte	d by reset			
\$0004	Data Direction Register A (DDRA)	Read: Write:	0	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0
		Reset:	0	0	0	0	0	0	0	0
\$0005	Data Direction Register B (DDRB)	Read: Write:	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0
	(טחטט)	Reset:	0	0	0	0	0	0	0	0
\$0006	Unimplemented	Read: Write:								
\$0007	Data Direction Register D (DDRD)	Read: Write: Reset:	DDRD7	DDRD6	DDRD5	DDRD4 0	DDRD3 0	DDRD2 0	DDRD1	DDRD0 0
\$0008 ↓	Unimplemented	Read: Write:	0		0	0	0	0	0	0
\$0009										
\$000A	Port D Control Register (PDCR)	Read: Write:	0	0	0	0	SLOWD7	SLOWD6	PTDPU7	PTDPU6
	(FDON)	Reset:	0	0	0	0	0	0	0	0
\$000B ↓	Unimplemented	Read: Write:								
\$000C		l								
\$000D	Port A Input Pull-up Enable Register (PTAPUE)	Read: Write:	PTA6EN	PTAPUE6	PTAPUE5	PTAPUE4	PTAPUE3	PTAPUE2	PTAPUE1	PTAPUE0
	riegisiei (i TAI OE)	Reset:	0	0	0	0	0	0	0	0
\$000E ↓	Unimplemented	Read: Write:								
\$0019	Figure	[ontrol] = Unimplem	nented	Deviet	R	= Reserved		

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read:	0	0	0	0	KEYF	0	IMACKK	
\$001A	Keyboard Status and Control Register (KBSCR)	Write:						ACKK	IMASKK	MODEK
		Reset:	0	0	0	0	0	0	0	0
		Read:	0	KBIE6	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
\$001B	Keyboard Interrupt Enable Register (KBIER)	Write:		NDIEO	NDIED	NDIE4	NDIES	NDIEZ	NDIET	NDIEU
		Reset:	0	0	0	0	0	0	0	0
\$001C		Read:								
	Unimplemented	Write:								
		•								
	IRQ Status and Control Register (INTSCR)	Read:	0	0	0	0	IRQF	0	IMAGK	MODE
\$001D		Write:						ACK	IMASK	NIODE
		Reset:	0	0	0	0	0	0	0	0
\$001E	Configuration Register 2 (CONFIG2) [†]	Read: Write:	IRQPUD	R	R	LVIT1	LVIT0	R	R	R
		Reset:	0	0	0	0*	0*	0	0	0
\$001F	Configuration Register 1 (CONFIG1) [†]	Read: Write:	COPRS	R	R	LVID	R	SSREC	STOP	COPD
		Reset:	0	0	0	0	0	0	0	0

† One-time writable register after each reset. * LVIT1 and LVIT0 reset to 0 by a power-on reset (POR) only.

		Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0	
\$0020	TIM Status and Control Register (TSC)	Write:	0	IUIE	13105	TRST		F02	FOI	1.00	
		Reset:	0	0	1	0	0	0	0	0	
		Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
\$0021	TIM Counter Register High (TCNTH)	Write:									
		Reset:	0	0	0	0	0	0	0	0	
		Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
\$0022	TIM Counter Register Low (TCNTL)	Write:									
		Reset:	0	0	0	0	0	0	0	0	
\$0023 TIM (TIM Counter Modulo Register	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
<i></i>	High (TMODH)	Reset:	1	1	1	1	1	1	1	1	
\$0024	TIM Counter Modulo Register Low (TMODL)	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		Reset:	1	1	1	1	1	1	1	1	
		Read:	CH0F		MOOD	14004				OLIONANY	
\$0025	TIM Channel 0 Status and Control Register (TSC0)	Write:	0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CH0MAX	
		Reset:	0	0	0	0	0	0	0	0	
\$0026	TIM Channel 0 Register High (TCH0H)	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
		Reset:				Indetermina	determinate after reset				
		[= Unimplemented R = Reserved								

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 4)

Monitor ROM

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0027	TIM Channel 0 Register Low (TCH0L)	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Reset:		I		Indetermina	te after reset	1		
\$0028	TIM Channel 1 Status and	Read: Write:	CH1F 0	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
	Control Register (TSC1)	Reset:	0	0	0	0	0	0	0	0
\$0029	TIM Channel 1 Register High	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	(TCH1H)	Reset:				Indetermina	te after reset			
\$002A	TIM Channel 1 Register Low (TCH1L)	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	(IOIIIL)	Reset:			•	Indetermina	te after reset			
\$002B		Read:								
↓ \$003B	Unimplemented	Write:								
φυυυΔ										
\$003C	ADC Status and Control Register (ADSCR)	Read: Write:	0000	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
	negisiei (ADSCH)	Reset:	0	0	0	1	1	1	1	1
	ADC Data Degister	Read:	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
\$003D	ADC Data Register (ADR)	Write:								
	, , , , , , , , , , , , , , , , , , ,	Reset:		[I	T	te after reset	[[1
\$003E	ADC Input Clock Register (ADICLK)	Read: Write:	ADIV2	ADIV1	ADIV0	0	0	0	0	0
		Reset:	0	0	0	0	0	0	0	0
\$003F	Unimplemented	Read: Write:								
						-				
\$FE00	Break Status Register (BSR)	Read: Write:	R	R	R	R	R	R	SBSW See note	R
		Reset:							0	
Note: Wi	iting a 0 clears SBSW.	ا، _		DIN	000			1400007		
\$FE01	Reset Status Register	Read: Write:	POR	PIN	COP	ILOP	ILAD	MODRST	LVI	0
φr⊑ui	(RSR)	POR:	1	0	0	0	0	0	0	0
		Read:								
\$FE02	Reserved	Write:	R	R	R	R	R	R	R	R
		l			•	•	•			J
\$FE03	Break Flag Control Register (BFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	negisier (BrUR)	Reset:	0							
		l		= Unimplem	ented		R	= Reserved		
				_						

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
\$FE04		Read:	0	IF5	IF4	IF3	0	IF1	0	0		
	Interrupt Status Register 1 (INT1)	Write:	R	R	R	R	R	R	R	R		
	(((((((((((((((((((((((((((((((((((((((Reset:	0	0	0	0	0	0	0	0		
		Read:	IF14	0	0	0	0	0	0	0		
\$FE05	Interrupt Status Register 2 (INT2)	Write:	R	R	R	R	R	R	R	R		
	(1112)	Reset:	0	0	0	0	0	0	0	0		
		Read:	0	0	0	0	0	0	0	IF15		
\$FE06	Interrupt Status Register 3 (INT3)	Write:	R	R	R	R	R	R	R	R		
	(1115)	Reset:	0	0	0	0	0	0	0	0		
\$FE07	Reserved	Read: Write:	R	R	R	R	R	R	R	R		
		Deed	0	0	0	0						
¢EEQQ	Flash Control Register (FLCR)	Read: Write:	0	0	0	0	HVEN	MASS	ERASE	PGM		
\$FE08		L	0	0	0	0	0	0	0	0		
		Reset:	0	0	0	0	0	0	0	0		
\$FE09	Flash Block Protect Register (FLBPR)	Read: Write:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0		
		Reset:	0	0	0	0	0	0	0	0		
\$FE0A ↓ \$FE0B	Reserved	Read: Write:	R	R	R	R	R	R	R	R		
, .		Read:										
\$FE0C	Break Address High Register (BRKH)	Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8		
		Reset:	0	0	0	0	0	0	0	0		
\$FE0D	Break Address Low Register (BRKL)	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Reset:	0	0	0	0	0	0	0	0		
\$FE0E	Break Status and Control Register (BRKSCR)	Read:	DDVE	BRKA	0	0	0	0	0	0		
		Write:	BRKE									
		Reset:	0	0	0	0	0	0	0	0		
	COP Control Register (COPCTL)	Read:				Low byte of	reset vector					
\$FFFF		Write:	Writing clears COP counter (any value)									
		Reset: Unaffected by reset										

Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 4)

R

= Reserved

= Unimplemented

Vector Priority	INT Flag	Address	Vector					
Lowest	_	\$FFD0 ↓ \$FFDD	Not Used					
	IF15	\$FFDE	ADC Conversion Complete Vector (High)					
	1613	\$FFDF	ADC Conversion Complete Vector (Low)					
	IF14	\$FFE0	Keyboard Vector (High)					
	117 14	\$FFE1	Keyboard Vector (Low)					
	IF13 ↓ IF6	_	Not Used					
	IF5	\$FFF2	TIM Overflow Vector (High)					
	IFD	\$FFF3	TIM Overflow Vector (Low)					
	IF4	\$FFF4	TIM Channel 1 Vector (High)					
	164	\$FFF5	TIM Channel 1 Vector (Low)					
	IF3	\$FFF6	TIM Channel 0 Vector (High)					
	11-3	\$FFF7	TIM Channel 0 Vector (Low)					
	IF2	—	Not Used					
	IF1	\$FFFA	IRQ Vector (High)					
		\$FFFB	IRQ Vector (Low)					
		\$FFFC	SWI Vector (High)					
		\$FFFD	SWI Vector (Low)					
▼ Highost		\$FFFE	Reset Vector (High)					
Highest		\$FFFF	Reset Vector (Low)					

Table 2-1. Vector Addresses

2.4 Random-Access Memory (RAM)

Addresses \$0080 through \$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE

For correct operation, the stack pointer must point only to RAM locations.

Within page zero are 128 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at \$00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables.

Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.

NOTE

For M6805 compatibility, the H register is not stacked.

Memory

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE

Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

2.5 Flash Memory

This sub-section describes the operation of the embedded Flash memory. The Flash memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.

Device	Flash Memory Size (Bytes)	Memory Address Range			
MC68H(R)C908JL3E	4,096	\$EC00—\$FBFF			
MC68H(R)C908JK3E	4,096	\$EC00—\$FBFF			
MC68H(R)C908JK1E	1,536	\$F600—\$FBFF			

Figure 2-3. Flash I/O Register Summary

2.6 Functional Description

The Flash memory consists of an array of 4,096 or 1,536 bytes with an additional 48 bytes for user vectors. The minimum size of Flash memory that can be erased is 64 bytes (a page); and the maximum size of Flash memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations are facilitated through control bits in the Flash Control Register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are:

- \$EC00-\$FBFF; user memory; 4,096 bytes; MC68H(R)C908JL3E/JK3E \$F600-\$FBFF; user memory; 1,536 bytes; MC68H(R)C908JK1E
- \$FFD0-\$FFFF; user interrupt vectors; 48 bytes

NOTE

An erased bit reads as 1 and a programmed bit reads as 0. A security feature prevents viewing of the Flash contents.⁽¹⁾

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the Flash difficult for unauthorized users.

2.7 Flash Control Register

The Flash Control Register controls Flash program and erase operations.

Figure 2-4. Flash Control Register (FLCR)

HVEN — High Voltage Enable Bit

This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM=1 or ERASE=1 and the proper sequence for program or erase is followed.

1 = High voltage enabled to array and charge pump on

0 = High voltage disabled to array and charge pump off

MASS — Mass Erase Control Bit

This read/write bit configures the memory for mass erase operation or page erase operation when the ERASE bit is set.

1 = Mass erase operation selected

0 = Page erase operation selected

ERASE — Erase Control Bit

This read/write bit configures the memory for erase operation. This bit and the PGM bit should not be set to 1 at the same time.

1 = Erase operation selected

0 = Erase operation not selected

PGM — Program Control Bit

This read/write bit configures the memory for program operation. This bit and the ERASE bit should not be set to 1 at the same time.

1 = Program operation selected

0 = Program operation not selected

2.8 Flash Page Erase Operation

Use the following procedure to erase a page of Flash memory. A page consists of 64 consecutive bytes starting from addresses \$XX00, \$XX40, \$XX80 or \$XXC0. The 48-byte user interrupt vectors area also forms a page. Any page within the 4K bytes user memory area (\$EC00–\$FBFF) can be erased alone. *The 48-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons. Mass erase is required to erase this page.*

- 1. Set the ERASE bit and clear the MASS bit in the Flash Control Register.
- 2. Write any data to any Flash address within the page address range desired.
- 3. Wait for a time, t_{nvs} (10µs).
- 4. Set the HVEN bit.
- 5. Wait for a time t_{Erase} (1ms).
- 6. Clear the ERASE bit.
- 7. Wait for a time, t_{nvh} (5µs).
- 8. Clear the HVEN bit.
- 9. After time, t_{rcv} (1µs), the memory can be accessed in read mode again.

NOTE

Programming and erasing of Flash locations cannot be performed by code being executed from the Flash memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.

2.9 Flash Mass Erase Operation

Use the following procedure to erase the entire Flash memory:

- 1. Set both the ERASE bit and the MASS bit in the Flash Control Register.
- 2. Write any data to any Flash location within the Flash memory address range.
- 3. Wait for a time, t_{nvs} (10µs).
- 4. Set the HVEN bit.
- 5. Wait for a time t_{MErase} (4ms).
- 6. Clear the ERASE bit.
- 7. Wait for a time, t_{nvh1} (100µs).
- 8. Clear the HVEN bit.
- 9. After time, t_{rcv} (1µs), the memory can be accessed in read mode again.

NOTE

Programming and erasing of Flash locations cannot be performed by code being executed from the Flash memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.

2.10 Flash Program Operation

Programming of the Flash memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses \$XX00, \$XX20, \$XX40, \$XX60, \$XX80, \$XXA0, \$XXC0 or \$XXE0. Use this step-by-step procedure to program a row of Flash memory (Figure 2-5 shows a flowchart of the programming algorithm):

- 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming.
- 2. Write any data to any Flash location within the address range of the row to be programmed.
- 3. Wait for a time, t_{nvs} (10µs).
- 4. Set the HVEN bit.
- 5. Wait for a time, t_{pqs} (5µs).
- 6. Write data to the byte being programmed.
- 7. Wait for time, t_{PROG} (30µs).
- 8. Repeat step 6 and 7 until all the bytes within the row are programmed.
- 9. Clear the PGM bit.
- 10. Wait for time, t_{nvh} (5µs).
- 11. Clear the HVEN bit.
- 12. After time, t_{rcv} (1µs), the memory can be accessed in read mode again.

This program sequence is repeated throughout the memory until all data is programmed.

NOTE

The time between each Flash address change (step 6 to step 6), or the time between the last Flash addressed programmed to clearing the PGM bit (step 6 to step 10), must not exceed the maximum programming time, t_{PROG} max.

NOTE

Programming and erasing of Flash locations cannot be performed by code being executed from the Flash memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.

2.11 Flash Protection

Due to the ability of the on-board charge pump to erase and program the Flash memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a Flash Block Protect Register (FLBPR). The FLBPR determines the range of the Flash memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the Flash memory (\$FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.

Memory

Figure 2-5. Flash Programming Flowchart

2.12 Flash Block Protect Register

The Flash Block Protect Register is implemented as an 8-bit I/O register. The value in this register determines the starting address of the protected range within the Flash memory.

Figure 2-6. Flash Block Protect Register (FLBPR)

BPR[7:0] — Flash Block Protect Register Bit 7 to Bit 0

BPR[7:1] represent bits [12:6] of a 16-bit memory address. Bits [15:13] are 1's and bits [5:0] are 0's.

Start address of Flash block protect

1	1	1								0	0	0	0	0	0
			BPR[7:1]												

16-bit memory address

BPR0 is used only for BPR[7:0] = \$FF, for no block protection.

The resultant 16-bit address is used for specifying the start address of the Flash memory for block protection. The Flash is protected from this start address to the end of Flash memory, at \$FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page boundaries — 64 bytes) within the Flash memory.

Examples of protect start address:

BPR[7:0]	Start of Address of Protect Range						
\$00–\$60	The entire Flash memory is protected.						
\$62 or \$63 (0110 001x)	\$EC40 (111 0 1100 01 00 0000)						
\$64 or \$65 (0110 010x)	\$EC80 (111 0 1100 10 00 0000)						
\$68 or \$69 (0110 100x)	\$ED00 (111 0 1101 00 00 0000)						
and so on							
\$DE or \$DF (1101 111x)	\$FBC0 (111 1 1011 11 00 0000)						
\$FE (1111 1110)	\$FFC0 (111 1 1111 11 00 0000)						
\$FF	The entire Flash memory is not protected.						

Note:

The end address of the protected range is always \$FFFF.

Memory

Chapter 3 Configuration Registers (CONFIG)

3.1 Introduction

This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers enables or disables the following options:

- Stop mode recovery time (32 × 20SCOUT cycles or 4096 × 20SCOUT cycles)
- STOP instruction
- Computer operating properly module (COP)
- COP reset period (COPRS), 8176 × 20SCOUT or 262,128 × 20SCOUT
- Enable LVI circuit
- Select LVI trip voltage

3.2 Functional Description

The configuration register is used in the initialization of various options. The configuration register can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU it is recommended that this register be written immediately after reset. The configuration register is located at \$001E and \$001F, and may be read at anytime.

NOTE

The CONFIG registers are one-time writable by the user after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 3-1 and Figure 3-2.

3.3 Configuration Register 1 (CONFIG1)

Figure 3-1. Configuration Register 1 (CONFIG1)

COPRS — COP reset period selection bit

1 = COP reset cycle is 8176×20 SCOUT 0 = COP reset cycle is $262,128 \times 20$ SCOUT

Configuration Registers (CONFIG)

LVID — Low Voltage Inhibit Disable Bit

- 1 = Low Voltage Inhibit disabled
- 0 = Low Voltage Inhibit enabled

SSREC — Short Stop Recovery Bit

SSREC enables the CPU to exit stop mode with a delay of

 32×20 SCOUT cycles instead of a 4096×20 SCOUT cycle delay.

1 = Stop mode recovery after 32×20 SCOUT cycles

0 =Stop mode recovery after 4096×20 SCOUT cycles

NOTE

Exiting stop mode by pulling reset will result in the long stop recovery.

If using an external crystal, do not set the SSREC bit.

STOP — STOP Instruction Enable

STOP enables the STOP instruction.

- 1 = STOP instruction enabled
 - 0 = STOP instruction treated as illegal opcode

COPD — COP Disable Bit

COPD disables the COP module. (See Chapter 13 Computer Operating Properly (COP).)

- 1 = COP module disabled
- 0 = COP module enabled

3.4 Configuration Register 2 (CONFIG2)

Figure 3-2. Configuration Register 2 (CONFIG2)

IRQPUD — IRQ Pin Pull-up control bit

1 = Internal pull-up is disconnected

0 = Internal pull-up is connected between \overline{IRQ} pin and V_{DD}

LVIT1, LVIT0 — Low Voltage Inhibit trip voltage selection bits

Detail description of the LVI control signals is given in Chapter 14 Low Voltage Inhibit (LVI)
Chapter 4 Central Processor Unit (CPU)

4.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.

4.2 Features

Features of the CPU include:

- Object code fully upward-compatible with M68HC05 Family
- 16-bit stack pointer with stack manipulation instructions
- 16-bit index register with x-register manipulation instructions
- 8-MHz CPU internal bus frequency
- 64-Kbyte program/data memory space
- 16 addressing modes
- Memory-to-memory data moves without using accumulator
- Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
- Enhanced binary-coded decimal (BCD) data handling
- Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes
- Low-power stop and wait modes

4.3 CPU Registers

Figure 4-1 shows the five CPU registers. CPU registers are not part of the memory map.

Figure 4-1. CPU Registers

4.3.1 Accumulator

The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.

Figure 4-2. Accumulator (A)

4.3.2 Index Register

The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.

