

bq2014HEVM-001 Gas-Gauge IC Evaluation Module

User's Guide

May 2001

Advanced Analog Products

SLUU105

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

Contents

1	Introd 1.1 1.2 1.3	duction Features Kit Contents Ordering Information	1-2 1-2
2	DM20 2.1 2.2	D14H—bq2014H-Based Circuit Module Pin Descriptions Programming 2.2.1 Full Capacity 2.2.2 Self-Discharge Settings for Chemistry 2.2.3 Pack Voltage 2.2.4 Programming Hardware Changes	2-2 2-2 2-2 2-2 2-3
3	DM20 3.1	014H Schematic	
4	DM20 4.1	014H Physical Layouts Board Layout	
5	DM20 5.1	D14H Bill of Materials	-
6	DM20	014H Performance Specification Summary	6-1
7	EVM 7.1 7.2	Hardware and Software SetupSoftware InstallationHardware Connection7.2.1Connecting the DM2014H to a Battery Pack7.2.2PC Interface Connection	7-2 7-2 7-2
8	Opera	ation	8-1
	8.1 8.2 8.3 8.4 8.5	Starting the Program Initialization 8.2.1 Device Program Settings 8.2.2 HDQ Port 8.2.3 Setup Parameters Data Screen Status Screen Pro Screen Pro Screen	8-2 8-2 8-2 8-4 8-5 8-5
	8.6	Data Logging	8-6

Figures

3-1DM2014H Schematic3-24-1DM2014H Layout4-27-1DM2014H Connection to Cells, Sense Resistor, and System Load/Charger7-28-1Initial Data Screen8-28-2Setup Screen8-38-3bq2014H Data Screen8-48-4Status Screen8-58-5Pro Screen8-5			
7-1DM2014H Connection to Cells, Sense Resistor, and System Load/Charger7-28-1Initial Data Screen8-28-2Setup Screen8-38-3bq2014H Data Screen8-48-4Status Screen8-5			
8–1 Initial Data Screen 8-2 8–2 Setup Screen 8-3 8–3 bq2014H Data Screen 8-4 8–4 Status Screen 8-5			
8-2 Setup Screen 8-3 8-3 bq2014H Data Screen 8-4 8-4 Status Screen 8-5			
8-3 bq2014H Data Screen 8-4 8-4 Status Screen 8-5			
8–4 Status Screen			
8–5 Pro Screen			
	8–5	Pro Screen	8-5

Tables

1–1	Ordering Information	1-2
2–1	Full Capacity Programming	2-2
2–2	Self-Discharge Programming	2-3
2–3	Pack Voltage Programming	2-3
5–1	Bill of Materials	5-2
6–1	Performance Specification Summary	6-1
7–1	DM2014H-to-EV2200 Connection	7-3
8–1	Resistor Designations for Setup Screen Input	8-3

Introduction

The bq2014H EVM is a complete evaluation system for the bq2014H gas-gauge IC for NiCd and NiMH. The EVM includes a DM2014H circuit module, an EV2200 PC interface board for gas-gauge vvaluation, a PC serial cable, and Windows-based PC software. The DM2014H circuit module includes one bq2014H IC, five LEDs to display remaining capacity, and all other components onboard necessary to monitor capacity and other critical parameters in NiCd or NiMH battery packs. The DM2014H connects directly across the cells in a battery. With the EV2200 interface board and software, the user can read the bq2014H data registers and evaluate the functions of the bq2014H under different charge and discharge conditions.

Topic

Page

1.1	Features	1-2
1.2	Kit Contents	1-2
1.3	Ordering Information	1-2

1.1 Features

- Complete evaluation system for the bq2014H gas-gauge IC
- Preprogrammed DM2014H module for quick setup
- D PC software and interface board for easy evaluation
- Software that allows data logging for system analysis

1.2 Kit Contents

- DM2014H preconfigured circuit module with sense resistor
- EV2200 PC interface board
- Set of evaluation software disks entitled EV2200-HDQ
- PC serial cable
- Set of support documentation

1.3 Ordering Information

Table 1–1. Ordering Information

EVM Part Number	Chemistry	Pack Voltage	Capacity	
bq2014HEVM-001	NiCd/NiMH [†]	12.0 V†	650 mAh [†]	

[†]Can be changed by reprogramming through resistor replacements.

