IND033 Hornet: Non-Isolated DC-DC Voltage Regulator Modules ## 12Vdc input; 0.8Vdc to 5.5Vdc output; 33W Max Power ### **Applications** - ✓ Industrial Equipment - ✓ Control Boards - ✓ Test Equipment #### **Electrical Features** - 12V Input voltage with up to ±20% Tolerance - Output voltage programmable from 0.8Vdc to 5.5Vdc via external resistor - Remote On/Off for optional external control - Power Good signal for external monitoring - Fixed switching frequency - Output overcurrent protection (non-latching) #### Mechanical Features - Small size: 12.2 mm x 12.2 mm x 7.25 mm (0.48 in x 0.48 in x 0.29 in) - Operating range: -40°C to 105°C ambient - Operating shock to 40G per Mil Std. 810G, Method 516.4 Procedure I - Operating vibration per Mil Std. 810G, Method 514.5 Procedure I ## **Process and Safety** - Qualified for 1000h High Temperature Operating Bias, 1000h 85RH/85°C Temperature, Humidity and Bias, 700 cycle -40 to 125°C thermal cycling - ANSI/UL# 60950-1 2nd Revised October 14, 2014, CSA† C22.2 No. 60950-1-07, Second Ed. + A2:2014 (MOD) Recognized, DIN EN 60950-1:2006 + A11:2009 + A1:2010 +A12:2011, + A2:2013 (VDE‡ 0805-1) Licensed - ISO** 9001 and ISO 14001 certified manufacturing facilities - Compliant to RoHS II EU "Directive 2011/65/EU" - Compatible in a Pb-free or SnPb reflow environment. - Suitable for aqueous clean. - Suitable for conformal coating with dip and vapor deposition. Conformal coating can provide the protection to meet Salt Fog Test per IEC 60068-2-52 (Severity 3) and Mixed Gas Flow test per Telcordia GR-3108 Outdoor Levels. - 3 year warranty | Device Code | Code Input Voltage Output Voltage | | Output
Current (Max.) | On/Off Logic | Comcode | | |-------------|-----------------------------------|--------------|--------------------------|--------------|-------------|--| | IND033 | 9.6 – 14.4**Vdc | 0.8 – 5.5Vdc | 6A | Negative | 1600102898A | | #### **Thermal Performance** Full rated output with natural convection up to 100°C at 1.2Vout and up to 90°C at 5Vout. Thermal curves for 1.2V, 1.8V and 5Vout below. ## **Electrical Specifications** | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|---------------------------|-------------------------|--------------------------------------|---------------|--------|--| | Operating Input Voltage | All | V _{IN} | 9.6 | 12 | 14.4** | Vdc | | Input No Load Current ($V_{IN} = 12.0$ Vdc, $I_0 = 0$, module enabled) | V _{O,set} = 5Vdc | l _{IN,No load} | | 55 | | mA | | External Capacitance, Ceramic ESR ≥ 1 mΩ | All | C _{0, max} | 10 | _ | 22* | μF | | Efficiency 12V _{INDC} , T _A =25°C, I=12A, Vo=1.2 to 5Vdc | | η | 86(1.2V), 89(1.8V), 93(3.3V), 94(5V) | | | % | | Switching Frequency | All | f _{sw} | _ | 600 | _ | kHz | | Output Voltage (Over all line, load, and temperature conditions until end of life) | All | VO, set | -3.0 | _ | +3.0 | % VO, set | | On/Off Logic High (MODULE OFF) Input High Voltage | All | VIH | 3.0 | _ | 14.4 | Vdc | | On/ Off Logic Low (MODULE ON) Input Low Voltage | All | VIL | -0.2 | _ | 0.4 | Vdc | | PGOOD (Power Good) Signal Interface Open Drain, V _{supply} ≤ 5VDC Overvoltage threshold for PGOOD Undervoltage threshold for PGOOD | | | | 112.5
87.5 | | %V _{O,} set
%V _{O,} set | | Pulldown resistance of PGOOD pin | All | | | 30 | | Ω | | Sink current capability into PGOOD pin | All | | | | 5 | mA | ^{*}Additional External Capacitance possible using Tunable Loop #### **Characteristic Curves** The following figures provide typical characteristics for the IND033 Hornet at 25°C. Figure 1. Output Ripple Voltage (20MHz BW) for various output voltages and external caps @12Vin. Additional Decoupling cap of 0.1uF used on input and output side Figure 2. Typical Start-up using Input Voltage (Vin=12V, Vout = Vout, max, Iout = Iout, max) #### **Trim** Without an external resistor between Trim and GND pins, the output of the module will be 0.6Vdc. *Rtrim* for a desired output voltage, should be as per the following table. The formula in the last column helps determine Rtrim for other voltages. | Vo (V |) | 0.9 | 1.2 | 1.5 | 1.8 | 2.5 | 3.3 | 5.0 | $Rtrim = \begin{bmatrix} 12 \\ 12 \end{bmatrix} k\Omega$ | |-------|-----------------|-----|-----|------|-----|-------|-----|-------|--| | Rtrim | ı (k Ω) | 40 | 20 | 13.3 | 10 | 6.316 | 4.4 | 2.727 | $ \frac{Rarum - \left[(Vo - 0.6) \right]^{RS2}}{(Vo - 0.6)} $ | ## **Safety Considerations** For safety agency approval, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards listed on the first page of this document. For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a fast-acting fuse with a maximum rating of 10A, 125VDC in the positive input lead. ^{**} For 0.8≤Vout<1, do not exceed 12Vin. For 1≤Vout<1.2, do not exceed 13Vin. For Vout≥1.2, Input Voltage can be as high as 14.4V ## **Tunable Loop** The module is designed for 1x22uF capacitor on its output. For applications where more than 1x22uF capacitors would be used on the output, an additional Resistor (Rtune) and Capacitor (Ctune) would be required in the circuit schematic to compensate for the additional capacitance. The placement is between the Sense+ pin and Trim pin as per figure below: Figure. 3. Circuit diagram showing connection of R_{TUNE} and C_{TUNE} to tune the control loop of the module The recommended values for Rtune and Ctune for different amounts of external capacitance are as per the table below: | Со | 1x47μF | 2x47μF | 4x47μF | 6x47μF | 10x47μF | |-------------------|--------|--------|--------|--------|---------| | R _{TUNE} | 330 | 270 | 220 | 180 | 180 | | C _{TUNE} | 680pF | 1800pF | 3300pF | 4700pF | 5600pF | #### PowerGood (PGOOD) This is an open-drain output to indicate that the output voltage is within the regulation limits of the module. The PGOOD signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going ±10% outside the setpoint value. If not used, leave unconnected. #### **Recommended Pad Layout** Dimensions are in millimeters and (inches). Tolerances: $x.x \text{ mm} \pm 0.5 \text{ mm} (x.xx \text{ in}. \pm 0.02 \text{ in}.)$ [unless otherwise indicated] $x.xx \text{ mm} \pm 0.25 \text{ mm} (x.xxx \text{ in} \pm 0.010 \text{ in}.)$ ### **Nozzle Recommendations** The minimum recommended inside nozzle diameter for reliable operation is 3mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 7 mm. #### **Bottom Side / First Side Assembly** This module is not recommended for assembly on the bottom side of a customer board. If such an assembly is attempted, components may fall off the module during the second reflow process #### **Lead Free Soldering** The modules are lead-free (Pb-free) and RoHS compliant and fully compatible in a Pb-free soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term reliability #### **MSL Rating** The modules have a MSL rating of 2a. #### **Pb-free Reflow Profile** Power Systems will comply with J-STD-020 Rev. D (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The following profile is the recommended linear reflow profile using Sn/Ag/Cu solder. Soldering outside of the recommended profile requires testing to verify results and performance. #### Storage and Handling J-STD-033 Rev. A (Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices) is recommended. Moisture barrier bags (MBB) with desiccant are required for MSL ratings of 2 or greater. These sealed packages should not be broken until time of use. Once the original package is broken, the floor life of the product at conditions of \leq 30°C and 60% relative humidity varies according to the MSL rating (see J-STD-033A). The shelf life for dry packed SMT packages will be a minimum of 12 months from the bag seal date, when stored at the following conditions: < 40° C, < 90% relative humidity. #### Post Solder Cleaning and Drying Considerations Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly ## Contact Us For more information, call us at USA/Canada: +1 888 546 3243, or +1 972 244 9288 Asia-Pacific: +86.021.54279977*808 Europe, Middle-East and Africa: +49.89.878067-280 www.gecriticalpower.com GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.