In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.

The index register can serve also as a temporary data storage location.

Figure 4-3. Index Register (H:X)

4.3.3 Stack Pointer

The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to \$00FF. The reset stack pointer (RSP) instruction sets the least significant byte to \$FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack.

In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.

Figure 4-4. Stack Pointer (SP)

NOTE

The location of the stack is arbitrary and may be relocated anywhere in random-access memory (RAM). Moving the SP out of page 0 (\$0000 to \$00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.

4.3.4 Program Counter

The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched.

Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.

During reset, the program counter is loaded with the reset vector address located at \$FFFE and \$FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.

Figure 4-5. Program Counter (PC)

Central Processor Unit (CPU)

4.3.5 Condition Code Register

The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the functions of the condition code register.

Figure 4-6. Condition Code Register (CCR)

V — Overflow Flag

The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.

- 1 = Overflow
- 0 = No overflow

H — Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor.

1 = Carry between bits 3 and 4

0 = No carry between bits 3 and 4

I — Interrupt Mask

When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.

- 1 = Interrupts disabled
- 0 = Interrupts enabled

NOTE

To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions.

After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).

N — Negative Flag

The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result.

1 = Negative result

0 = Non-negative result

Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00.

- 1 = Zero result
- 0 = Non-zero result

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.

1 = Carry out of bit 7

0 = No carry out of bit 7

4.4 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.

Refer to the *CPU08 Reference Manual* (document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.

4.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

4.5.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

4.5.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

4.6 CPU During Break Interrupts

If a break module is present on the MCU, the CPU starts a break interrupt by:

- · Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD or with \$FEFC:\$FEFD in monitor mode

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.

Central Processor Unit (CPU)

4.7 Instruction Set Summary

Table 4-1 provides a summary of the M68HC08 instruction set.

Source	Operation	Description			Eff n (Address Mode	Opcode	Operand	es
Form			v	Н	-	Ν	z	С	Add Mod	Opc	Ope	Cycles
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC opr,SP ADC opr,SP	Add with Carry	A ← (A) + (M) + (C)	ţ	ţ	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A9 B9 C9 D9 E9 F9 9EE9 9ED9	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	ţ	ţ		ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	AB BB CB DB EB FB 9EEB 9EDB		23443245
AIS #opr	Add Immediate Value (Signed) to SP	$SP \leftarrow (SP) + (16 \ll M)$	-	-	-	-	-	-	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	H:X ← (H:X) + (16 « M)	-	-	-	-	-	-	IMM	AF	ii	2
AND #opr AND opr AND opr,X AND opr,X AND opr,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	-	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ee ff	23443245
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)		ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP	Arithmetic Shift Right		ţ	_	I	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel ? (C) = 0$	-	-	-	-	-	-	REL	24	rr	3
BCLR n, opr	Clear Bit n in M	Mn ← 0	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	11 13 15 17 19 1B 1D 1F	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4
BCS rel	Branch if Carry Bit Set (Same as BLO)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 1$	-	-	I	-	-	-	REL	25	rr	3
BEQ rel	Branch if Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) = 1$	-	-	_	-	-	_	REL	27	rr	3
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 0$	-	-	-	-	-	-	REL	90	rr	3
BGT opr	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 0$	-	-	_	_	-	_	REL	92	rr	3
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (H) = 0$	-	-	_	_	-	_	REL	28	rr	3
BHCS rel	Branch if Half Carry Bit Set	$PC \leftarrow (PC) + 2 + rel? (H) = 1$	-	-	_	-	-	_	REL	29	rr	3
BHI <i>rel</i>	Branch if Higher	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 0$	-	-	-	-	-	—	REL	22	rr	3

Table 4-1. Instruction Set Summary (Sheet 1 of 6)

Source	Operation	Description			Effect on CCR				Address Mode	Opcode	Operand	sel
Form	•	•	v	н	I	Ν	z	С	Add	Opc	Ope	Cycles
BHS rel	Branch if Higher or Same (Same as BCC)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 0$	-	-	_	-	_	-	REL	24	rr	3
BIH rel	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 1$	-	-	-	-	-	-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 0$	-	-	-	-	-	-	REL	2E	rr	3
BIT #opr BIT opr BIT opr, BIT opr,X BIT opr,X BIT opr,SP BIT opr,SP	Bit Test	(A) & (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A5 B5 C5 D5 E5 F5 9ED5 9ED5		2 3 4 4 3 2 4 5
BLE opr	Branch if Less Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 1$	-	-	-	-	-	-	REL	93	rr	3
BLO rel	Branch if Lower (Same as BCS)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 1$	-	-	Ι	Ι		Ι	REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 1$	-	-	-	-	-	-	REL	23	rr	3
BLT opr	Branch if Less Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 1$	-	-	-	-	-	-	REL	91	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + rel? (I) = 0$	-	-	-	-	-	-	REL	2C	rr	3
BMI rel	Branch if Minus	$PC \leftarrow (PC) + 2 + rel? (N) = 1$	-	-	-	-	-	-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	$PC \leftarrow (PC) + 2 + rel? (I) = 1$	-	-	-	-	-	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + rel? (Z) = 0$	-	-	-	-	-	-	REL	26	rr	3
BPL rel	Branch if Plus	$PC \leftarrow (PC) + 2 + rel? (N) = 0$	-	-	-	-	-	-	REL	2A	rr	3
BRA rel	Branch Always	$PC \leftarrow (PC) + 2 + rel$	-	-	-	-	-	-	REL	20	rr	3
BRCLR n,opr,rel	Branch if Bit <i>n</i> in M Clear	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0	_	_	_	_	_	ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	555555555
BRN rel	Branch Never	$PC \leftarrow (PC) + 2$	-	-	-	-	-	-	REL	21	rr	3
BRSET n,opr,rel	Branch if Bit <i>n</i> in M Set	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1	_	_	_	_	_	ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BSET n,opr	Set Bit <i>n</i> in M	Mn ← 1	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push \; (PCL) \\ SP \leftarrow (SP) - 1; push \; (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	-	_	_	-	_	_	REL	AD	rr	4
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{c} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	_	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	C ← 0	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	-	-	0	-	-	-	INH	9A		2	

Table 4-1.	Instruction	Set	Summary	, ((Sheet 2 of 6)	
		000	Cannary			

Central Processor Unit (CPU)

Source	Operation	Description				ec CC			Address Mode	Opcode	Operand	es
Form	operation	Becomption	v	Η	I	Ν	z	С	Add Mod	Opc	Ope	Cycles
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \gets \$00 \\ A \gets \$00 \\ X \gets \$00 \\ H \gets \$00 \\ M \twoheadleftarrow \$00 \\ M \twoheadleftarrow \$00 \\ M \twoheadleftarrow \$00 \\ M \twoheadleftarrow \$00 \end{array}$	0	_	-	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr, CMP opr,X CMP opr,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	t	_	_	ţ	ţ	t	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	0	_	_	ţ	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX #opr CPHX opr	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-	-	ţ	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3		23443245
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	1	1	\$	INH	72		2
DBNZ opr,rel DBNZA rel DBNZ rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr ff rr ff rr	533546
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	_	-	ţ	ţ	-	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	ţ	1	INH	52		7
EOR #opr EOR opr EOR opr, EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{l} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 1 4 3 5

Table 4-1. Instruction Set Summary (Sheet 3 of 6)

Source	Operation	Operation Description								Opcode	Operand	es
Form	oporation	Decemption	v	н	I	Ν	z	С	Address Mode	Opc	Ope	Cycles
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	$PC \leftarrow Jump \; Address$	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + n (n = 1, 2, \mathrm{or} 3) \\ Push (PCL); SP \leftarrow (SP) - 1 \\ Push (PCH); SP \leftarrow (SP) - 1 \\ PC \leftarrow Unconditional Address \end{array}$	_	-	_	-	_	-	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh ll ee ff ff	4 5 6 5 4
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0		_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6		23443245
LDHX #opr LDHX opr	Load H:X from M	$H{:}X \leftarrow (M{:}M+1)$	0	-	-	\$	ţ	-	IMM DIR	45 55	ii jj dd	3 4
LDX #opr LDX opr LDX opr LDX opr;X LDX opr;X LDX opr;SP LDX opr;SP LDX opr;SP	Load X from M	X ← (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE DE EE FE 9EEE 9EDE		2 3 4 3 2 4 5
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left (Same as ASL)	C ← ← 0 b7 b0	ţ	-	-	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	0 → □ □ □ → C b7 b0	ţ	-	_	0	ţ	ţ	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr	Move	(M) _{Destination} ← (M) _{Source} H:X ← (H:X) + 1 (IX+D, DIX+)	0	_	_	ţ	ţ	_	DD DIX+ IMD IX+D	4E 5E 6E 7E	dd dd dd ii dd dd	5 4 4 4
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	4 1 4 3 5
NOP	No Operation	None	-	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap A	A ← (A[3:0]:A[7:4])		[-	_		_	_	INH	62		3
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA opr,SP ORA opr,SP	Inclusive OR A and M	A ← (A) (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AA BA CA DA EA FA 9EEA 9EDA		2 3 4 3 2 4 5
PSHA	Push A onto Stack	Push (A); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	87		2
PSHH	Push H onto Stack	Push (H); SP \leftarrow (SP) – 1	<u> -</u>	-	-	-	-	-	INH	8B		2
PSHX	Push X onto Stack	Push (X); SP \leftarrow (SP) – 1	-	<u> -</u>	-	-	-	-	INH	89		2

Table 4-1.	Instruction	Set	Summarv	(Sheet 4 of 6)
		00.	o anna y	

Central Processor Unit (CPU)

Source	Operation	Description		Effect on CCR					Address Mode	Opcode	Operand	es
Form	oporation	Decemption	v	н	I	Ν	z	С	Add Mod	Opc	Ope	Cycles
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-	INH	8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull (X)$	-	-	-	-	-	-	INH	88		2
ROL <i>opr</i> ROLA ROLX ROL <i>opr</i> ,X ROL ,X ROL <i>opr</i> ,SP	Rotate Left through Carry	C← b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	4 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry	b7 b0	ţ	_	-	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	Ι	-	Ι	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	ţ	ţ	ţ	ţ	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)		-		I	I	-	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \leftarrow (A) - (M) - (C)$	ţ	_	-	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ff ee ff	23443245
SEC	Set Carry Bit	C ← 1	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	-	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
STHX opr	Store H:X in M	$(M:M + 1) \leftarrow (H:X)$	0	-	-	1	\$	-	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	$I \leftarrow 0$; Stop Processing	-	-	0	-	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP	Store X in M	$M \gets (X)$	0	-	-	ţ	ţ	-	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB X SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	t	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0		2 3 4 4 3 2 4 5

Table 4-1. Instruction Set Summary (Sheet 5 of 6)

Opcode Map

Source	On continue	nevetion Description								ess	ode	and	se
Form	Operation	Description		v	Н	I	N	Z	С	Address Mode	Opcode	Operand	Cycles
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Push \ (\\ SP \leftarrow (SP) - 1; I \leftarrow Interrupt \ Vector \ H \ \\ PCH \leftarrow Interrupt \ Vector \ Lettrupt \ Vector \ Vector \ Lettrupt \ Vector \$	PCH) (X) (A) CCR) 1 igh Byte	_	1	1	_	_	_	INH	83		9
TAP	Transfer A to CCR	$CCR \leftarrow (A)$		\$	1	\$	1	\$	\$	INH	84		2
TAX	Transfer A to X	$X \leftarrow (A)$		-	-	_	-	_	-	INH	97		1
TPA	Transfer CCR to A	$A \leftarrow (CCR)$		-	_	_	—	_	-	INH	85		1
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero	(A) – \$00 or (X) – \$00 or (I	M) — \$00	0	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 3 2 4
TSX	Transfer SP to H:X	H:X ← (SP) + 1		-	-	-	-	-	-	INH	95		2
TXA	Transfer X to A	$A \gets (X)$		-	—	-	-	-	-	INH	9F		1
TXS	Transfer H:X to SP	$(SP) \leftarrow (H:X) - 1$		-	-	_	-	_	-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	I bit ← 0; Inhibit CPU clo until interrupted	ocking	_	-	0	-	_	-	INH	8F		1
CCR Conditioned dd Direct a dd rr Direct a DD Direct a DIR Direct a DIX+ Direct ta ee ff High an EXT Extended ff Offset b H Half-car H Index re hh II High an I Interrup ii Immedia IMD Immedia INH Inheren IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX1 Indexed IX1 Indexed IX2 Indexed	orrow bit on code register (ddress of operand (ddress of operand and relative offset o direct addressing mode (ddressing mode o indexed with post increment address d low bytes of offset in indexed, 16-bit ed addressing mode oyte in indexed, 8-bit offset addressing ry bit egister high byte (d low bytes of operand address in ext t mask ate operand byte ate source to direct destination address ate addressing mode t, no offset addressing mode t, no offset, post increment addressing t, 8-bit offset addressing mode t, 8-bit offset, post increment address t, 16-bit offset addressing mode y location	of branch instruction F sing mode rr t offset addressing S ended addressing Z ssing mode I g mode # ing mode 4	ppr Opera PC Progra PC Progra PCL Progra REL Relativer Relativer Relativer PS Stack PS Stack	nd am am ve poi poi poi poi al C al E nts ion diat exter clear cleаr cleаr cleаr cleаr cle	cou cou add procorrent nter nter d bit iste ND R XCI of (tw vith nate are	nte nte res grai grai r, 8 r 16 r LU: o's alue d v	er er hi er lo sing m c -bit -bit S-bit S-bit S-bit cor e	gh w k our our off off off	byte odd nter nter set fse	te e r offset by r offset by addressi t addressi	te ng mod		

4.8 Opcode Map

See Table 4-2.

Table 4-2, Opcode Map

	Iable 4-2. Opcode Map Bit Manipulation Branch Read-Modify-Write Control Register/Memory																		
	DIR	DIR	REL	DIR	INH	INH	IX1	SP1	IX	INH	INH	IMM	DIR	EXT	IX2	SP2	IX1	SP1	IX
MSB LSB	0	1	2	3	4	5	6	9E6	7	8	9	A	В	С	D	9ED	E	9EE	F
0	5 BRSET0 3 DIR			4 NEG 2 DIR	1 NEGA 1 INH		4 NEG 2 IX1	5 NEG 3 SP1	3 NEG 1 IX	7 RTI 1 INH		SUB 2 IMM				5 SUB 4 SP2		4 SUB 3 SP1	SUB 1 IX
1	5 BRCLR0 3 DIR	2 DIR		5 CBEQ 3 DIR		3 IMM	5 CBEQ 3 IX1+	6 CBEQ 4 SP1	4 CBEQ 2 IX+	4 RTS 1 INH						5 CMP 4 SP2		4 CMP 3 SP1	2 CMP 1 IX
2	5 BRSET1 3 DIR	4 BSET1 2 DIR			5 MUL 1 INH	7 DIV 1 INH	3 NSA 1 INH		2 DAA 1 INH		3 BGT 2 REL	2 SBC 2 IMM		4 SBC 3 EXT		5 SBC 4 SP2		4 SBC 3 SP1	2 SBC 1 IX
3	5 BRCLR1 3 DIR	4 BCLR1 2 DIR	3 BLS 2 REL		1 COMA 1 INH	COMX 1 INH		5 COM 3 SP1		9 SWI 1 INH						5 CPX 4 SP2		4 CPX 3 SP1	2 CPX 1 IX
4	5 BRSET2 3 DIR	4 BSET2 2 DIR		4 LSR 2 DIR	1 LSRA 1 INH			5 LSR 3 SP1		2 TAP 1 INH		AND 2 IMM				5 AND 4 SP2		4 AND 3 SP1	2 AND 1 IX
5	5 BRCLR2 3 DIR			4 STHX 2 DIR	3 LDHX 3 IMM	4 LDHX 2 DIR	3 CPHX 3 IMM		4 CPHX 2 DIR	1 TPA 1 INH	2 TSX 1 INH				4 BIT 3 IX2	5 BIT 4 SP2		4 BIT 3 SP1	2 BIT 1 IX
6	5 BRSET3 3 DIR	4 BSET3 2 DIR	3 BNE 2 REL	4 ROR 2 DIR	1 RORA 1 INH	1 RORX 1 INH	4 ROR 2 IX1	5 ROR 3 SP1	3 ROR 1 IX	2 PULA 1 INH		2 LDA 2 IMM			4 LDA 3 IX2	5 LDA 4 SP2		4 LDA 3 SP1	2 LDA 1 IX
7	5 BRCLR3 3 DIR	4 BCLR3 2 DIR	3 BEQ 2 REL	4 ASR 2 DIR	1 ASRA 1 INH	1 ASRX 1 INH	4 ASR 2 IX1	5 ASR 3 SP1	3 ASR 1 IX	2 PSHA 1 INH	1 TAX 1 INH	AIS 2 IMM	3 STA 2 DIR	STA 3 EXT	4 STA 3 IX2	5 STA 4 SP2		4 STA 3 SP1	2 STA 1 IX
8	5 BRSET4 3 DIR	4 BSET4 2 DIR	3 BHCC 2 REL	4 LSL 2 DIR	1 LSLA 1 INH	1 LSLX 1 INH	4 LSL 2 IX1		3 LSL 1 IX	2 PULX 1 INH	1 CLC 1 INH		3 EOR 2 DIR	4 EOR 3 EXT	4 EOR 3 IX2	5 EOR 4 SP2	3 EOR 2 IX1	4 EOR 3 SP1	2 EOR 1 IX
9	5 BRCLR4 3 DIR		3 BHCS 2 REL	4 ROL 2 DIR	1 ROLA 1 INH	1 ROLX 1 INH	4 ROL 2 IX1	5 ROL 3 SP1	3 ROL 1 IX	2 PSHX 1 INH	1 SEC 1 INH	ADC 2 IMM	3 ADC 2 DIR	ADC 3 EXT	4 ADC 3 IX2	ADC 4 SP2	3 ADC 2 IX1	4 ADC 3 SP1	ADC 1 IX
Α	5 BRSET5 3 DIR	4 BSET5 2 DIR	3 BPL 2 REL	4 DEC 2 DIR	1 DECA 1 INH		4 DEC 2 IX1	5 DEC 3 SP1	3 DEC 1 IX	2 PULH 1 INH		2 ORA 2 IMM		4 ORA 3 EXT	4 ORA 3 IX2	5 ORA 4 SP2		4 ORA 3 SP1	
В	5 BRCLR5 3 DIR	4 BCLR5 2 DIR		5 DBNZ 3 DIR	3 DBNZA 2 INH	3 DBNZX 2 INH	5 DBNZ 3 IX1		4 DBNZ 2 IX	2 PSHH 1 INH	2 SEI 1 INH	2 ADD 2 IMM			4 ADD 3 IX2	5 ADD 4 SP2	3 ADD 2 IX1	4 ADD 3 SP1	
с	5 BRSET6 3 DIR			4 INC 2 DIR	1 INCA 1 INH	1 INCX 1 INH		5 INC 3 SP1	3 INC 1 IX	1 CLRH 1 INH	1 RSP 1 INH		2 JMP 2 DIR				3 JMP 2 IX1		2 JMP 1 IX
D	5 BRCLR6 3 DIR	4 BCLR6 2 DIR		3 TST 2 DIR			3 TST 2 IX1	4 TST 3 SP1			1 NOP 1 INH		4 JSR 2 DIR				5 JSR 2 IX1		4 JSR 1 IX
E	5 BRSET7 3 DIR	4 BSET7 2 DIR			5 MOV 3 DD	4 MOV 2 DIX+			4 MOV 2 IX+D	1 STOP 1 INH	*	2 LDX 2 IMM		4 LDX 3 EXT	4 LDX 3 IX2	5 LDX 4 SP2		4 LDX 3 SP1	
F	5 BRCLR7 3 DIR	4 BCLR7 2 DIR	3 BIH 2 REL	3 CLR 2 DIR	1 CLRA 1 INH	1 CLRX 1 INH	3 CLR 2 IX1	4 CLR 3 SP1	2 CLR 1 IX	1 WAIT 1 INH	1 TXA 1 INH	AIX 2 IMM	3 STX 2 DIR	STX 3 EXT	4 STX 3 IX2	5 STX 4 SP2	3 STX 2 IX1	4 STX 3 SP1	STX 1 IX

MC68HC908JL3E Family Data Sheet, Rev. 4

Indexed, 8-Bit Offset Indexed, 16-Bit Offset IX1 IX2

- DIR Direct EXT Extended DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed

REL Relative IX Indexed, No Offset

SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset Indexed, No Offset with

- IX+ Post Increment
- IX1+ Indexed, 1-Byte Offset with Post Increment

Low Byte of Opcode in Hexadecimal

0 High Byte of Opcode in Hexadecimal

0

MSB

LSB

5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode

*Pre-byte for stack pointer indexed instructions

INH Inherent IMM Immediate

Chapter 5 System Integration Module (SIM)

5.1 Introduction

This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 5-1. Figure 5-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for:

- · Bus clock generation and control for CPU and peripherals
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
 - Master reset control, including power-on reset (POR) and COP timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing
- Modular architecture expandable to 128 interrupt sources

Table 5-1 shows the internal signal names used in this section.