DM2014H—bq2014H-Based Circuit Module

The DM2014H circuit module is a complete and compact example solution of a bq2014H circuit for capacity monitoring of NiCd or NiMH packs. The DM2014H incorporates a bq2014H gas-gauge IC and all other components necessary to accurately monitor and display the capacity of up to 14 nickel cells.

The DM2014H includes five LEDs to display remaining capacity in 20% increments of the programmed capacity. The LEDs are activated with the onboard pushbutton switch.

Contacts on the DM2014H provide direct connection to the battery stack (BAT+, BAT–) and the serial communications port (HDQ). The system load and charger connect across BAT+ and PACK–.

Горіс				
2.1	Pin Descriptions 2-2			
2.2	Programming 2-2			

2.1 Pin Descriptions

- P1 HDQ/Serial communications port
- P2 NC/No connect
- P3 BAT+/Battery positive/pack positive
- P4 NC/No connect
- P5 RBI/Register backup input
- P6 GND/Ground
- P7 PACK–/Pack negative
- P8 BAT–/Battery negative

2.2 Programming

The DM2014H circuit module is preconfigured for battery-pack chemistry, voltage, and pack capacity. The circuit module can be reprogrammed for pack chemistry, voltage, capacity, and other operating parameters via the programming resistors on the board. The resistors set the programming pins to a high (H), low (L), or float (Z) state on initialization. A high (H) state for a programming pin requires the pullup resistor, a low (L) state requires the pulldown resistor, and the float (Z) requires no resistors on the programming pin. The shaded area of the tables indicates the bq2014HEVM-001 configuration. See the bq2014H data sheet for a complete description of how the bq2014H is programmed.

2.2.1 Full Capacity

Pins 2–5 of the bq2014H determine the full capacity or programmed full count (PFC) of the DM2014H. Resistors R12–R15 and R17–20 set the pins to a high (H), low (L), or float (Z) state during board initialization.

Table 2–1. Full Capacity Programming

PFC Input	Settings		
Pin 4 Pin 5		Sense Resistor m Ω	Capacity (mAh)
Н	Z	50	1300
Z	Z	50	650
L L		50	2600

2.2.2 Self-Discharge Settings for Chemistry

Battery chemistries have different self-discharge rates. Pin 6 of the bq2014H determines the self-discharge factors of the DM2014H. Resistors R23 and R24 set the pin to a high (H), low (L), or float (Z) state during board initialization.

Table 2–2. Self-Discharge Programming

Self-Discharge Setting	
Pin 6	Chemistry
Н	Self-discharge disabled
Z	NiCd
L	NiMH

Note: Select the self-discharge setting that most closely models the battery pack to be used.

2.2.3 Pack Voltage

The DM2014H is preconfigured for pack voltage (number of cells). R2, R6, and R7 configure this as shown in the schematic and are set as shown in Table 2–3.

Table 2–3. Pack Voltage Programming

EVM Part Number	R2	R18	R19	End-of-Discharge Level 1	End-of-Discharge Level 2
bq2014HEVM-001	1.2 MΩ	1.2 MΩ	100 K	10 V	9.5 V

2.2.4 Programming Hardware Changes

The following procedure changes the configuration of DM2014H to other (unshaded) options listed in the tables above:

- 1) Ensure that the DM2014H is disconnected from the battery.
- Determine the resistors required to achieve the high (H), low (L), or float (Z) states on the program pin inputs.
- 3) Remove the 200k resistors as necessary.
- 4) Place required 200k resistors where needed.
- 5) If required, change the voltage programming resistors as outlined on the schematic.
- 6) Reconnect the DM2014H to the battery pack.

The EV2200 and the PC software can confirm the new settings by reading the PPU and PPD data registers and the Setup screen.

DM2014H Schematic

The DM2014H schematic shows all possible components on the board for various configurations, including all configuration resistors. Only those resistors that set the desired configuration should be installed. The schematic notes indicate where variations exist.

Торіс			
3.1	1 Schematic		

3.1 Schematic

Figure 3–1 is the DM2014H schematic diagram.