Signal Name	Description
2OSCOUT	Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.
OSCOUT	The 2OSCOUT frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = $2OSCOUT \div 4$)
IAB	Internal address bus
IDB	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

Table 5-1. Signal Name Conventions

Figure 5-1. SIM Block Diagram

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	Break Status Register (BSR)	Read: Write:	R	R	R	R	R	R	SBSW NOTE	R
	(DON)	Reset:	0	0	0	0	0	0	0	0
Note: Writing	a 0 clears SBSW.	_								
	Reset Status Register	Read:	POR	PIN	COP	ILOP	ILAD	MODRST	LVI	0
\$FE01	(RSR)	Write:								
	(101)	POR:	1	0	0	0	0	0	0	0
\$FE02	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:								
\$FE03	Break Flag Control Register (BFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
		Reset:	0							
				= Unimplem	ented		R	= Reserved		

Figure 5-2. SIM I/O Register Summary

SIM Bus Clock Control and Generation

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	Interrupt Status Degister 1	Read:	0	IF5	IF4	IF3	0	IF1	0	0
\$FE04 Interrupt Status Register	(INT1)	Write:	R	R	R	R	R	R	R	R
	(1111)	Reset:	0	0	0	0	0	0	0	0
\$FE05	Interrupt Status Register 2 (INT2)	Read:	IF14	0	0	0	0	0	0	0
		Write:	R	R	R	R	R	R	R	R
		Reset:	0	0	0	0	0	0	0	0
	Intervent Chatrie Deviator 0	Read:	0	0	0	0	0	0	0	IF15
\$FE06	Interrupt Status Register 3 (INT3)	Write:	R	R	R	R	R	R	R	R
		Reset:	0	0	0	0	0	0	0	0
			= Unimplemented			R	= Reserved			

Figure 5-2. SIM I/O Register Summary

5.2 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 5-3.

Figure 5-3. SIM Clock Signals

5.2.1 Bus Timing

In user mode, the internal bus frequency is the oscillator frequency (2OSCOUT) divided by four.

5.2.2 Clock Start-Up from POR

When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 2OSCOUT cycle POR time-out has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the time-out.

5.2.3 Clocks in Stop Mode and Wait Mode

Upon exit from stop mode by an interrupt, break, or reset, the SIM allows 2OSCOUT to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time-out. This time-out is selectable as 4096 or 32 2OSCOUT cycles. (See 5.6.2 Stop Mode.)

In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

5.3 Reset and System Initialization

The MCU has these reset sources:

- Power-on reset module (POR)
- External reset pin (RST)
- Computer operating properly module (COP)
- Low-voltage inhibit module (LVI)
- Illegal opcode
- Illegal address

All of these resets produce the vector \$FFFE-\$FFFF (\$FEFE-\$FEFF in Monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states.

An internal reset clears the SIM counter (see 5.4 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the reset status register (RSR). (See 5.7 SIM Registers.)

5.3.1 External Pin Reset

The RST pin circuits include an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum of 67 2OSCOUT cycles, assuming that the POR was not the source of the reset. See Table 5-2 for details. Figure 5-4 shows the relative timing.

Reset Type	Number of Cycles Required to Set PIN
POR	4163 (4096 + 64 + 3)
All others	67 (64 + 3)

5.3.2 Active Resets from Internal Sources

All internal reset sources actively pull the RST pin low for 32 2OSCOUT cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (Figure 5-5). An internal reset can be caused by an illegal address, illegal opcode, COP time-out, or POR. (See Figure 5-6.) Note that for POR resets, the SIM cycles through 4096 2OSCOUT cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 5-5.

The COP reset is asynchronous to the bus clock.

Figure 5-6. Sources of Internal Reset

The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.

5.3.2.1 Power-On Reset

When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin ($\overline{\text{RST}}$) is held low while the SIM counter counts out 4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.

At power-on, the following events occur:

- A POR pulse is generated.
- The internal reset signal is asserted.
- The SIM enables the oscillator to drive 2OSCOUT.
- Internal clocks to the CPU and modules are held inactive for 4096 2OSCOUT cycles to allow stabilization of the oscillator.
- The RST pin is driven low during the oscillator stabilization time.
- The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared.

System Integration Module (SIM)

Figure 5-7. POR Recovery

5.3.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources.

To prevent a COP module time-out, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 4080 2OSCOUT cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out.

The COP module is disabled if the $\overline{\text{RST}}$ pin or the $\overline{\text{IRQ}}$ pin is held at V_{TST} while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the $\overline{\text{RST}}$ or the $\overline{\text{IRQ}}$ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, V_{TST} on the $\overline{\text{RST}}$ pin disables the COP module.

5.3.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset.

If the stop enable bit, STOP, in the mask option register is zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

5.3.2.4 Illegal Address Reset

An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.

5.3.2.5 LVI Reset

The low-voltage inhibit module (LVI) asserts its output to the SIM when the V_{DD} voltage falls to the LVI trip voltage V_{TRIP} . The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RSTB) is held low while the SIM counter counts out 4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the (RSTB) pin for all internal reset sources.

5.4 SIM Counter

The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of 2OSCOUT.

5.4.1 SIM Counter During Power-On Reset

The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine.

5.4.2 SIM Counter During Stop Mode Recovery

The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a one, then the stop recovery is reduced from the normal delay of 4096 2OSCOUT cycles down to 32 2OSCOUT cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register (CONFIG).

5.4.3 SIM Counter and Reset States

External reset has no effect on the SIM counter. (See 5.6.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 5.3.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)

5.5 Exception Control

Normal, sequential program execution can be changed in three different ways:

- Interrupts
 - Maskable hardware CPU interrupts
 - Non-maskable software interrupt instruction (SWI)
- Reset
- Break interrupts

5.5.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 5-8 flow charts the handling of system interrupts.

System Integration Module (SIM)

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).

Figure 5-8. Interrupt Processing

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 5-9 shows interrupt entry timing. Figure 5-10 shows interrupt recovery timing.

Figure 5-10. Interrupt Recovery

5.5.1.1 Hardware Interrupts

A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.

If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 5-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.

System Integration Module (SIM)

Figure 5-11. Interrupt Recognition Example

The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE

To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.

5.5.1.2 SWI Instruction

The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.

NOTE

A software interrupt pushes PC onto the stack. A software interrupt does **not** push PC - 1, as a hardware interrupt does.

5.5.2 Interrupt Status Registers

The flags in the interrupt status registers identify maskable interrupt sources. Table 5-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging.

Exception Control

Priority	Source	Flag	MASK ⁽¹⁾	INT Register Flag	Vector Address
Highest Reset		—	—	—	\$FFFE-\$FFFF
A	SWI Instruction	—	—	_	\$FFFC-\$FFFD
	IRQ Pin	IRQF	IMASK	IF1	\$FFFA-\$FFFB
	Timer Channel 0 Interrupt	CH0F	CH0IE	IF3	\$FFF6-\$FFF7
	Timer Channel 1 Interrupt	CH1F	CH1IE	IF4	\$FFF4-\$FFF5
	Timer Overflow Interrupt	TOF	TOIE	IF5	\$FFF2-\$FFF3
V	Keyboard Interrupt	KEYF	IMASKK	IF14	\$FFE0-\$FFE1
Lowest ADC Conversion Complete Interrupt		COCO	AIEN	IF15	\$FFDE-\$FFDF

Table 5-3. Interrupt Sources

1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.

5.5.2.1 Interrupt Status Register 1

Address:	\$FE04							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	0	IF5	IF4	IF3	0	IF1	0	0
Write:	R	R	R	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
	R = Reserved							

Figure 5-12. Interrupt Status Register 1 (INT1)

IF1, IF3 to IF5 — Interrupt Flags

These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.

- 1 = Interrupt request present
- 0 = No interrupt request present

Bit 0, 1, 3 and 7 — Always read 0

5.5.2.2 Interrupt Status Register 2

Figure 5-13. Interrupt Status Register 2 (INT2)

IF14 — Interrupt Flags

This flag indicates the presence of interrupt requests from the sources shown in Table 5-3.

1 = Interrupt request present

0 = No interrupt request present

Bit 0 to 6 — Always read 0

5.5.2.3 Interrupt Status Register 3

Figure 5-14. Interrupt Status Register 3 (INT3)

IF15 — Interrupt Flags

These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.

- 1 = Interrupt request present
- 0 = No interrupt request present

Bit 1 to 7 — Always read 0

5.5.3 Reset

All reset sources always have equal and highest priority and cannot be arbitrated.

5.5.4 Break Interrupts

The break module can stop normal program flow at a software-programmable break point by asserting its break interrupt output. (See Chapter 15 Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.

5.5.5 Status Flag Protection in Break Mode

The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR).

Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information.

Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.

5.6 Low-Power Modes

Executing the WAIT or STOP instruction puts the MCU in a low-power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur.

5.6.1 Wait Mode

In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 5-15 shows the timing for wait mode entry.

A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option register is zero, then the computer operating properly module (COP) is enabled and remains active in wait mode.

NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.

Figure 5-15. Wait Mode Entry Timing

Figure 5-16 and Figure 5-17 show the timing for WAIT recovery.

NOTE: EXITSTOPWAIT = \overline{RST} pin OR CPU interrupt OR break interrupt

Figure 5-16. Wait Recovery from Interrupt or Break

Figure 5-17. Wait Recovery from Internal Reset

5.6.2 Stop Mode

In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode.

The SIM disables the oscillator signals (OSCOUT and 2OSCOUT) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register (CONFIG). If SSREC is set, stop recovery is reduced from the normal delay of 4096 2OSCOUT cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode.

NOTE

External crystal applications should use the full stop recovery time by clearing the SSREC bit.

A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register (BSR).

The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 5-18 shows stop mode entry timing.

NOTE To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.

CPUSTOP	
IAB	STOP ADDR X STOP ADDR + 1 X SAME X SAME
IDB	PREVIOUS DATA X NEXT OPCODE X SAME X SAME
R/W	Y

NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.

Figure 5-19. Stop Mode Recovery from Interrupt or Break

5.7 SIM Registers

The SIM has three memory mapped registers. Table 5-4 shows the mapping of these registers.

Table 5-4. SIM Registers

Address	Register	Access Mode
\$FE00	BSR	User
\$FE01	RSR	User
\$FE03	BFCR	User

5.7.1 Break Status Register (BSR)

The break status register contains a flag to indicate a break caused by an exit from wait mode.

Figure 5-20. Break Status Register (BSR)

SBSW — SIM Break Stop/Wait

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it.

1 = Wait mode was exited by break interrupt

0 = Wait mode was not exited by break interrupt

5.7.2 Reset Status Register (RSR)

The SRSR register contains flags that show the source of the last reset. The status register will automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the register. All other reset sources set the individual flag bits but do not clear the register. More than one reset source can be flagged at any time depending on the conditions at the time of the internal or external reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.

Figure 5-21. Reset Status Register (RSR)

POR — Power-On Reset Bit

- 1 = Last reset caused by POR circuit
- 0 = Read of SRSR

PIN — External Reset Bit

- 1 = Last reset caused by external reset pin (RST)
- 0 = POR or read of SRSR

COP — Computer Operating Properly Reset Bit

- 1 = Last reset caused by COP counter
- 0 = POR or read of SRSR

ILOP — Illegal Opcode Reset Bit

- 1 = Last reset caused by an illegal opcode
- 0 = POR or read of SRSR

ILAD — Illegal Address Reset Bit (opcode fetches only)

- 1 = Last reset caused by an opcode fetch from an illegal address
- 0 = POR or read of SRSR

MODRST — Monitor Mode Entry Module Reset bit

- 1 = Last reset caused by monitor mode entry when vector locations FFFE and FFFF are FFF after POR while $\overline{IRQ} = V_{DD}$
- 0 = POR or read of SRSR

LVI — Low Voltage Inhibit Reset bit

- 1 = Last reset caused by LVI circuit
- 0 = POR or read of SRSR

5.7.3 Break Flag Control Register (BFCR)

The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

1 = Status bits clearable during break

0 = Status bits not clearable during break

System Integration Module (SIM)

Chapter 6 Oscillator (OSC)

6.1 Introduction

The oscillator module provides the reference clock for the MCU system and bus. Two types of oscillator modules are available:

- MC68HC908JL3E/JK3E/JK1E built-in oscillator module (X-tal) that requires an external crystal or ceramic-resonator. This option also allows an external clock that can be driven directly into OSC1.
- MC68HRC908JL3E/JK3E/JK1E built-in oscillator module (RC) that requires an external RC connection only.

6.2 X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E)

The X-tal oscillator circuit is designed for use with an external crystal or ceramic resonator to provide accurate clock source.

In its typical configuration, the X-tal oscillator is connected in a Pierce oscillator configuration, as shown in Figure 6-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components:

- Crystal, X₁
- Fixed capacitor, C₁
- Tuning capacitor, C₂ (can also be a fixed capacitor)
- Feedback resistor, R_B
- Series resistor, R_s (optional)

The series resistor (R_s) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer's data for more information.

6.3 RC Oscillator (MC68HRC908JL3E/JK3E/JK1E)

The RC oscillator circuit is designed for use with external R and C to provide a clock source with tolerance less than 10%.

In its typical configuration, the RC oscillator requires two external components, one R and one C. Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10% tolerance. The oscillator configuration uses two components:

- C_{EXT}
- R_{EXT}

The RC connection is shown in Figure 6-2.

Oscillator (OSC)

6.4 I/O Signals

The following paragraphs describe the oscillator I/O signals.

6.4.1 Crystal Amplifier Input Pin (OSC1)

OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.

6.4.2 Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK)

For the X-tal oscillator device, OSC2 pin is the output of the crystal oscillator inverting amplifier.

For the RC oscillator device, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of the internal RC oscillator clock, RCCLK.

Device	Oscillator	OSC2 pin function
MC68HC908JL3E/JK3E/JK1E	X-tal	Inverting OSC1
MC68HRC908JL3E/JK3E/JK1E	RC	Controlled by PTA6EN bit in PTAPUER (\$0D) PTA6EN = 0: RCCLK output PTA6EN = 1: PTA6 I/O

6.4.3 Oscillator Enable Signal (SIMOSCEN)

The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the X-tal oscillator circuit or the RC-oscillator.

6.4.4 X-tal Oscillator Clock (XTALCLK)

XTALCLK is the X-tal oscillator output signal. It runs at the full speed of the crystal (f_{XCLK}) and comes directly from the crystal oscillator circuit. Figure 6-1 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start-up.

6.4.5 RC Oscillator Clock (RCCLK)

RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the external R and C. Figure 6-2 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry.

6.4.6 Oscillator Out 2 (2OSCOUT)

2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module and is used to determine the COP cycles.

6.4.7 Oscillator Out (OSCOUT)

The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency.

Oscillator (OSC)

6.5 Low Power Modes

The WAIT and STOP instructions put the MCU in low-power consumption standby modes.

6.5.1 Wait Mode

The WAIT instruction has no effect on the oscillator logic. OSCOUT and 2OSCOUT continues to drive to the SIM module.

6.5.2 Stop Mode

The STOP instruction disables the XTALCLK or the RCCLK output, hence OSCOUT and 2OSCOUT.

6.6 Oscillator During Break Mode

The oscillator continues to drive OSCOUT and 2OSCOUT when the device enters the break state.

Chapter 7 Monitor ROM (MON)

7.1 Introduction

This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. This mode is also used for programming and erasing of Flash memory in the MCU. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST} , as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.

7.2 Features

Features of the monitor ROM include the following:

- Normal user-mode pin functionality
- One pin dedicated to serial communication between monitor ROM and host computer
- Standard mark/space non-return-to-zero (NRZ) communication with host computer
- Execution of code in RAM or Flash
- Flash memory security feature⁽¹⁾
- Flash memory programming interface
- 960 bytes monitor ROM code size
- Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF)
- Standard monitor mode entry if high voltage, V_{TST}, is applied to IRQ

7.3 Functional Description

The monitor ROM receives and executes commands from a host computer. Figure 7-1 shows a example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTB0 pin. A level-shifting and multiplexing interface is required between PTB0 and the host computer. PTB0 is used in a wired-OR configuration and requires a pull-up resistor.

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the Flash difficult for unauthorized users.

Monitor ROM (MON)

7.3.1 Entering Monitor Mode

Table 7-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met:

- 1. If $\overline{IRQ} = V_{TST}$:
 - Clock on OSC1 is 4.9125MHz (EXT OSC or XTAL)
 - PTB3 = low
- 2. If $\overline{IRQ} = V_{TST}$:
 - Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL)
 - PTB3 = high
- 3. If \$FFFE & \$FFFF is blank (contains \$FF):
 - Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL or RC)
 - IRQ = V_{DD}

Table 7-1. Monitor Mode Entry Requirements and Options

ĪRQ	\$FFFE and \$FFFF	PTB3 ⁽¹⁾	PTB2	PTB1	PTB0	OSC1 Frequency	Bus Frequency	Comments
V _{TST} ⁽²⁾	Х	0	0	1	1	4.9152MHz	2.4576MHz (OSC1 ÷ 2)	High-voltage entry to monitor mode. ⁽³⁾
V _{TST}	Х	1	0	1	1	9.8304MHz	2.4576MHz (OSC1 ÷ 4)	9600 baud communication on PTB0. COP disabled.
V _{DD}	BLANK (contain \$FF)	x	x	x	1	9.8304MHz	2.4576MHz (OSC1 ÷ 4)	Low-voltage entry to monitor mode. ⁽⁴⁾ 9600 baud communication on PTB0. COP disabled.
V _{DD}	NOT BLANK	х	х	х	х	At desired frequency	OSC1 ÷ 4	Enters User mode.

1. PTB3 = 0: Bypasses the divide-by-two prescaler to SIM when using V_{TST} for monitor mode entry. The OSC1 clock must be 50% duty cycle for this condition.

2. See Table 16-4. DC Electrical Characteristics (5V) for V_{TST} voltage level requirements.

MC68HRC908JL3E/JK3E/JK1E — clock must be EXT OSC. MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.

4. For IRQ = V_{DD}: MC68HRC908JL3E/JK3E/JK1E — clock must be RC OSC. MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.

If V_{TST} is applied to \overline{IRQ} and PTB3 is low upon monitor mode entry (Table 7-1 condition set 1), the bus frequency is a divide-by-two of the clock input to OSC1. If PTB3 is high with V_{TST} applied to \overline{IRQ} upon monitor mode entry (Table 7-1 condition set 2), the bus frequency is a divide-by-four of the clock input to OSC1. Holding the PTB3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator *only if* V_{TST} *is applied to* \overline{IRQ} . In this event, the OSCOUT frequency is equal to the 2OSCOUT frequency, and OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency.

^{3.} For $\overline{IRQ} = V_{TST}$:

Monitor ROM (MON)

Entering monitor mode with V_{TST} on \overline{IRQ} , the COP is disabled as long as V_{TST} is applied to either the \overline{IRQ} or the \overline{RST} . (See Chapter 5 System Integration Module (SIM) for more information on modes of operation.)

If entering monitor mode without high voltage on \overline{IRQ} and reset vector being blank (\$FFFE and \$FFFF) (Table 7-1 condition set 3, where applied voltage is V_{DD}), then all port B pin requirements and conditions, including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming.

Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the state of IRQ or the RST.

Figure 7-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and $\overline{IRQ} = V_{DD}$. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600.

Figure 7-2. Low-Voltage Monitor Mode Entry Flowchart

Enter monitor mode with the pin configuration shown above by pulling \overline{RST} low and then high. The rising edge of \overline{RST} latches monitor mode. Once monitor mode is latched, the values on the specified pins can change.

Once out of reset, the MCU waits for the host to send eight security bytes. (See 7.4 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate.

In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors are in the \$FE page instead of the \$FF page and allow code execution from the internal monitor firmware instead of user code.

Table 7-2 is a summary of the vector differences between user mode and monitor mode.

	Functions							
Modes	СОР	Reset Vector High	Reset Vector Low	Break Vector High	Break Vector Low	SWI Vector High	SWI Vector Low	
User	Enabled	\$FFFE	\$FFFF	\$FFFC	\$FFFD	\$FFFC	\$FFFD	
Monitor	Disabled ⁽¹⁾	\$FEFE	\$FEFF	\$FEFC	\$FEFD	\$FEFC	\$FEFD	

 Table 7-2. Monitor Mode Vector Differences

1. If the high voltage (V_{TST}) is removed from the \overline{IRQ} pin or the \overline{RST} pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register.

When the host computer has completed downloading code into the MCU RAM, the host then sends a RUN command, which executes an RTI, which sends control to the address on the stack pointer.

7.3.2 Baud Rate

The communication baud rate is dependent on oscillator frequency. The state of PTB3 also affects baud rate if entry to monitor mode is by $\overline{IRQ} = V_{TST}$. When PTB3 is high, the divide by ratio is 1024. If the PTB3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512.

Monitor Mode Entry By:	Input Clock Frequency	PTB3	Baud Rate
	4.9152 MHz	0	9600 bps
$\overline{IRQ} = V_{TST}$	9.8304 MHz	1	9600 bps
	4.9152 MHz	1	4800 bps
Blank reset vector,	9.8304 MHz	х	9600 bps
$\overline{IRQ} = V_{DD}$	4.9152 MHz	Х	4800 bps

Table 7-3. Monitor Baud Rate Selection

Monitor ROM (MON)

7.3.3 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 7-3 and Figure 7-4.)

Figure 7-4. Sample Monitor Waveforms

The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive baud rates must be identical.

7.3.4 Echoing

As shown in Figure 7-5, the monitor ROM immediately echoes each received byte back to the PTB0 pin for error checking.

Figure 7-5. Read Transaction

Any result of a command appears after the echo of the last byte of the command.

7.3.5 Break Signal

A start bit followed by nine low bits is a break signal. (See **Figure 7-6**.) When the monitor receives a break signal, it drives the PTB0 pin high for the duration of two bits before echoing the break signal.

Figure 7-6. Break Transaction

MC68HC908JL3E Family Data Sheet, Rev. 4

7.3.6 Commands

The monitor ROM uses the following commands:

- READ (read memory)
- WRITE (write memory)
- IREAD (indexed read)
- IWRITE (indexed write)
- READSP (read stack pointer)
- RUN (run user program)

Table 7-4. READ (Read Memory) Command

Description	Read byte from memory						
Operand	Specifies 2-byte address in high byte:low byte order						
Data Returned	Returns contents of specified address						
Opcode	\$4A						
Command Sequence							
SENT TO MONITOR							
REA	ND X READ X ADDR. HIGH X ADDR. HIGH X ADDR. LOW X ADDR. LOW X DATA X						
ЕСНО ———	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$						
	RESULT						

Table 7-5. WRITE (Write Memory) Command

Description	Write byte to memory						
Operand	Specifies 2-byte address in high byte:low byte order; low byte followed by data byte						
Data Returned	None						
Opcode	\$49						
Command Sequence	WRITE ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA						

Monitor ROM (MON)

Description	Read next 2 bytes in memory from last address accessed						
Operand	Specifies 2-byte address in high byte:low byte order						
Data Returned	Returns contents of next two addresses						
Opcode	\$1A						
Command Sequence							
SENT TO MONITOR	IREAD DATA DATA RESULT						

Table 7-6. IREAD (Indexed Read) Command

Table 7-7. IWRITE (Indexed Write) Command

Description	Write to last address accessed + 1
Operand	Specifies single data byte
Data Returned	None
Opcode	\$19
Command Sequence	
ECHO	

NOTE

A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map.

Description	Reads stack pointer
Operand	None
Data Returned	Returns stack pointer in high byte:low byte order
Opcode	\$0C
Command Sequence	
SENT TO MONITOR READSP ECHO	READSP SP HIGH SP LOW RESULT

Table 7-8. READSP (Read Stack Pointer) Command

Table 7-9. RUN (Run User Program) Command

Description	Executes RTI instruction
Operand	None
Data Returned	None
Opcode	\$28
Command Sequence	
SENT TO MONITOR	
ЕСНО	

7.4 Security

A security feature discourages unauthorized reading of Flash locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6–\$FFFD. Locations \$FFF6–\$FFFD contain user-defined data.

NOTE

Do not leave locations \$FFF6-\$FFFD blank. For security reasons, program locations \$FFF6-\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTB0. If the received bytes match those at locations \$FFF6–\$FFFD, the host bypasses the security feature and can read all Flash locations and execute code from Flash. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 7-7.)

Monitor ROM (MON)

Figure 7-7. Monitor Mode Entry Timing

Upon power-on reset, if the received bytes of the security code do not match the data at locations \$FFF6-\$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a Flash location returns an invalid value and trying to execute code from Flash causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.

NOTE

The MCU does not transmit a break character until after the host sends the eight security bytes.

To determine whether the security code entered is correct, check to see if bit 6 of RAM address \$80 is set. If it is, then the correct security code has been entered and Flash can be accessed.

If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the Flash module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become \$FF (blank).

Chapter 8 Timer Interface Module (TIM)

8.1 Introduction

This section describes the timer interface module (TIM2, Version B). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 8-1 is a block diagram of the TIM.

8.2 Features

Features of the TIM include the following:

- Two input capture/output compare channels
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered pulse width modulation (PWM) signal generation
- Programmable TIM clock input with 7-frequency internal bus clock prescaler selection
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIM counter stop and reset bits

8.3 Pin Name Conventions

The TIM share two I/O pins with two port D I/O pins. The full name of the TIM I/O pins are listed in Table 8-1. The generic pin name appear in the text that follows.

TIM Generic Pin Names:	TCH0	TCH1
Full TIM Pin Names:	PTD4/TCH0	PTD5/TCH1

Table 8-1. Pin Name Conventions

8.4 Functional Description

Figure 8-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence.

The two TIM channels are programmable independently as input capture or output compare channels.

Figure 8-1. TIM Block Diagram

Functional Description

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read:	TOF	TOIL	TOTOD	0	0	DCO	DO1	DCO
\$0020	TIM Status and Control Register (TSC)	Write:	0	TOIE	TSTOP	TRST		PS2	PS1	PS0
	riegister (100)	Reset:	0	0	1	0	0	0	0	0
		Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$0021	TIM Counter Register High (TCNTH)	Write:								
	(10111)	Reset:	0	0	0	0	0	0	0	0
	TIM Osumban Danistan Laur	Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$0022	TIM Counter Register Low (TCNTL)	Write:								
	()	Reset:	0	0	0	0	0	0	0	0
\$0023	TIM Counter Modulo Register	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
φ00 <u>2</u> 0	High (TMODH)	Reset:	1	1	1	1	1	1	1	1
		Read:								
\$0024	TIM Counter Modulo Register	Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ψυσ <u></u> ι	Low (TMODL)	Reset:	1	1	1	1	1	1	1	1
		Read:	1						701/0	
\$0025 TIM Channel 0 Status an		Write:	0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CH0MAX
Control Register (TSC0)	Reset:	0	0	0	0	0	0	0	0	
	\$0026 TIM Channel 0 Register High (TCH0H)		Diste	Dist	Ditto	Ditto	Direct	Disto	Dilo	D'10
\$0026			Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
						Indetermina	te after reset			
		Read:	D:+7	DHC	Dite	Dia	D#0	D:+0	Ditt	D#0
\$0027	TIM Channel 0 Register Low (TCH0L)	Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	(101102)	Reset:				Indetermina	te after reset			<u>. </u>
		Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
\$0028	TIM Channel 1 Status and Control Register (TSC1)	Write:	0	UTTIE		NISTA	ELSID	ELSTA	1001	OTTIVIAA
		Reset:	0	0	0	0	0	0	0	0
\$0029	TIM Channel 1 Register High	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
÷• >= •	(TCH1H)	Reset:		l	I	Indetermina	te after reset		l	<u> </u>
		Read:								
\$002A	TIM Channel 1 Register Low (TCH1L)	Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	· · · · · · · · · · · · · · · · · · ·	Reset:		1		Indetermina	te after reset			
				= Unimp	lemented					
					.	•				

Figure 8-2. TIM I/O Register Summary

Timer Interface Module (TIM)

8.4.1 TIM Counter Prescaler

The TIM clock source is one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source.

8.4.2 Input Capture

With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.

8.4.3 Output Compare

With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.

8.4.3.1 Unbuffered Output Compare

Any output compare channel can generate unbuffered output compare pulses as described in 8.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the output compare value on channel x:

- When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value.
- When changing to a larger output compare value, enable TIM overflow interrupts and write the new
 value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the
 current counter overflow period. Writing a larger value in an output compare interrupt routine (at
 the end of the current pulse) could cause two output compares to occur in the same counter
 overflow period.

8.4.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that

Functional Description

control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

NOTE

In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

8.4.4 Pulse Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 8-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic one. Program the TIM to set the pin if the state of the PWM pulse is logic zero.

The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000 (see 8.9.1 TIM Status and Control Register (TSC)).

The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%.

Timer Interface Module (TIM)

8.4.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in 8.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.

NOTE

In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

8.4.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

NOTE

In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.

8.4.4.3 PWM Initialization

To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure:

- 1. In the TIM status and control register (TSC):
 - a. Stop the TIM counter by setting the TIM stop bit, TSTOP.
 - b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.
- 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period.
- 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.
- 4. In TIM channel x status and control register (TSCx):
 - a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 8-3.)
 - b. Write 1 to the toggle-on-overflow bit, TOVx.
 - c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 8-3.)

NOTE

In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.

Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.

Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output.

Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 8.9.4 TIM Channel Status and Control Registers (TSC0:TSC1).)

Timer Interface Module (TIM)

8.5 Interrupts

The following TIM sources can generate interrupt requests:

- TIM overflow flag (TOF) The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register.
- TIM channel flags (CH1F:CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE=1. CHxF and CHxIE are in the TIM channel x status and control register.

8.6 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

8.6.1 Wait Mode

The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode.

If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

8.6.2 Stop Mode

The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.

8.7 TIM During Break Interrupts

A break interrupt stops the TIM counter.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR).)

To allow software to clear status bits during a break interrupt, write a one to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a zero to the BCFE bit. With BCFE at zero (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at zero. After the break, doing the second step clears the status bit.

8.8 I/O Signals

Port D shares two of its pins with the TIM. The two TIM channel I/O pins are PTD4/TCH0 and PTD5/TCH1.

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTD4/TCH0 can be configured as a buffered output compare or buffered PWM pin.

8.9 I/O Registers

The following I/O registers control and monitor operation of the TIM:

- TIM status and control register (TSC)
- TIM counter registers (TCNTH:TCNTL)
- TIM counter modulo registers (TMODH:TMODL)
- TIM channel status and control registers (TSC0 and TSC1)
- TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)

8.9.1 TIM Status and Control Register (TSC)

The TIM status and control register does the following:

- Enables TIM overflow interrupts
- Flags TIM overflows
- Stops the TIM counter
- Resets the TIM counter
- Prescales the TIM counter clock

Figure 8-4. TIM Status and Control Register (TSC)

TOF — TIM Overflow Flag Bit

This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a zero to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing zero to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.

1 = TIM counter has reached modulo value

0 = TIM counter has not reached modulo value

TOIE — TIM Overflow Interrupt Enable Bit

This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit.

- 1 = TIM overflow interrupts enabled
- 0 = TIM overflow interrupts disabled

Timer Interface Module (TIM)

TSTOP — TIM Stop Bit

This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.

- 1 = TIM counter stopped
- 0 = TIM counter active

NOTE

Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. When the TSTOP bit is set and the timer is configured for input capture operation, input captures are inhibited until the TSTOP bit is cleared.

When using TSTOP to stop the timer counter, see if any timer flags are set. If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the flag, then setting TSTOP again.

TRST — TIM Reset Bit

Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIM counter is reset and always reads as zero. Reset clears the TRST bit.

1 = Prescaler and TIM counter cleared

0 = No effect

NOTE

Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of \$0000.

PS[2:0] — Prescaler Select Bits

These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 8-2 shows. Reset clears the PS[2:0] bits.

PS2	PS1	PS0	TIM Clock Source
0	0	0	Internal Bus Clock ÷ 1
0	0	1	Internal Bus Clock ÷ 2
0	1	0	Internal Bus Clock ÷ 4
0	1	1	Internal Bus Clock ÷ 8
1	0	0	Internal Bus Clock ÷ 16
1	0	1	Internal Bus Clock ÷ 32
1	1	0	Internal Bus Clock ÷ 64
1	1	1	Not available

Table 8-2. Prescaler Selection

I/O Registers

8.9.2 TIM Counter Registers (TCNTH:TCNTL)

The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.

NOTE If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.

8.9.3 TIM Counter Modulo Registers (TMODH:TMODL)

The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.

Figure 8-6. TIM Counter Modulo Registers (TMODH:TMODL)

NOTE Reset the TIM counter before writing to the TIM counter modulo registers.

MC68HC908JL3E Family Data Sheet, Rev. 4

Timer Interface Module (TIM)

8.9.4 TIM Channel Status and Control Registers (TSC0:TSC1)

Each of the TIM channel status and control registers does the following:

- · Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- Selects high, low, or toggling output on output compare
- Selects rising edge, falling edge, or any edge as the active input capture trigger
- Selects output toggling on TIM overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation

Figure 8-7. TIM Channel Status and Control Registers (TSC0:TSC1)

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers.

When TIM CPU interrupt requests are enabled (CHxIE=1), clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a zero to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing zero to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a one to CHxF has no effect.

- 1 = Input capture or output compare on channel x
- 0 = No input capture or output compare on channel x

CHxIE — Channel x Interrupt Enable Bit

This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit.

1 = Channel x CPU interrupt requests enabled

0 = Channel x CPU interrupt requests disabled

I/O Registers

MSxB — Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O.

Reset clears the MSxB bit.

- 1 = Buffered output compare/PWM operation enabled
- 0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:ELSxA \neq 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 8-3.

- 1 = Unbuffered output compare/PWM operation
- 0 = Input capture operation

When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. (See Table 8-3.) Reset clears the MSxA bit.

- 1 = Initial output level low
- 0 = Initial output level high

NOTE

Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 8-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.

MSxB	MSxA	ELSxB	ELSxA	Mode	Configuration						
Х	0	0	0	Output Preset	Pin under Port Control; Initial Output Level High						
Х	1	0	0	Oulput Fleset	Pin under Port Control; Initial Output Level Low						
0	0	0	1		Capture on Rising Edge Only						
0	0	1	0	Input Capture	Capture on Falling Edge Only						
0	0	1	1		Capture on Rising or Falling Edge						
0	1	0	1	Output	Toggle Output on Compare						
0	1	1	0	Compare or	Clear Output on Compare						
0	1	1	1	PWM	Set Output on Compare						
1	Х	0	1	Buffered Output	Toggle Output on Compare						
1	х	1	0	Compare or Buffered	Clear Output on Compare						
1	Х	1	1	PWM	Set Output on Compare						

Table 8-3. Mode, Edge, and Level Selection

NOTE

Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks.

MC68HC908JL3E Family Data Sheet, Rev. 4

Timer Interface Module (TIM)

TOVx — Toggle-On-Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

1 = Channel x pin toggles on TIM counter overflow.

0 = Channel x pin does not toggle on TIM counter overflow.

NOTE

When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time.

CHxMAX — Channel x Maximum Duty Cycle Bit

When the TOVx bit is at one, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 8-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.

Figure 8-8. CHxMAX Latency

I/O Registers

8.9.5 TIM Channel Registers (TCH0H/L:TCH1H/L)

These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read.

In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.

Figure 8-9. TIM Channel Registers (TCH0H/L:TCH1H/L)

Timer Interface Module (TIM)

Chapter 9 Analog-to-Digital Converter (ADC)

9.1 Introduction

This section describes the 12-channel, 8-bit linear successive approximation analog-to-digital converter (ADC).

9.2 Features

Features of the ADC module include:

- 12 channels with multiplexed input
- · Linear successive approximation with monotonicity
- 8-bit resolution
- Single or continuous conversion
- Conversion complete flag or conversion complete interrupt
- Selectable ADC clock

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
\$003C AI		Read:	0000	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0		
	ADC Status and Control Register (ADSCR)	Write:			ADOO		ADOI 10	ADOINZ	Aboin	ADOIN		
		Reset:	0	0	0	1	1	1	1	1		
4.0.0		Read:	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0		
\$003D	ADC Data Register (ADR)	Write:										
	(//2//)	Reset:	Indeterminate after reset									
		Read:	ADIV2	ADIV1	ADIV0	0	0	0	0	0		
\$003E	ADC Input Clock Register (ADICLK)	Write:	ADIVZ	ADIVI	ADIVU							
	(/12/02/14)	Reset:	0	0	0	0	0	0	0	0		
				= Unimpleme	ented							

9.3 Functional Description

Twelve ADC channels are available for sampling external sources at pins PTB0–PTB7 and PTD0–PTD3. An analog multiplexer allows the single ADC converter to select one of the 12 ADC channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is 8 bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 9-2 shows a block diagram of the ADC.

Analog-to-Digital Converter (ADC)

Figure 9-2. ADC Block Diagram

9.3.1 ADC Port I/O Pins

PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register, \$003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O and can be used as general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a 0 if the corresponding DDR bit is at 0. If the DDR bit is at 1, the value in the port data latch is read.

9.3.2 Voltage Conversion

When the input voltage to the ADC equals V_{DD} , the ADC converts the signal to \$FF (full scale). If the input voltage equals V_{SS} , the ADC converts it to \$00. Input voltages between V_{DD} and V_{SS} are a straight-line linear conversion. All other input voltages will result in \$FF if greater than V_{DD} and \$00 if less than V_{SS} .

NOTE

Input voltage should not exceed the analog supply voltages.

9.3.3 Conversion Time

Fourteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1 MHz, then one conversion will take 14μ s to complete. With a 1 MHz ADC internal clock the maximum sample rate is 71.43kHz.

Conversion Time = <u>
14 ADC Clock Cycles</u> ADC Clock Frequency

Number of Bus Cycles = Conversion Time \times Bus Frequency

9.3.4 Continuous Conversion

In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADC status and control register, \$003C) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register.

9.3.5 Accuracy and Precision

The conversion process is monotonic and has no missing codes.

9.4 Interrupts

When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.

9.5 Low-Power Modes

The following subsections describe the ADC in low-power modes.

9.5.1 Wait Mode

The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to 1's before executing the WAIT instruction.

Analog-to-Digital Converter (ADC)

9.5.2 Stop Mode

The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode.

9.6 I/O Signals

The ADC module has 12 channels that are shared with I/O port B and port D.

9.6.1 ADC Voltage In (ADCVIN)

ADCVIN is the input voltage signal from one of the 12 ADC channels to the ADC module.

9.7 I/O Registers

These I/O registers control and monitor ADC operation:

- ADC status and control register (ADSCR)
- ADC data register (ADR)
- ADC clock register (ADICLK)

9.7.1 ADC Status and Control Register

The following paragraphs describe the function of the ADC status and control register.

Figure 9-3. ADC Status and Control Register (ADSCR)

COCO — Conversions Complete Bit

When the AIEN bit is a 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read. Reset clears this bit.

1 = Conversion completed (AIEN = 0)

0 = Conversion not completed (AIEN = 0)

When the AIEN bit is a 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be 0 when read.

AIEN — ADC Interrupt Enable Bit

When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.

1 = ADC interrupt enabled

0 = ADC interrupt disabled

ADCO — ADC Continuous Conversion Bit

When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.

1 = Continuous ADC conversion

0 = One ADC conversion

ADCH[4:0] — ADC Channel Select Bits

ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select bits are detailed in the following table. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a 1.

NOTE

Recovery from the disabled state requires one conversion cycle to stabilize.

ADCH4	ADCH3	ADCH2	ADCH1	ADCH0	ADC Channel	Input Select
0	0	0	0	0	ADC0	PTB0
0	0	0	0	1	ADC1	PTB1
0	0	0	1	0	ADC2	PTB2
0	0	0	1	1	ADC3	PTB3
0	0	1	0	0	ADC4	PTB4
0	0	1	0	1	ADC5	PTB5
0	0	1	1	0	ADC6	PTB6
0	0	1	1	1	ADC7	PTB7
0	1	0	0	0	ADC8	PTD3
0	1	0	0	1	ADC9	PTD2
0	1	0	1	0	ADC10	PTD1
0	1	0	1	1	ADC11	PTD0
0	1	1	0	0		
:	:	:	:	:	—	Unused (see Note 1)
1	1	0	1	0		
1	1	0	1	1	—	Reserved
1	1	1	0	0	—	Unused
1	1	1	0	1		V _{DDA} (see Note 2)
1	1	1	1	0		V _{SSA} (see Note 2)
1	1	1	1	1		ADC power off

Table 9-1. MUX Channel Select

1. If any unused channels are selected, the resulting ADC conversion will be unknown.

2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications.

Analog-to-Digital Converter (ADC)

9.7.2 ADC Data Register

One 8-bit result register is provided. This register is updated each time an ADC conversion completes.

Figure 9-4. ADC Data Register (ADR)

9.7.3 ADC Input Clock Register

This register selects the clock frequency for the ADC

Figure 9-5. ADC Input Clock Register (ADICLK)

ADIV[2:0] — ADC Clock Prescaler Bits

ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 9-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz.

ADIV2	ADIV1	ADIV0	ADC Clock Rate
0	0	0	ADC Input Clock ÷ 1
0	0	1	ADC Input Clock ÷ 2
0	1	0	ADC Input Clock ÷ 4
0	1	1	ADC Input Clock ÷ 8
1	Х	Х	ADC Input Clock ÷ 16

Table 9-2. ADC Clock Divide Ratio

X = don't care

Chapter 10 Input/Output (I/O) Ports

10.1 Introduction

Twenty three (23) bidirectional input-output (I/O) pins form three parallel ports. All I/O pins are programmable as inputs or outputs.

NOTE

Connect any unused I/O pins to an appropriate logic level, either V_{DD} or V_{SS} . Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.

20-pin devices have non-bonded pins. These pins should be configured either as outputs driving low or high, or as inputs with internal pullups enabled. Configuring these non-bonded pins in this manner will prrevent any excess current compsumption caused by floating inputs.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0			
		Read:	0	PTA6	PTA5	PTA4	PTA3	PTA2	PTA1	PTA0			
\$0000	Port A Data Register (PTA)	Write:		TIAU	1 1/10	1174	1173	1172		1170			
	()	Reset:		Unaffected by reset									
	Port B Data Register	Read:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0			
\$0001	(PTB)	Write:											
	× 7	Reset:				Unaffecte	d by reset						
\$0003	Port D Data Pagistar	Read:	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0			
	Port D Data Register (PTD)	Write:	1107	1120	1120	1101	1120	1102	1101	1150			
	()	Reset:	Unaffected by reset										
	Data Divertian Desister A	Read:	0	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0			
\$0004	Data Direction Register A (DDRA)	Write:		DDRAU	DDHAS	DDNA4	DDRAS	DDRAZ	DDRAT	DDIAU			
	()	Reset:	0	0	0	0	0	0	0	0			
	Data Disatian Daviatan D	Read:	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0			
\$0005	Data Direction Register B (DDRB)	Write:	וטווטט	DUIDO	DDI105		DDI100	DDNDZ	DUIDI	DDI100			
	()	Reset:	0	0	0	0	0	0	0	0			
\$0007	Data Direction Desister D	Read:	DDRD7	DDRD6	DDRD5	DDRD4	DDRD3	DDRD2	DDRD1	DDRD0			
	Data Direction Register D (DDRD)	Write:	22.107	22.100	50105	00104	551100	DBRDZ		DDIDU			
		Reset:	0	0	0	0	0	0	0	0			

Figure 10-1. I/O Port Register Summary

MC68HC908JL3E Family Data Sheet, Rev. 4

Input/Output (I/O) Ports

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read:	0	0	0	0	SLOWD7	SLOWD6	PTDPU7	PTDPU6
\$000A	Port D Control Register (PDCR)	Write:					SLOWD/	OLOWDO	FIDFUI	TIDIOU
		Reset:	0	0	0	0	0	0	0	0
\$000D	Port A Input Pull-up Enable Register	Read: Write:	PTA6EN	PTAPUE6	PTAPUE5	PTAPUE4	PTAPUE3	PTAPUE2	PTAPUE1	PTAPUE0
	(PTAPUE)	Reset:	0	0	0	0	0	0	0	0
				= Unimpleme	ented					

Figure 10-1. I/O Port Register Summary

				Module Control		
Port	Bit	DDR	Module	Register	Control Bit	Pin
	0	DDRA0			KBIE0	PTA0/KBI0
	1	DDRA1			KBIE1	PTA1/KBI1
	2	DDRA2	KBI		KBIE2	PTA2/KBI2
А	3	DDRA3	KDI	KBIER (\$001B)	KBIE3	PTA3/KBI3
A	4	DDRA4			KBIE4	PTA4/KBI4
	5	DDRA5			KBIE5	PTA5/KBI5
	6	DDRA6	OSC KBI	PTAPUE (\$000D) KBIER (\$001B)	PTA6EN KBIE6	RCCLK/PTA6/KBI6 ⁽¹⁾
	0	DDRB0				PTB0/ADC0
	1	DDRB1				PTB1/ADC1
	2	DDRB2				PTB2/ADC2
В	3	DDRB3	ADC	ADSCR (\$003C)		PTB3/ADC3
В	4	DDRB4	ADC		ADCH[4:0]	PTB4/ADC4
	5	DDRB5				PTB5/ADC5
	6	DDRB6				PTB6/ADC6
	7	DDRB7				PTB7/ADC7
	0	DDRD0				PTD0/ADC11
	1	DDRD1	ADC	ADSCR (\$003C)	ADCH[4:0]	PTD1/ADC10
	2	DDRD2	ADC		ADCH[4.0]	PTD2/ADC9
D	3	DDRD3				PTD3/ADC8
U	4	DDRD4	TIM	TSC0 (\$0025)	ELS0B:ELS0A	PTD4/TCH0
	5	DDRD5		TSC1 (\$0028)	ELS1B:ELS1A	PTD5/TCH1
	6	DDRD6	—			PTD6
	7	DDRD7	_	—	_	PTD7

Table 10-1. Port Control Register Bits Summary

1. RCCLK/PTA6/KBI6 pin is only available on MC68HRC908JL3E/JK3E/JK1E devices (RC option); PTAPUE register has priority control over the port pin.

RCCLK/PTA6/KBI6 is the OSC2 pin on MC68HC908JL3E/JK3E/JK1E devices (X-TAL option).

MC68HC908JL3E Family Data Sheet, Rev. 4

10.2 Port A

Port A is an 7-bit special function port that shares all seven of its pins with the keyboard interrupt (KBI) module (see Chapter 12 Keyboard Interrupt Module (KBI)). Each port A pin also has software configurable pull-up device if the corresponding port pin is configured as input port. PTA0 to PTA5 has direct LED drive capability.

NOTE

PTA0–PTA5 pins are available on MC68H(R)C908JL3E only. PTA6 pin is available on MC68HRC908JL3E/JK3E/JK1E only.

10.2.1 Port A Data Register (PTA)

The port A data register (PTA) contains a data latch for each of the seven port A pins.

= Unimplemented

Figure 10-2. Port A Data Register (PTA)

PTA[6:0] — Port A Data Bits

These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

KBI[6:0] — Port A Keyboard Interrupts

The keyboard interrupt enable bits, KBIE[6:0], in the keyboard interrupt control register (KBIER) enable the port A pins as external interrupt pins, (see Chapter 12 Keyboard Interrupt Module (KBI)).

Input/Output (I/O) Ports

10.2.2 Data Direction Register A (DDRA)

Data direction register A determines whether each port A pin is an input or an output. Writing a one to a DDRA bit enables the output buffer for the corresponding port A pin; a zero disables the output buffer.

Figure 10-3. Data Direction Register A (DDRA)

DDRA[6:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[6:0], configuring all port A pins as inputs.

1 = Corresponding port A pin configured as output

0 = Corresponding port A pin configured as input

NOTE Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 10-4 shows the port A I/O logic.

Figure 10-4. Port A I/O Circuit

When DDRAx is a 1, reading address \$0000 reads the PTAx data latch. When DDRAx is a 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit.

10.2.3 Port A Input Pull-up Enable Register (PTAPUE)

The port A input pull-up enable register (PTAPUE) contains a software configurable pull-up device for each of the seven port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx be configured as input. Each pull-up device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output.

Figure 10-5. Port A Input Pull-up Enable Register (PTAPUE)

PTA6EN — Enable PTA6 on OSC2

This read/write bit configures the OSC2 pin function when RC oscillator option is selected. This bit has no effect for X-tal oscillator option.

- 1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and pull-up functions
- 0 = OSC2 pin outputs the RC oscillator clock (RCCLK)

PTAPUE[6:0] — Port A Input Pull-up Enable Bits

These read/write bits are software programmable to enable pull-up devices on port A pins

- 1 = Corresponding port A pin configured to have internal pull-up if its DDRA bit is set to 0
- 0 = Pull-up device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit

 Table 10-2 summarizes the operation of the port A pins.

PTAPUE Bit	DDRA	PTA Bit	I/O Pin Mode	Accesses to DDRA	Access	es to PTA
	Bit	FIADI		Read/Write	Read	Write
1	0	X ⁽¹⁾	Input, V _{DD} ⁽²⁾	DDRA[6:0]	Pin	PTA[6:0] ⁽³⁾
0	0	х	Input, Hi-Z ⁽⁴⁾	DDRA[6:0]	Pin	PTA[6:0] ⁽³⁾
Х	1	х	Output	DDRA[6:0]	PTA[6:0]	PTA[6:0]

Table 10-2. Port A Pin Functions

1. X = Don't care.

2. I/O pin pulled to $V_{\mbox{\scriptsize DD}}$ by internal pull-up.

3. Writing affects data register, but does not affect input.

4. Hi-Z = High Impedance.

Input/Output (I/O) Ports

10.3 Port B

Port B is an 8-bit special function port that shares all eight of its port pins with the analog-to-digital converter (ADC) module, see Chapter 9 Analog-to-Digital Converter (ADC).

10.3.1 Port B Data Register (PTB)

The port B data register contains a data latch for each of the eight port B pins.

Address:	\$0001								
	Bit 7	6	5	4	3	2	1	Bit 0	
Read: Write:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0	
Reset:		Unaffected by reset							
Alternative Function:	ADC7	ADC6	AD4C5	ADC4	ADC3	ADC2	ADC2	ADC0	
-	_				/				

Figure 10-6. Port B Data Register (PTB)

PTB[7:0] — Port B Data Bits

These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.

ADC[7:0] - ADC channels 7 to 0

ADC[7:0] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Chapter 9 Analog-to-Digital Converter (ADC).

10.3.2 Data Direction Register B (DDRB)

Data direction register B determines whether each port B pin is an input or an output. Writing a one to a DDRB bit enables the output buffer for the corresponding port B pin; a zero disables the output buffer.

Address: \$0005

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0
Reset:	0	0	0	0	0	0	0	0

Figure 10-7. Data Direction Register B (DDRB)

DDRB[7:0] — Data Direction Register B Bits

These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs.

1 = Corresponding port B pin configured as output

0 = Corresponding port B pin configured as input

NOTE

Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1.

Figure 10-8. Port B I/O Circuit

When DDRBx is a 1, reading address \$0001 reads the PTBx data latch. When DDRBx is a 0, reading address \$0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 10-3 summarizes the operation of the port B pins.

Table 10-3. Port B Pin Functions	Table	10-3.	Port B	Pin	Functions
----------------------------------	-------	-------	--------	-----	------------------

DDRB Bit PTB Bit I/C	PTR Bit	I/O Pin Mode	Accesses to DDRB	Accesses to PTB	
		Read/Write	Read	Write	
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRB[7:0]	Pin	PTB[7:0] ⁽³⁾
1	Х	Output	DDRB[7:0]	Pin	PTB[7:0]

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect the input.

Input/Output (I/O) Ports

10.4 Port D

Port D is an 8-bit special function port that shares two of its pins with timer interface module, (see Chapter 8 Timer Interface Module (TIM)) and shares four of its pins with analog-to-digital converter module (see Chapter 9 Analog-to-Digital Converter (ADC)). PTD6 and PTD7 each has high current drive (25mA sink) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED driving (sink) capability.

NOTE PTD0–PTD1 are available on MC68H(R)C908JL3E only.

10.4.1 Port D Data Register (PTD)

The port D data register contains a data latch for each of the eight port D pins.

Address:	\$0003							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0
Write: Reset:				Unoffecto	d by reset			
				Unanecie	u by lesel			
Additional Functions:	LED (Sink)	LED (Sink)			LED (Sink)	LED (Sink)		
	(Chint)	(0)		-	. ,	. ,		
					ADC8	ADC9	ADC10	ADC11
			TCH1	TCH0				
	25mA sink (Slow Edge)	25mA sink (Slow Edge)						
	5k pull-up	5k pull-up						

= Unimplemented

Figure 10-9. Port D Data Register (PTD)

PTD[7:0] — Port D Data Bits

These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data.

ADC[11:8] — ADC channels 11 to 8

ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Chapter 9 Analog-to-Digital Converter (ADC).

TCH[1:0] — Timer Channel I/O

The TCH1 and TCH0 pins are the TIM input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD4/TCH0 and PTD5/TCH1 pins are timer channel I/O pins or general-purpose I/O pins. See Chapter 8 Timer Interface Module (TIM).

10.4.2 Data Direction Register D (DDRD)

Data direction register D determines whether each port D pin is an input or an output. Writing a one to a DDRD bit enables the output buffer for the corresponding port D pin; a zero disables the output buffer.

Figure 10-10. Data Direction Register D (DDRD)

DDRD[7:0] — Data Direction Register D Bits

These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs.

1 = Corresponding port D pin configured as output

0 = Corresponding port D pin configured as input

NOTE

Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 10-11 shows the port D I/O logic.

Figure 10-11. Port D I/O Circuit

When DDRDx is a 1, reading address \$0003 reads the PTDx data latch. When DDRDx is a 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 10-4 summarizes the operation of the port D pins.

DDRD Bit	DDRD Bit PTD Bit		Accesses to DDRD	Accesses to PTD		
Dit	Dit		Read/Write	Read	Write	
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRD[7:0]	Pin	PTD[7:0] ⁽³⁾	
1	Х	Output	DDRD[7:0]	Pin	PTD[7:0]	

Table 10-4. Port D Pin Functions

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect the input.

10.4.3 Port D Control Register (PDCR)

The port D control register enables/disables the pull-up resistor and slow-edge high current capability of pins PTD6 and PTD7.

Figure 10-12. Port D Control Register (PDCR)

SLOWDx — Slow Edge Enable

The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain, high current output (25mA sink) of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx.

- 1 = Slow edge enabled; pin is open-drain output
- 0 = Slow edge disabled; pin is push-pull

PTDPUx — Pull-up Enable

The PTDPU6 and PTDPU7 bits enable the $5k\Omega$ pull-up on PTD6 and PTD7 respectively, regardless the status of DDRDx bit.

- 1 = Enable $5k\Omega$ pull-up
- $0 = \text{Disable } 5 \text{k}\Omega \text{ pull-up}$

Chapter 11 External Interrupt (IRQ)

11.1 Introduction

The IRQ (external interrupt) module provides a maskable interrupt input.

11.2 Features

Features of the IRQ module include the following:

- A dedicated external interrupt pin, IRQ
- IRQ interrupt control bits
- Hysteresis buffer
- Programmable edge-only or edge and level interrupt sensitivity
- Automatic interrupt acknowledge
- Selectable internal pullup resistor

11.3 Functional Description

A logic zero applied to the external interrupt pin can latch a CPU interrupt request. Figure 11-1 shows the structure of the IRQ module.

Interrupt signals on the \overline{IRQ} pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs:

- Vector fetch A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch.
- Software clear Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (INTSCR). Writing a one to the ACK bit clears the IRQ latch.
- Reset A reset automatically clears the interrupt latch.

The external interrupt pin is falling-edge-triggered and is software-configurable to be either falling-edge or falling-edge and low-level-triggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin.

When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs.

When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set until both of the following occur:

- Vector fetch or software clear
- Return of the interrupt pin to logic one

External Interrupt (IRQ)

The vector fetch or software clear may occur before or after the interrupt pin returns to one. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.

When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.

NOTE The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See 5.5 Exception Control.

Figure 11-1. IRQ Module Block Diagram

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read:	0	0	0	0	IRQF	0	IMASK	MODE
\$001D IRQ Status and Control Register (INTSCR)	Write:						ACK	IWAGK	WODE	
		Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented					

Figure 11-2. IRQ I/O Register Summary

11.3.1 IRQ Pin

A zero on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.

If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-level-sensitive. With MODE set, both of the following actions must occur to clear IRQ:

- Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations \$FFFA and \$FFFB.
- Return of the IRQ pin to logic one As long as the IRQ pin is at logic zero, IRQ remains active.

The vector fetch or software clear and the return of the \overline{IRQ} pin to logic one may occur in any order. The interrupt request remains pending as long as the \overline{IRQ} pin is at logic zero. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.

If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch.

The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred.

Use the BIH or BIL instruction to read the logic level on the IRQ pin.

NOTE

When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine.

NOTE

An internal pull-up resistor to V_{DD} is connected to the \overline{IRQ} pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register (\$001E).

11.4 IRQ Module During Break Interrupts

The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Chapter 5 System Integration Module (SIM).)

To allow software to clear the IRQ latch during a break interrupt, write a one to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the latches during the break state, write a zero to the BCFE bit. With BCFE at zero (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch.

11.5 IRQ Status and Control Register (INTSCR)

The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR has the following functions:

- Shows the state of the IRQ flag
- Clears the IRQ latch
- Masks IRQ and interrupt request
- Controls triggering sensitivity of the IRQ interrupt pin

Figure 11-3. IRQ Status and Control Register (INTSCR)

IRQF — **IRQ** Flag

This read-only status bit is high when the IRQ interrupt is pending.

- $1 = \overline{IRQ}$ interrupt pending
- $0 = \overline{IRQ}$ interrupt not pending

ACK — IRQ Interrupt Request Acknowledge Bit

Writing a one to this write-only bit clears the IRQ latch. ACK always reads as zero. Reset clears ACK.

IMASK — IRQ Interrupt Mask Bit

Writing a one to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.

- 1 = IRQ interrupt requests disabled
- 0 = IRQ interrupt requests enabled

MODE — IRQ Edge/Level Select Bit

This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.

- $1 = \overline{IRQ}$ interrupt requests on falling edges and low levels
- $0 = \overline{IRQ}$ interrupt requests on falling edges only

Figure 11-4. Configuration Register 2 (CONFIG2)

IRQPUD — IRQ Pin Pull-up control bit

- 1 = Internal pull-up is disconnected
- 0 = Internal pull-up is connected between \overline{IRQ} pin and V_{DD}

MC68HC908JL3E Family Data Sheet, Rev. 4

Chapter 12 Keyboard Interrupt Module (KBI)

12.1 Introduction

The keyboard interrupt module (KBI) provides seven independently maskable external interrupts which are accessible via PTA0–PTA6 pins.

12.2 Features

Features of the keyboard interrupt module include the following:

- Seven keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
- Software configurable pull-up device if input pin is configured as input port bit
- Programmable edge-only or edge- and level- interrupt sensitivity
- Exit from low-power modes

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$001A Keyboard Status and Control Register (KBSCR)	Read:	0	0	0	0	KEYF	0	IMASKK	MODEK	
	Write:						ACKK	INIAGRA	WODER	
		Reset:	0	0	0	0	0	0	0	0
		Read:	0	KDIEO	KDIEC	KBIE4	KBIE3			KBIE0
\$001B Keyboard Interrupt Enable Register (KBIER)	Write:		KBIE6	KBIE5	NDIE4	KDIE3	KBIE2	KBIE1	NDIEU	
		Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented					

Figure 12-1. KBI I/O Register Summary

12.3 I/O Pins

The seven keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 12-1. The generic pin name appear in the text that follows.

Table 12-1. Pin Name Conventions

KBI Generic Pin Name	Full MCU Pin Name	Pin Selected for KBI Function by KBIEx Bit in KBIER
KBI0–KBI5	PTA0/KBI0–PTA5/KBI5	KBIE0–KBIE5
KBI6	RCCLK/PTA6/KBI6 ⁽¹⁾	KBIE6

1. RCCLK/PTA6/KBI6 pin is only available on MC68HRC908JL3E/JK3E/JK1E devices (RC option).

MC68HC908JL3E Family Data Sheet, Rev. 4

12.4 Functional Description

Writing to the KBIE6–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pull-up device irrespective of PTAPUEx bits in the port A input pull-up enable register (see 10.2.3 Port A Input Pull-up Enable Register (PTAPUE)). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request.

A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.

- If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low.
- If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low.

If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request:

- Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations \$FFE0 and \$FFE1.
- Return of all enabled keyboard interrupt pins to logic 1 As long as any enabled keyboard interrupt pin is at 0, the keyboard interrupt remains set.

The vector fetch or software clear and the return of all enabled keyboard interrupt pins to 1 may occur in any order.

If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request.

Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at 0.

The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred.

To determine the logic level on a keyboard interrupt pin, disable the pull-up device, use the data direction register to configure the pin as an input and then read the data register.

NOTE

Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a 0 for software to read the pin.

12.4.1 Keyboard Initialization

When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled.

To prevent a false interrupt on keyboard initialization:

- 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.
- 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
- 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.
- 4. Clear the IMASKK bit.

An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load.

Another way to avoid a false interrupt:

- 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction register A.
- 2. Write 1s to the appropriate port A data register bits.
- 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.

12.5 Keyboard Interrupt Registers

Two registers control the operation of the keyboard interrupt module:

- Keyboard status and control register
- Keyboard interrupt enable register

Keyboard Interrupt Module (KBI)

12.5.1 Keyboard Status and Control Register

- Flags keyboard interrupt requests
- Acknowledges keyboard interrupt requests
- Masks keyboard interrupt requests
- Controls keyboard interrupt triggering sensitivity

Figure 12-3. Keyboard Status and Control Register (KBSCR)

KEYF — Keyboard Flag Bit

This read-only bit is set when a keyboard interrupt is pending on port-A. Reset clears the KEYF bit.

- 1 = Keyboard interrupt pending
- 0 = No keyboard interrupt pending

ACKK — Keyboard Acknowledge Bit

Writing a 1 to this write-only bit clears the keyboard interrupt request on port-A. ACKK always reads as 0. Reset clears ACKK.

IMASKK— Keyboard Interrupt Mask Bit

Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port-A. Reset clears the IMASKK bit.

- 1 = Keyboard interrupt requests masked
- 0 = Keyboard interrupt requests not masked

MODEK — Keyboard Triggering Sensitivity Bit

This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port-A. Reset clears MODEK.

- 1 = Keyboard interrupt requests on falling edges and low levels
- 0 = Keyboard interrupt requests on falling edges only

12.5.2 Keyboard Interrupt Enable Register

The port-A keyboard interrupt enable register enables or disables each port-A pin to operate as a keyboard interrupt pin.

Figure 12-4. Keyboard Interrupt Enable Register (KBIER)

KBIE6–KBIE0 — Port-A Keyboard Interrupt Enable Bits

Each of these read/write bits enables the corresponding keyboard interrupt pin on port-A to latch interrupt requests. Reset clears the keyboard interrupt enable register.

1 = KBIx pin enabled as keyboard interrupt pin

0 = KBIx pin not enabled as keyboard interrupt pin

12.6 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

12.6.1 Wait Mode

The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.

12.6.2 Stop Mode

The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.

12.7 Keyboard Module During Break Interrupts

The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state.

To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.

Keyboard Interrupt Module (KBI)

Chapter 13 Computer Operating Properly (COP)

13.1 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG1 register.

13.2 Functional Description

NOTE: See Chapter 5 System Integration Module (SIM) for more details.

MC68HC908JL3E Family Data Sheet, Rev. 4

Computer Operating Properly (COP)

The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176 2OSCOUT cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 262,128 2OSCOUT cycle overflow option, a 8MHz crystal gives a COP timeout period of 32.766 ms. Writing any value to location \$FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter.

NOTE

Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow.

A COP reset pulls the \overline{RST} pin low for 32 × 20SCOUT cycles and sets the COP bit in the reset status register (RSR). (See 5.7.2 Reset Status Register (RSR).).

NOTE

Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.

13.3 I/O Signals

The following paragraphs describe the signals shown in Figure 13-1.

13.3.1 2OSCOUT

2OSCOUT is the oscillator output signal. 2OSCOUT frequency is equal to the crystal frequency or the RC-oscillator frequency.

13.3.2 COPCTL Write

Writing any value to the COP control register (COPCTL) (see 13.4 COP Control Register) clears the COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector.

13.3.3 Power-On Reset

The power-on reset (POR) circuit in the SIM clears the SIM counter 4096×20 SCOUT cycles after power-up.

13.3.4 Internal Reset

An internal reset clears the SIM counter and the COP counter.

13.3.5 Reset Vector Fetch

A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter.

13.3.6 COPD (COP Disable)

The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG). (See Chapter 3 Configuration Registers (CONFIG).)

13.3.7 COPRS (COP Rate Select)

The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1.

Figure 13-2. Configuration Register 1 (CONFIG1)

COPRS — COP Rate Select Bit

COPRS selects the COP timeout period. Reset clears COPRS.

- 1 = COP timeout period is 8176 × 20SCOUT cycles
- 0 = COP timeout period is 262,128 × 20SCOUT cycles

COPD — COP Disable Bit

COPD disables the COP module.

- 1 = COP module disabled
- 0 = COP module enabled

13.4 COP Control Register

The COP control register is located at address \$FFFF and overlaps the reset vector. Writing any value to \$FFFF clears the COP counter and starts a new timeout period. Reading location \$FFFF returns the low byte of the reset vector.

Figure 13-3. COP Control Register (COPCTL)

13.5 Interrupts

The COP does not generate CPU interrupt requests.

13.6 Monitor Mode

The COP is disabled in monitor mode when V_{TST} is present on the \overline{IRQ} pin or on the \overline{RST} pin.

13.7 Low-Power Modes

The WAIT and STOP instructions put the MCU in low-power consumption standby modes.

MC68HC908JL3E Family Data Sheet, Rev. 4

Computer Operating Properly (COP)

13.7.1 Wait Mode

The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.

13.7.2 Stop Mode

Stop mode turns off the 2OSCOUT input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.

13.8 COP Module During Break Mode

The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin.

Chapter 14 Low Voltage Inhibit (LVI)

14.1 Introduction

This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the V_{DD} pin and generates a reset when the V_{DD} voltage falls to the LVI trip (LVI_{TRIP}) voltage.

14.2 Features

Features of the LVI module include the following:

- Selectable LVI trip voltage
- Selectable LVI circuit disable

14.3 Functional Description

Figure 14-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to monitor V_{DD} voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine at which V_{DD} level the LVI module should take actions.

The LVI module generates one output signal:

LVI Reset — an reset signal will be generated to reset the CPU when V_{DD} drops to below the set trip point.

Figure 14-1. LVI Module Block Diagram

Low Voltage Inhibit (LVI)

14.4 LVI Control Register (CONFIG2/CONFIG1)

The LVI module is controlled by three bits in the configuration registers, CONFIG1 and CONFIG2.

Figure 14-3. Configuration Register 1 (CONFIG1)

LVID — Low Voltage Inhibit Disable Bit

1 = Low voltage inhibit disabled

0 = Low voltage inhibit enabled

LVIT1, LVIT0 — LVI Trip Voltage Selection

These two bits determine at which level of V_{DD} the LVI module will come into action. LVIT1 and LVIT0 are cleared by a Power-On Reset only.

LVIT1	LVIT0	Trip Voltage ⁽¹⁾	Comments
0	0	V _{LVR3} (2.4V)	For V _{DD} =3V operation
0	1	V _{LVR3} (2.4V)	For V _{DD} =3V operation
1	0	V _{LVR5} (4.0V)	For V _{DD} =5V operation
1	1	Reserved	

1. See Chapter 16 Electrical Specifications for full parameters.

14.5 Low-Power Modes

The STOP and WAIT instructions put the MCU in low-power-consumption standby modes.

14.5.1 Wait Mode

The LVI module, when enabled, will continue to operate in WAIT Mode.

14.5.2 Stop Mode

The LVI module, when enabled, will continue to operate in STOP Mode.

MC68HC908JL3E Family Data Sheet, Rev. 4

Chapter 15 Break Module (BREAK)

15.1 Introduction

This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.

15.2 Features

Features of the break module include the following:

- Accessible I/O registers during the break Interrupt
- CPU-generated break interrupts
- Software-generated break interrupts
- COP disabling during break interrupts

15.3 Functional Description

When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode).

The following events can cause a break interrupt to occur:

- A CPU-generated address (the address in the program counter) matches the contents of the break address registers.
- Software writes a one to the BRKA bit in the break status and control register.

When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 15-1 shows the structure of the break module.

Figure 15-1. Break Module Block Diagram

MC68HC908JL3E Family Data Sheet, Rev. 4

Break Module (BREAK)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	Break Status Register (BSR)	Read: Write:	R	R	R	R	R	R	SBSW See note	R
()	Reset:							0		
\$FE03	Break Flag Control Register	Read: Write:	BCFE	R	R	R	R	R	R	R
(BFCR)	Reset:	0								
Break Address High \$FE0C Register	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	(BRKH)	Reset:	0	0	0	0	0	0	0	0
\$FE0D	Break Address low Register	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	(BRKL)	Reset:	0	0	0	0	0	0	0	0
	Break Status and Control	Read:	BRKE	BRKA	0	0	0	0	0	0
\$FE0E Register	Write:	DAKE	DHNA							
	(BRKSCR)	Reset:	0	0	0	0	0	0	0	0
Note: Writin	ng a 0 clears SBSW.			= Unimplem	ented	R	= Reserved			

Figure 15-2. Break I/O Register Summary

15.3.1 Flag Protection During Break Interrupts

The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR) and see the Break Interrupts subsection for each module.)

15.3.2 CPU During Break Interrupts

The CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD (\$FEFC:\$FEFD in monitor mode)

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

15.3.3 TIM During Break Interrupts

A break interrupt stops the timer counter.

15.3.4 COP During Break Interrupts

The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin.

15.4 Break Module Registers

These registers control and monitor operation of the break module:

- Break status and control register (BRKSCR)
- Break address register high (BRKH)
- Break address register low (BRKL)
- Break status register (BSR)
- Break flag control register (BFCR)

15.4.1 Break Status and Control Register (BRKSCR)

The break status and control register contains break module enable and status bits.

Figure 15-3. Break Status and Control Register (BRKSCR)

BRKE — Break Enable Bit

This read/write bit enables breaks on break address register matches. Clear BRKE by writing a zero to bit 7. Reset clears the BRKE bit.

- 1 = Breaks enabled on 16-bit address match
- 0 = Breaks disabled

BRKA — Break Active Bit

This read/write status and control bit is set when a break address match occurs. Writing a one to BRKA generates a break interrupt. Clear BRKA by writing a zero to it before exiting the break routine. Reset clears the BRKA bit.

1 = Break address match

0 = No break address match

Break Module (BREAK)

15.4.2 Break Address Registers

The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.

15.4.3 Break Status Register

The break status register contains a flag to indicate that a break caused an exit from wait mode.

Figure 15-6. Break Status Register (BSR)

SBSW — SIM Break Stop/Wait

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it.

1 = Wait mode was exited by break interrupt

0 = Wait mode was not exited by break interrupt

15.4.4 Break Flag Control Register (BFCR)

The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.

Figure 15-7. Break Flag Control Register (BFCR)

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

- 1 = Status bits clearable during break
- 0 = Status bits not clearable during break

15.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low-power-consumption standby modes.

15.5.1 Wait Mode

If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see 5.6 Low-Power Modes). Clear the SBSW bit by writing zero to it.

15.5.2 Stop Mode

A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 5.7 SIM Registers.

Break Module (BREAK)

Chapter 16 Electrical Specifications

16.1 Introduction

This section contains electrical and timing specifications.

16.2 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

NOTE

This device is not guaranteed to operate properly at the maximum ratings. Refer to 16.5 5V DC Electrical Characteristics and 16.8 3V DC Electrical Characteristics for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +6.0	V
Input voltage	V _{IN}	V_{SS} –0.3 to V_{DD} +0.3	V
Mode entry voltage, IRQ pin	V _{TST}	V _{SS} -0.3 to +8.5	V
Maximum current per pin excluding V_{DD} and V_{SS}	I	±25	mA
Storage temperature	T _{STG}	-55 to +150	°C
Maximum current out of V _{SS}	I _{MVSS}	100	mA
Maximum current into V _{DD}	I _{MVDD}	100	mA

Table 16-1. Absolute Maximum Ratings

1. Voltages referenced to V_{SS} .

NOTE

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{IN} and V_{OUT} be constrained to the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD} .)

16.3 Functional Operating Range

Table 16-2. Operating Range

Characteristic	Symbol	Va	lue	Unit
Operating temperature range	T _A	-40 to +125	-40 to +85	°C
Operating voltage range	V _{DD}	5 ±10%	3±10%	V

16.4 Thermal Characteristics

Table 16-3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance			
20-pin PDIP		70	°C/W
20-pin SOIC	ρ	70	°C/W
28-pin PDIP	θ_{JA}	70	°C/W
28-pin SOIC		70	°C/W
48-pin LQFP		80	°C/W
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽¹⁾	P _D	$\begin{split} P_D &= (I_DD \times V_DD) + P_I/O = \\ & K/(T_J + 273 \ ^\circC) \end{split}$	w
Constant ⁽²⁾	К	$P_{D} \times (T_{A} + 273 \text{ °C}) + P_{D}^{2} \times \theta_{JA}$	W/°C
Average junction temperature	TJ	$T_A + (P_D \times \theta_{JA})$	°C

1. Power dissipation is a function of temperature.

2. K constant unique to the device. K can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A .

16.5 5V DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output high voltage (I _{LOAD} = -2.0mA) PTA0-PTA6, PTB0-PTB7, PTD0-PTD7	V _{OH}	V _{DD} -0.8	_	_	v
Output low voltage (I _{LOAD} = 1.6mA) PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5	V _{OL}	_	_	0.4	V
Output low voltage (I _{LOAD} = 25mA) PTD6, PTD7	V _{OL}	_	_	0.5	V
LED drives (V _{OL} = 3V) PTA0–PTA5, PTD2, PTD3, PTD6, PTD7	I _{OL}	10	16	22	mA
Input high voltage PTA0–PTA6, PTB0–PTB7, PTD0–PTD7, RST, IRQ, OSC1	V _{IH}	$0.7 imes V_{DD}$	_	V _{DD}	v
Input low voltage PTA0-PTA6, PTB0-PTB7, PTD0-PTD7, RST, IRQ, OSC1	V _{IL}	V _{SS}	_	$0.3 imes V_{DD}$	v
$\label{eq:VDD} \begin{array}{l} V_{DD} \mbox{ supply current, } f_{OP} = 4\mbox{ MHz} \\ \mbox{Run}^{(3)} \\ MC68HC908JL3E/JK3E/JK1E \\ MC68HRC908JL3E/JK3E/JK1E \\ \mbox{Wait}^{(4)} \\ MC68HC908JL3E/JK3E/JK1E \\ \mbox{MC68HRC908JL3E/JK3E/JK1E} \\ \mbox{Stop}^{(5)} \end{array}$	I _{DD}	 	10 4.5 6 1	11 5 6.5 1.5	mA mA mA mA
(-40°C to 85°C) MC68HC908JL3E/JK3E/JK1E MC68HRC908JL3E/JK3E/JK1E (-40°C to 125°C) MC68HC908JL3E/JK3E/JK1E MC68HRC908JL3E/JK3E/JK1E		 	2 2 2 2	5 5 10 10	μΑ μΑ μΑ
Digital I/O ports Hi-Z leakage current	IIL	_	—	± 10	μA
Input current	I _{IN}	_	—	± 1	μA
Capacitance Ports (as input or output)	C _{OUT} C _{IN}			12 8	pF
POR rearm voltage ⁽⁶⁾	V _{POR}	0	—	100	mV
POR rise time ramp rate ⁽⁷⁾	R _{POR}	0.035	_	—	V/ms
Monitor mode entry voltage	V _{TST}	$1.5 \times V_{DD}$	—	8.5	V
Pullup resistors ⁽⁸⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA6	R _{PU1} R _{PU2}	1.8 16	3.3 26	4.8 36	kΩ kΩ

Table 16-4. DC Electrical Characteristics (5V)

Table continued on next page

Table 16-4. DC Electrical Characteristics	(5V) (Continued)
---	------------------

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
LVI reset voltage	V_{LVR5}	3.6	4.0	4.4	V

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source (f_{OP} = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OP} = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}.

5. Stop I_{DD} measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.

6. Maximum is highest voltage that POR is guaranteed.

7. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

8. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0$ V.

16.6 5V Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency ⁽²⁾	f _{OP}	—	8	MHz
RST input pulse width low ⁽³⁾	t _{IRL}	750		ns

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H ; timing shown with respect to 20% V_{DD} and 70% V_{SS} , unless otherwise noted.

2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.

3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

16.7 5V Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal frequency, XTALCLK	foscxclk	_	10	32	MHz
RC oscillator frequency, RCCLK	f _{RCCLK}	2	10	12	MHz
External clock reference frequency ⁽¹⁾	foscxclk	dc	_	32	MHz
Crystal load capacitance ⁽²⁾	CL		—	—	
Crystal fixed capacitance ⁽²⁾	C ₁	_	$2 \times C_L$	—	
Crystal tuning capacitance ⁽²⁾	C ₂	_	$2 \times C_L$	—	
Feedback bias resistor	R _B	_	10 MΩ	_	
Series resistor ^{(2), (3)}	R _S	_	_	—	
RC oscillator external R	R _{EXT}		See Figure 1	6-1	
RC oscillator external C	C _{EXT}	_	10	_	pF

Table 16-6. Oscillator Component Specifications (5V)

1. No more than 10% duty cycle deviation from 50%.

2. Consult crystal vendor data sheet.

3. Not required for high frequency crystals.

Figure 16-1. RC vs. Frequency (5V @25°C)

16.8 3V DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output high voltage (I _{LOAD} = -1.0mA) PTA0-PTA6, PTB0-PTB7, PTD0-PTD7	V _{OH}	V _{DD} -0.4	_	_	v
Output low voltage (I _{LOAD} = 0.8mA) PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5	V _{OL}	_	_	0.4	v
Output low voltage (I _{LOAD} = 20 mA) PTD6, PTD7	V _{OL}	_	_	0.5	v
LED drives (V _{OL} = 1.8V) PTA0–PTA5, PTD2, PTD3, PTD6, PTD7	I _{OL}	3	6	10	mA
Input high voltage PTA0–PTA6, PTB0–PTB7, PTD0–PTD7, RST, IRQ, OSC1	V _{IH}	$0.7 \times V_{DD}$	_	V _{DD}	v
Input low voltage PTA0–PTA6, PTB0–PTB7, PTD0–PTD7, RST, IRQ, OSC1	V _{IL}	V _{SS}	_	$0.3 \times V_{DD}$	v
$\label{eq:VDD} \begin{array}{l} V_{DD} \mbox{ supply current, } f_{OP} = 2 \mbox{MHz} \\ Run^{(3)} \\ MC68HC908JL3E/JK3E/JK1E \\ MC68HRC908JL3E/JK3E/JK1E \\ Wait^{(4)} \\ MC68HC908JL3E/JK3E/JK1E \\ MC68HRC908JL3E/JK3E/JK1E \\ Stop^{(5)} \end{array}$	I _{DD}	 	3 1.5 1.5 0.2	3.5 2 2 0.3	mA mA mA mA
(-40°C to 85°C) MC68HC908JL3E/JK3E/JK1E MC68HRC908JL3E/JK3E/JK1E			1	5 5	μ Α μΑ
Digital I/O ports Hi-Z leakage current	IIL	—	—	± 10	μA
Input current	I _{IN}	—	—	± 1	μA
Capacitance Ports (as input or output)	C _{OUT} C _{IN}			12 8	pF
POR rearm voltage ⁽⁶⁾	V _{POR}	0	_	100	mV
POR rise time ramp rate ⁽⁷⁾	R _{POR}	0.035	_	_	V/ms
Monitor mode entry voltage	V _{TST}	$1.5 \times V_{DD}$	_	8.5	V
Pullup resistors ⁽⁸⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA6	R _{PU1} R _{PU2}	1.8 16	3.3 26	4.8 36	kΩ kΩ

Table 16-7. DC Electrical Characteristics (3V)

Table continued on next page

Table 16-7. DC Electrical Characteristics (3V) (Continued)

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Мах	Unit
LVI reset voltage	V _{LVR3}	2.0	2.4	2.69	V

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source (f_{OP} = 2MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OP} = 2MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD} . 5. Stop I_{DD} measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.

6. Maximum is highest voltage that POR is guaranteed.

7. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

8. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0$ V.

16.9 3V Control Timing

Table 16-8. Control Timing (3V)

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency ⁽²⁾	f _{OP}	—	4	MHz
RST input pulse width low ⁽³⁾	t _{IRL}	1.5		μs

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H ; timing shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.

3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

16.10 3V Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal frequency, XTALCLK	f _{OSCXCLK}	—	8	16	MHz
RC oscillator frequency, RCCLK	f _{RCCLK}	2	8	12	MHz
External clock reference frequency ⁽¹⁾	f _{OSCXCLK}	dc	—	16	MHz
Crystal load capacitance ⁽²⁾	CL	—	—	_	
Crystal fixed capacitance ⁽²⁾	C ₁	—	$2 \times C_L$	_	
Crystal tuning capacitance ⁽²⁾	C ₂		$2 \times C_L$	_	
Feedback bias resistor	R _B	_	10 MΩ	_	
Series resistor ^{(2), (3)}	R _S	_	—	_	
RC oscillator external R	R _{EXT}		See Figure 1	6-2	
RC oscillator external C	C _{EXT}	—	10	_	pF

Table 16-9. Oscillator Component Specifications (3V)

1. No more than 10% duty cycle deviation from 50%.

2. Consult crystal vendor data sheet.

3. Not required for high frequency crystals.

Figure 16-2. RC vs. Frequency (3V @25°C)

16.11 Typical Supply Currents

Figure 16-3. Typical Operating I_{DD} (MC68HC908JL3E/JK3E/JK1E), with All Modules Turned On (25°C)

Figure 16-4. Typical Operating I_{DD} (MC68HRC908JL3E/JK3E/JK1E), with All Modules Turned On (25° C)

Figure 16-5. Typical Wait Mode I_{DD} (MC68HC908JL3E/JK3E/JK1E), with All Modules Turned Off (25° C)

MC68HC908JL3E Family Data Sheet, Rev. 4

Figure 16-6. Typical Wait Mode I_{DD} (MC68HRC908JL3E/JK3E/JK1E), with All Modules Turned Off (25 $^\circ\text{C}$)

16.12 ADC Characteristics

Characteristic	Symbol	Min	Max	Unit	Comments
Supply voltage	V _{DDAD}	2.7 (V _{DD} min)	5.5 (V _{DD} max)	V	
Input voltages	V _{ADIN}	V _{SS}	V _{DD}	V	
Resolution	B _{AD}	8	8	Bits	
Absolute accuracy	A _{AD}	± 0.5	± 1.5	LSB	Includes quantization
ADC internal clock	f _{ADIC}	0.5	1.048	MHz	t _{AIC} = 1/f _{ADIC} , tested only at 1 MHz
Conversion range	R _{AD}	V _{SS}	V _{DD}	V	
Power-up time	t _{ADPU}	16		t _{AIC} cycles	
Conversion time	t _{ADC}	14	15	t _{AIC} cycles	
Sample time ⁽¹⁾	t _{ADS}	5	—	t _{AIC} cycles	
Zero input reading ⁽²⁾	Z _{ADI}	00	01	Hex	$V_{IN} = V_{SS}$
Full-scale reading ⁽³⁾	F _{ADI}	FE	FF	Hex	$V_{IN} = V_{DD}$
Input capacitance	C _{ADI}	_	(20) 8	pF	Not tested
Input leakage ⁽³⁾ Port B/port D	—		± 1	μΑ	

Table 16-10. ADC Characteristics

1. Source impedances greater than 10 k Ω adversely affect internal RC charging time during input sampling.

2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.

3. The external system error caused by input leakage current is approximately equal to the product of R source and input current.
Memory Characteristics

16.13 Memory Characteristics

Characteristic	Symbol	Min	Мах	Unit
RAM data retention voltage	V _{RDR}	1.3	—	V
Flash program bus clock frequency	_	1		MHz
Flash read bus clock frequency	f _{Read} ⁽¹⁾	32k	8M	Hz
Flash page erase time	t _{Erase} ⁽²⁾	1	—	ms
Flash mass erase time	t _{MErase} ⁽³⁾	4	—	ms
Flash PGM/ERASE to HVEN set up time	t _{nvs}	10	—	μS
Flash high-voltage hold time	t _{nvh}	5	—	μS
Flash high-voltage hold time (mass erase)	t _{nvh1}	100	—	μS
Flash program hold time	t _{pgs}	5		μS
Flash program time	t _{PROG}	30	40	μS
Flash return to read time	t _{rcv} ⁽⁴⁾	1	—	μs
Flash cumulative program hv period	t _{HV} ⁽⁵⁾	-	4	ms
Flash row erase endurance ⁽⁶⁾	_	10k	_	cycles
Flash row program endurance ⁽⁷⁾	_	10k	_	cycles
Flash data retention time ⁽⁸⁾	_	10		years

Table 16-11. Memory Characteristics

1. $f_{\mbox{Read}}$ is defined as the frequency range for which the Flash memory can be read.

If the page erase time is longer than t_{Erase} (Min), there is no erase-disturb, but it reduces the endurance of the Flash memory.

 If the mass erase time is longer than t_{MErase} (Min), there is no erase-disturb, but it reduces the endurance of the Flash memory.

- 4. t_{rcv} is defined as the time it needs before the Flash can be read after turning off the high voltage charge pump, by clearing HVEN to 0.
- 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.

 t_{HV} must satisfy this condition: $t_{nvs} + t_{nvh} + t_{pgs} + (t_{PROG} \times 32) \le t_{HV}$ max.

6. The minimum row endurance value specifies each row of the Flash memory is guaranteed to work for at least this many erase / program cycles.

7. The minimum row endurance value specifies each row of the Flash memory is guaranteed to work for at least this many erase / program cycles.

8. The Flash is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.

Electrical Specifications

Chapter 17 Mechanical Specifications

17.1 Introduction

This section gives the dimensions for:

- 20-pin plastic dual in-line package (case #738)
- 20-pin small outline integrated circuit package (case #751D)
- 28-pin plastic dual in-line package (case #710)
- 28-pin small outline integrated circuit package (case #751F)
- 48-pin low-profile quad flat pack (case #932)

The following figures show the latest package drawings at the time of this publication. To make sure that you have the latest package specifications, contact your local Freescale Sales Office.

17.2 Package Dimensions

Refer to the following pages for detailed package dimensions.

20-Pin PDIP (Case #738)

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		CASE NUMBER: 751D-07 23 MAR 20		23 MAR 2005
		STANDARD: JE	DEC MS-013AC	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 4. THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO	: 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH, CASE OUTLINE		CASE NUMBER	2: 751D-07	23 MAR 2005
		STANDARD: JEDEC MS-013AC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	Mechanical outline		PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASB42390B	RE∨: D
28 LD PDIP		CASE NUMBER	2: 710-02	24 MAY 2005
		STANDARD: NON-JEDEC		

NOTES:

A. POSITIONAL TOLERANCE OF LEADS, SHALL BE WITHIN 0.25 MM (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.

DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.

A DIMENSION DOES NOT INCLUDE MOLD FLASH.

4. 710-01 OBSOLETE, NEW STD 710-02.

5. CONTROLLING DIMENSION: INCH

	IN	СН	MIL	LIMETER			INCH	MIL	LIMETER
DIM	MIN	МАХ	MIN	MAX	DIM	MIN	МАХ	MIN	МАХ
А	1,435	1.465	36.45	37.21					
В	0.540	0.560	13.72	14.22					
С	0.155	0.200	3,94	5.08					
D	0.014	0.022	0.36	0.56					
F	0.040	0.060	1.02	1.52					
G	0.100	BSC	2.5	54 BSC					
Н	0.065	0.085	1.65	2.16					
J	0.008	0.015	0.20	0.38					
К	0.115	0.135	2.92	3.43					
L	0.600	BSC	15.8	24 BSC					
М	0*	15*	0*	15°					
N	0.020	0.040	0.51	1.02					
© FF	REESCALE SEM All RIGHT	ICONDUCTOR, S S RESERVED.	INC.	MECHANICA	LOUT	LINE	PRINT VER	SION NE	IT TO SCALE
TITLE				DOCUMENT NO: 98ASB42390B REV:D			REV: D		
	28	LD PDIP			CASE NUMBER: 710-02 24 MAY 200			24 MAY 2005	
					STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICAL OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BOD	DY. DOCUMENT	NO: 98ASB42345B	REV: G
28 LEAD	,	CASE NUMBER: 751F-05 10 MAR 2	
CASEOUTLINE	STANDARD:	STANDARD: MS-013AE	

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BODY,		DOCUMENT NO): 98ASB42345B	REV: G
28 LEAD		CASE NUMBER	R: 751F-05	10 MAR 2005
		STANDARD:	MS-013AE	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- 4. 751F-01 THRU -04 OBSOLETE. NEW STANDARD: 751F-05
- A. THIS DIMENSION DOES NOT INCLUDE DAM BAR PROTRUSION ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THIS DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		L OUTLINE	PRINT VERSION NO	DT TO SCALE
28 LEAD		DOCUMENT NO): 98ASB42345B	REV: G
		CASE NUMBER: 751F-05 10 MAR 2003		10 MAR 2005
		STANDARD: MS	S-013AE	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	DT TO SCALE
TITLE:): 98ASH00962A	REV: G
LQFP, 48 LEAD, 0.50 PITCH (7.0 X 7.0 X 1.4)		CASE NUMBER: 932-03 14 APR 200		14 APR 2005
		STANDARD: JE	DEC MS-026-BBC	

Mechanical Specifications

Chapter 18 Ordering Information

18.1 Introduction

This section contains ordering numbers for the MC68H(R)C908JL3E, MC68H(R)C908JK3E, and MC68H(R)C908JK1E.

18.2 MC Order Numbers

MC Order Number	Oscillator Type	Flash Memory	Package	
MC68HC908JL3ECFA MC68HC908JL3EMFA	Crystal oscillator	4006 Puter		
MC68HRC98JL3ECFA MC68HRC98JL3EMFA	RC oscillator	4096 Bytes	48-pin LQFP	
MC68HC908JL3ECP MC68HC908JL3EMP MC68HC908JL3ECDW MC68HC908JL3EMDW	Crystal oscillator	4096 Bytes	29 pip pockage	
MC68HRC98JL3ECP MC68HRC98JL3EMP MC68HRC98JL3ECDW MC68HRC98JL3EMDW	RC oscillator	- 4090 Bytes	28-pin package	
MC68HC908JK3ECP MC68HC908JK3EMP MC68HC908JK3ECDW MC68HC908JK3EMDW	Crystal oscillator	4000 Distan		
MC68HRC98JK3ECP MC68HRC98JK3EMP MC68HRC98JK3ECDW MC68HRC98JK3EMDW	RC oscillator	- 4096 Bytes	20 pip package	
MC68HC908JK1ECP MC68HC908JK1EMP MC68HC908JK1ECDW MC68HC908JK1EMDW	Crystal oscillator	1526 Distan	- 20-pin package	
MC68HRC98JK1ECP MC68HRC98JK1EMP MC68HRC98JK1ECDW MC68HRC98JK1EMDW	RC oscillator	- 1536 Bytes		
Temperature: $C = -40^{\circ}C$ to $+85^{\circ}C$ $M = -40^{\circ}C$ to $+125^{\circ}C$ (available for $V_{DD} = 5V$ only) Package: $P = PDIP$ DW = SOIC FA = LQFP				

Table 18-1. MC Order Numbers

Ordering Information

Appendix A MC68HLC908JL3E/JK3E/JK1E

A.1 Introduction

This appendix introduces three devices, that are low-voltage versions of MC68HC908JL3E/JK3E/JK1E:

- MC68HLC908JL3E
- MC68HLC908JK3E
- MC68HLC908JK1E

The entire data book apply to these low-voltage devices, with exceptions outlined in this appendix.

A.2 Flash Memory

The Flash memory can be read at minimum V_{DD} of 2.2V. Program or erase operations require a minimum V_{DD} of 2.7V.

A.3 Low-Voltage Inhibit

There is no low-voltage inhibit circuit. Therefore, no low-voltage reset. The associated register bits are reserved bits.

A.4 Oscillator Options

Only crystal oscillator or direct clock input is supported.

A.5 Electrical Specifications

Electrical specifications for low-voltage devices are given in the following tables.

A.5.1 Functional Operating Range

Table A-1. Operating Range

Characteristic	Symbol	Value	Unit
Operating temperature range	T _A	0 to +85	°C
Operating voltage range	V _{DD}	2.2 to 5.5	V
Operating voltage for Flash memory program and erase operations	V _{DD}	2.7 to 5.5	V

A.5.2 DC Electrical Characteristics

Table A-2.	DC Electrical	Characteristics
------------	----------------------	-----------------

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Output high voltage (I _{LOAD} = -1.0mA) PTA0-PTA6, PTB0-PTB7, PTD0-PTD7	V _{OH}	V _{DD} -0.4	_	_	v
Output low voltage (I _{LOAD} = 0.8mA) PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5	V _{OL}	—	_	0.4	V
Output low voltage (I _{LOAD} = 15mA) PTD6, PTD7	V _{OL}	—	_	0.5	V
Input high voltage PTA0–PTA6, PTB0–PTB7, PTD0–PTD7, RST, IRQ, OSC1	V _{IH}	$0.7 \times V_{DD}$	_	V _{DD}	v
Input low voltage PTA0–PTA6, PTB0–PTB7, PTD0–PTD7, RST, IRQ, OSC1	V _{IL}	V _{SS}	_	$0.2 \times V_{DD}$	v
$ \begin{array}{l} V_{DD} \text{ supply current } (V_{DD} = 2.4 \text{ V}, \text{ f}_{OP} = 2 \text{ MHz}) \\ \text{Run}^{(3)} \\ \text{Wait}^{(4)} \\ \text{Stop}^{(5)} 0^{\circ}\text{C to } 85^{\circ}\text{C} \end{array} $	I _{DD}		2 1 1	3.5 1.5 3	mA mA μA
Digital I/O ports Hi-Z leakage current	IIL	—	—	± 10	μA
Input current	I _{IN}	—	—	± 1	μA
Capacitance Ports (as input or output)	C _{OUT} C _{IN}	_		12 8	pF
POR rearm voltage ⁽⁶⁾	V _{POR}	0		100	mV
POR rise time ramp rate ⁽⁷⁾	R _{POR}	0.02	—	—	V/ms
Pullup resistors ⁽⁸⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA6	R _{PU1} R _{PU2}	1.8 16	3.3 26	4.8 36	kΩ kΩ

1. V_{DD} = 2.4 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD} . Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source; all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. C_L = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait I_{DD}.
5. STOP I_{DD} measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.
6. Maximum is highest voltage that POR is guaranteed.
7. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is not reached before the internal POR reset is released.

V_{DD} is reached.

8. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0V$

A.5.3 Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency ⁽²⁾	f _{OP}	_	2	MHz
RST input pulse width low ⁽³⁾	t _{IRL}	1.5		μS

Table A-3. Control Timing

1. V_{DD} = 2.2 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H ; timing shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.

3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

A.5.4 Oscillator Characteristics

Table A-4. Oscillator Component Specifications

Characteristic	Symbol	Min	Тур	Мах	Unit
Crystal frequency, XTALCLK	foscxclk	—	—	8	MHz
External clock reference frequency ⁽¹⁾	f _{OSCXCLK}	dc	—	8	MHz
Crystal load capacitance ⁽²⁾	CL	—	—	_	
Crystal fixed capacitance ⁽²⁾	C ₁	—	$2 \times C_L$	—	
Crystal tuning capacitance ⁽²⁾	C ₂	—	$2 \times C_L$	—	
Feedback bias resistor	R _B	—	10 MΩ	—	
Series resistor ^{(2), (3)}	R _S	—	_	_	

1. No more than 10% duty cycle deviation from 50%

2. Consult crystal vendor data sheet

3. Not Required for high frequency crystals

A.5.5 ADC Characteristics

Characteristic	Symbol	Min	Max	Unit	Comments
Supply voltage	V _{DDAD}	2.2 (V _{DD} min)	5.5 (V _{DD} max)	V	
Input voltages	V _{ADIN}	V _{SS}	V _{DD}	V	
Resolution	B _{AD}	8	8	Bits	
Absolute accuracy	A _{AD}	± 0.5	±2	LSB	Includes quantization
ADC internal clock	f _{ADIC}	0.5	1.048	MHz	t _{AIC} = 1/f _{ADIC} , tested only at 1 MHz
Conversion range	R _{AD}	V _{SS}	V _{DD}	V	
Power-up time	t _{ADPU}	14	—	t _{AIC} cycles	
Conversion time	t _{ADC}	14	15	t _{AIC} cycles	
Sample time ⁽¹⁾	t _{ADS}	5	—	t _{AIC} cycles	
Zero input reading ⁽²⁾	Z _{ADI}	00	01	Hex	$V_{IN} = V_{SS}$
Full-scale reading ⁽³⁾	F _{ADI}	FE	FF	Hex	$V_{IN} = V_{DD}$
Input capacitance	C _{ADI}	_	(20) 8	pF	Not tested
Input leakage ⁽³⁾ Port B/port D	_	_	± 1	μΑ	

Table A-5. ADC Characteristics

1. Source impedances greater than 10 k Ω adversely affect internal RC charging time during input sampling.

2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.

3. The external system error caused by input leakage current is approximately equal to the product of R source and input current.

A.5.6 Memory Characteristics

The Flash memory can only be read at an operating voltage of 2.2 to 5.5V. Program and erase are achieved at an operating voltage of 2.7 to 5.5V. The program and erase parameters in Table A-6 are for $V_{DD} = 2.7$ to 5.5V only.

Characteristic	Symbol	Min	Max	Unit
RAM data retention voltage	V _{RDR}	1.3	—	V
Flash program bus clock frequency	_	1	—	MHz
Flash read bus clock frequency	f _{Read} ⁽¹⁾	32k	8M	Hz
Flash page erase time	t _{Erase} ⁽²⁾	1	—	ms
Flash mass erase time	t _{MErase} ⁽³⁾	4	—	ms
Flash PGM/ERASE to HVEN set up time	t _{nvs}	10	—	μS
Flash high-voltage hold time	t _{nvh}	5	—	μS
Flash high-voltage hold time (mass erase)	t _{nvhl}	100	—	μS
Flash program hold time	t _{pgs}	5	—	μS
Flash program time	t _{PROG}	30	40	μS
Flash return to read time	t _{rcv} ⁽⁴⁾	1	—	μs
Flash cumulative program hv period	t _{HV} ⁽⁵⁾	—	4	ms
Flash row erase endurance ⁽⁶⁾	—	10k	—	cycles
Flash row program endurance ⁽⁷⁾	—	10k	—	cycles
Flash data retention time ⁽⁸⁾	_	10		years

Table A-6. Memory Characteristics

1. f_{Read} is defined as the frequency range for which the Flash memory can be read.

- 2. If the page erase time is longer than t_{Erase} (Min), there is no erase-disturb, but it reduces the endurance of the Flash memory.
- 3. If the mass erase time is longer than t_{MErase} (Min), there is no erase-disturb, but it reduces the endurance of the Flash memory.
- 4. trcv is defined as the time it needs before the Flash can be read after turning off the high voltage charge pump, by clearing HVEN to 0.
- 5. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase.

 t_{HV}^{\prime} must satisfy this condition: $t_{nvs} + t_{nvh} + t_{pgs} + (t_{PROG} \times 32) \le t_{HV}$ max. 6. The minimum row endurance value specifies each row of the Flash memory is guaranteed to work for at least this many erase / program cycles.

7. The minimum row endurance value specifies each row of the Flash memory is guaranteed to work for at least this many erase / program cycles.

8. The Flash is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.

A.6 MC Order Numbers

Table A-7 shows the ordering numbers for the low-voltage devices.

Table A-7. MC68HLC908JL3E/JK3E/JK1E Order Numbers

MC Order Number	Oscillator Type	Flash Memory	Package
MC68HLC98JL3EIFA	Crystal oscillator	4096 Bytes	48-pin LQFP
MC68HLC98JL3EIP MC68HLC98JL3EIDW	Crystal oscillator	4096 Bytes	28-pin package
MC68HLC98JK3EIP MC68HLC98JK3EIDW	Crystal oscillator	4096 Bytes	20-pin package
MC68HLC98JK1EIP MC68HLC98JK1EIDW	Crystal oscillator	1536 Bytes	20-pin package

Notes:

I = 0 °C to +85 °C

P = Plastic dual in-line package (PDIP)

DW = Small outline integrated circuit package (SOIC)FA = Low-Profile Quad Flat Pack (LQFP)

Appendix B MC68H(R)C08JL3E/JK3E

B.1 Introduction

This appendix introduces four devices, that are ROM versions of MC68H(R)C908JL3E/JK3E:

- MC68HC08JL3E
- MC68HC08JK3E
- MC68HRC08JL3E
- MC68HRC08JK3E

The entire data book apply to these ROM devices, with exceptions outlined in this appendix.

	MC68H(R)C08JL3E/JK3E	MC68H(R)C908JL3E/JK3E
Memory (\$EC00–\$FBFF)	4,096 bytes ROM	4,096 bytes Flash
User vectors (\$FFD0-\$FFFF)	48 bytes ROM	48 bytes Flash
Registers at \$FE08 and \$FE09	Not used; locations are reserved.	Flash related registers. \$FE08 — FLCR \$FF09 — FLBPR
Monitor ROM (\$FC00–\$FDFF and \$FE10–\$FFCF)	\$FC00–\$FDFF: Not used. \$FE10–\$FFCF: Used for testing purposes only.	Used for testing and Flash programming/erasing.

Table B-1. Summary of Device Differences

B.2 MCU Block Diagram

Figure B-1 shows the block diagram of the MC68H(R)C08JL3E/JK3E.

Figure B-1. MC68H(R)C08JL3E/JK3E Block Diagram

B.3 Memory Map

The MC68H(R)C08JL3E/JK3E has 4,096 bytes of user ROM from \$EC00 to \$FBFF, and 48 bytes of user ROM vectors from \$FFD0 to \$FFFF. On the MC68H(R)C908JL3E/JK3E, these memory locations are Flash memory.

Figure B-2 shows the memory map of the MC68H(R)C08JL3E/JK3E.

\$0000	I/O REGISTERS
↓ \$003F	64 BYTES
\$0040	
.↓	RESERVED 64 BYTES
\$007F	
\$0080 ↓	RAM
\$00FF	128 BYTES
\$0100	UNIMPLEMENTED
↓ \$EBFF	60,160 BYTES
\$EC00	ROM
Ļ	MC68H(R)C08JL3E/JK3E
\$FBFF	4,096 BYTES
\$FC00 ↓	MONITOR ROM
\$FDFF	512 BYTES
\$FE00	BREAK STATUS REGISTER (BSR)
\$FE01	RESET STATUS REGISTER (RSR)
\$FE02	RESERVED (UBAR)
\$FE03	BREAK FLAG CONTROL REGISTER (BFCR)
\$FE04	INTERRUPT STATUS REGISTER 1 (INT1)
\$FE05	INTERRUPT STATUS REGISTER 2 (INT2)
\$FE06	INTERRUPT STATUS REGISTER 3 (INT3)
\$FE07	RESERVED
\$FE08	RESERVED
\$FE09	RESERVED
\$FE0A	RESERVED
\$FE0B	RESERVED
\$FE0C	BREAK ADDRESS HIGH REGISTER (BRKH)
\$FE0D	BREAK ADDRESS LOW REGISTER (BRKL)
\$FE0E	BREAK STATUS AND CONTROL REGISTER (BRKSCR)
\$FE0F	RESERVED
\$FE10 ↓	MONITOR ROM
↓ \$FFCF	448 BYTES
\$FFD0	USER ROM VECTORS
↓	48 BYTES
\$FFFF	

Figure B-2. MC68H(R)C08JL3E/JK3E Memory Map

MC68HC908JL3E Family Data Sheet, Rev. 4

B.4 Reserved Registers

The two registers at \$FE08 and \$FE09 are reserved locations on the MC68H(R)C08JL3E/JK3E.

On the MC68H(R)C908JL3E/JK3E, these two locations are the Flash control register and the Flash block protect register respectively.

B.5 Mask Option Registers

This section describes the mask option registers (MOR1 and MOR2). The mask option registers enable or disable the following options:

- Stop mode recovery time (32 × 20SCOUT cycles or 4096 × 20SCOUT cycles)
- STOP instruction
- Computer operating properly module (COP)
- COP reset period (COPRS), 8176 × 20SCOUT or 262,128 × 20SCOUT
- Enable LVI circuit
- Select LVI trip voltage

B.5.1 Functional Description

The mask options are hard-wired connections, specified at the same time as the ROM code, which allow the user to customize the MCU.

B.5.2 Mask Option Register 1 (MOR1)

Figure 18-1. Mask Option Register 1 (MOR1)

$\operatorname{COPRS} - \operatorname{COP} \operatorname{reset} \operatorname{period} \operatorname{selection} \operatorname{bit}$

1 = COP reset cycle is $8176 \times 2OSCOUT$

0 = COP reset cycle is 262,128 × 20SCOUT

LVID — Low Voltage Inhibit Disable Bit

- 1 = Low Voltage Inhibit disabled
- 0 = Low Voltage Inhibit enabled

SSREC — Short Stop Recovery Bit

SSREC enables the CPU to exit stop mode with a delay of 32×20 SCOUT cycles instead of a 4096×20 SCOUT cycle delay.

1 = Stop mode recovery after $32 \times 2OSCOUT$ cycles

0 =Stop mode recovery after 4096×20 SCOUT cycles

NOTE

Exiting stop mode by pulling reset will result in the long stop recovery.

If using an external crystal, do not set the SSREC bit.

STOP — STOP Instruction Enable

STOP enables the STOP instruction.

- 1 = STOP instruction enabled
- 0 = STOP instruction treated as illegal opcode

COPD — COP Disable Bit

COPD disables the COP module. (See Chapter 13 Computer Operating Properly (COP).)

- 1 = COP module disabled
- 0 = COP module enabled

B.5.3 Mask Option Register 2 (MOR2)

Figure 18-2. Mask Option Register 2 (MOR2)

IRQPUD — IRQ Pin Pull-up control bit

1 = Internal pull-up is disconnected

0 = Internal pull-up is connected between \overline{IRQ} pin and V_{DD}

LVIT1, LVIT0 — Low Voltage Inhibit trip voltage selection bits

Detail description of the LVI control signals is given in Chapter 14 Low Voltage Inhibit (LVI)

B.6 Monitor ROM

The monitor program (monitor ROM: \$FE10–\$FFCF) on the MC68H(R)C08JL3E/JK3E is for device testing only. \$FC00–\$FDFF are unused.

B.7 Electrical Specifications

Electrical specifications for the MC68H(R)C908JL3E/JK3E apply to the MC68H(R)C08JL3E/JK3E, except for the parameters indicated below.

B.7.1 DC Electrical Characteristics

			(0)		
Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Max	Unit
V _{DD} supply current, f _{OP} = 4MHz Run ⁽³⁾					
MC68HC08JL3E/JK3E		—	9	11	mA
MC68HRC08JL3E/JK3E Wait ⁽⁴⁾		—	4.3	5	mA
MC68HC08JL3E/JK3E		—	5.5	6.5	mA
MC68HRC08JL3E/JK3E Stop ⁽⁵⁾	I _{DD}	—	0.8	1.5	mA
(–40°C to 85°C) MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E		_	1.8 1.8	5 5	μ Α μΑ
(-40°C to 125°C) MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E		_	5 5	10 10	μ Α μ Α
Pullup resistors ⁽⁶⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA6	R _{PU1} R _{PU2}	1.8 16	4.3 31	4.8 36	kΩ kΩ

Table B-2. DC Electrical Characteristics (5V)

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source (f_{OP} = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OP} = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}. 5. Stop I_{DD} measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.

6. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0$ V.

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Мах	Unit
V_{DD} supply current, $f_{OP} = 2MHz$ Run ⁽³⁾					
MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E Wait ⁽⁴⁾		_	2.8 1.4	3.5 2	mA mA
MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E Stop ⁽⁵⁾	I _{DD}	—	1.5 0.19	2 0.3	mA mA
(-40°C to 85°C) MC68HC08JL3E/JK3E MC68HRC08JL3E/JK3E		—	1.4 1.4	5 5	μ Α μ Α
Pullup resistors ⁽⁶⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA6	R _{PU1} R _{PU2}	1.8 16	4.3 31	4.8 36	kΩ kΩ

Table B-3. DC Electrical Characteristics (3V)

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source ($f_{OP} = 2MHz$). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.

4. Wait I_{DD} measured using external square wave clock source (f_{OP} = 2MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}. 5. Stop I_{DD} measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.

6. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0$ V.

B.7.2 5V Oscillator Characteristics

Table B-4. Oscillator Component Specifications (5V)

Characteristic	Symbol	Min	Тур	Max	Unit
RC oscillator external R	R _{EXT}	See Figure B-3 and Figure B-4			
RC oscillator external C	C _{EXT}	—	10	—	pF

Figure B-4. RC vs. Frequency (3V @25°C)

B.7.3 Memory Characteristics

Table B-5. Memory Characteristics

Characteristic	Symbol	Min	Max	Unit
RAM data retention voltage	V _{RDR}	1.3	—	V

NOTES:

Since MC68H(R)C08JL3E/JK3E is a ROM device, Flash memory electrical characteristics do not apply.

B.8 MC Order Numbers

These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC).

MC Order Number	Oscillator Type	Package
MC68HC08JL3ECP MC68HC08JL3EMP MC68HC08JL3ECDW MC68HC08JL3EMDW	Crystal	29 nin nookogo
MC68HRC08JL3ECP MC68HRC08JL3EMP MC68HRC08JL3ECDW MC68HRC08JL3EMDW	RC	- 28-pin package
MC68HC08JK3ECP MC68HC08JK3EMP MC68HC08JK3ECDW MC68HC08JK3EMDW	Crystal	20-pin package
MC68HRC08JK3ECP MC68HRC08JK3EMP MC68HRC08JK3ECDW MC68HRC08JK3EMDW	RC	20-piii paokage

Table B-6. MC Order Numbers

NOTES:

C = $-40 \degree$ C to $+85 \degree$ C

$$\begin{split} \mathsf{M} &= -40 ~^\circ \mathsf{C} ~ \text{to} + 125 ~^\circ \mathsf{C} ~ (\text{available for } \mathsf{V}_{\mathsf{DD}} = 5 ~ \mathsf{V} ~ \text{only}) \\ \mathsf{P} &= \mathsf{Plastic} ~ \mathsf{dual} ~ \mathsf{in-line} ~ \mathsf{package} ~ (\mathsf{PDIP}) \\ \mathsf{DW} &= \mathsf{Small} ~ \mathsf{outline} ~ \mathsf{integrated} ~ \mathsf{circuit} ~ \mathsf{package} ~ (\mathsf{SOIC}) \end{split}$$

Appendix C MC68HC908KL3E/KK3E

C.1 Introduction

This appendix introduces two devices, that are ADC-less versions of MC68HC908JL3E/JK3E:

- MC68HC908KL3E
- MC68HC908KK3E

The entire data book applies to these devices, with exceptions outlined in this appendix.

	MC68HC908KL3E/KK3E	MC68HC908JL3E		
Analog-to-Digital Converter (ADC)	-	12-channel, 8-bit.		
Registers at: \$003C, \$003E, and \$003E	Not used; locations are reserved.	ADC registers.		
Interrupt Vector at: \$FFDE and \$FFDF	Not used.	ADC interrupt vector.		
Available Packages	20-pin PDIP (MC68HC908KK3E) 20-pin SOIC (MC68HC908KK3E) 28-pin PDIP 28-pin SOIC —	20-pin PDIP (MC68HC908JK3E) 20-pin SOIC (MC68HC908JK3E) 28-pin PDIP 28-pin SOIC 48-pin LQFP		

Table C-1. Summary of MC68HC908KL3E/KK3E and MC68HC908JL3E Differences

C.2 MCU Block Diagram

Figure C-1 shows the block diagram of the MC68HC908KL3E/KK3E.

C.3 Pin Assignments

Figure C-2 and Figure C-3 show the pin assignments for the MC68HC908KL3E/KK3E.

Figure C-1. MC68HC908KL3E/KK3E Block Diagram

MC68HC908KL3E

MC68HC908KK3E

Figure C-3. 20-Pin PDIP/SOIC Pin Assignment

C.4 Reserved Registers

The following registers are reserved location on the MC68HC908KL3E/KK3E.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$003C Reserved	Read: Write:	R	R	R	R	R	R	R	R	
	Reset:									
\$003D Reser	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:							I	J
\$003E	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:							•	

Figure C-4. Reserved Registers

C.5 Reserved Vectors

The following vectors are reserved interrupt vectors on the MC68HC908KL3E/KK3E.

Table C-2. Reserved Vectors

Vector Priority	INT Flag	Address	Vector
_	IF15	\$FFDE	Reserved
		\$FFDF	Reserved

C.6 Order Numbers

Table C-3. MC68HC908KL3E/KK3E Order Numbers

MC order number	Package	Operating Temperature	Operating V _{DD}	OSC	Flash Memory
MC68HC908KL3ECP	28-pin PDIP				
MC68HC908KL3ECDW	28-pin SOIC	−40 to +85 °C	3V, 5V	XTAL	4096 Bytes
MC68HC908KK3ECP	20-pin PDIP	-40 10 +85 C			
MC68HC908KK3ECDW	20-pin SOIC				

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

MC68HC908JL3E Rev. 4, 10/2006

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.