DM2014H Physical Layouts

This chapter contains the board layout and assembly drawings for the DM2014H.

Торі	ic	Page
4.1	Board Layout	4-2

4.1 Board Layout

Figure 4–1 shows the PCB layers and assembly drawing for the DM2014H.

Figure 4–1. DM2014H Layout

04/06/99 Rev. A Layer 1 Side Silkscreen R27 99 H D8 **6**4 1 $\left(- \right)$ L9 L9 0 4 R7 2 Ц4 C⊿ 53 5 \bowtie С5 U1 Ч Ď R10 R28 Ц Ц ы М ЪС Рб P 8 Ч г С Ч 4 ۲ ۵

04/06/99 Rev. A Layer 2 Side Silkscreen

DM2014H Bill of Materials

This chapter contains the bill of materials required for the DM2014H.

Topi	c	Page
5.1	Bill of Materials	5-2

5.1 Bill of Materials

Table 5–1 lists materials required for the DM2014H.

Ref Des	Qty-001	Description	MFG	MFG PART#	Size
PCB	1	Printed-circuit board, 0.031, FR4, SMOBC, HASL	Any	REV. A	See FAB DWG
C1, C5	2	Capacitor, ceramic, 1 $\mu\text{F}, 25$ V, ±20%, X7R	Panasonic	ECJ–3YB1E105K	3216
C2, C3, C4	3	Capacitor, ceramic, 0.1 $\mu\text{F},$ 25 V, ±20%, X7R	Venkel	C0805X7R250-104MNE	2012
R1, R9	4	Resistor, 100 Ω, 1/10 W, 5%	Venkel	CR0805-10 W101JT	805
R2	1	Resistor, 1.2 MΩ, 1/10 W, 1%	Venkel	CR0805-10 W1204FT	805
R3, R12, R15, R24	4	Resistor, 200 kΩ, 1/10 W, 5%	Venkel	CR0805–10 W1204JT	805
R4	3	Resistor, 100 KΩ, 1/10 W, 5%	Venkel	CR0805–10 W104JT	805
R6	1	Resistor, 1.2 MΩ, 1/10 W, 1%	Venkel	CR0805-10 W1204FT	805
R7	1	Resistor, 100 KΩ, 1/10 W, 1%	Venkel	CR0805-10 W1003FT	805
R10	1	Resistor, 0.050 Ω, 3 W, 1%, LVR–3, AXIAL	Dale	LVR-3 R050 1%	3 W, TH
R16, R21, R22	3	Resistor, 330 Ω, 1/10 W, 5%	Venkel	CR0805-10 W331JT	805
R26	1	Resistor, 300 KΩ, 1/10 W, 5%	Venkel	CR0805–10 W304JT	805
R5, R27	1	Resistor, 10 KΩ, 1/10 W, 5%	Venkel	CR0805–10 W103JT	805
D1, D2, D3, D4, D5	5	LED, green, S Type	Panasonic	LN1371G–(TR)	
D6, D8	2	Diode,dual series switching, SOT–23	Zetex	BAV99	SOT-23
D7, D11	3	Diode, Zener, 5.6V , .30 W, (BZX84C5V6), SOT–23	Motorola	BZX84C5V6	SOT-23
Q1	1	Transistor, MOSFET N–Ch	Zetex	BSS138	SOT-23
S1	1	Switch, momentary, N.O., 5 mm x 1.5 mm thick	Panasonic	EVQ–PLHA15	5 mm
R8, R11, R13, R14, R17, R18, R19, R20, R23, R25, R28		NOT USED			
D9, D10		NOT USED			1

DM2014H Performance Specification Summary

This chapter summarizes the performance specifications of the DM2014H. Table 6–1 gives the performance specifications of the circuit.

Table 6–1. Performance Specification Summary

Specification	Min	Тур	Max	Units
Charge and Discharge Current	0.05		3	А

Note: Charge and discharge maximums are limited by the PCB design.

EVM Hardware and Software Setup

This section describes how to install the bq2014H EVM PC software and how to connect the different components of the EVM.

Торі	c Page
7.1	EVM Hardware and Software Setup 7-2
7.2	Hardware Connection

7.1 Software Installation

The following steps install the EV2200–HDQ software:

- 1) Insert disk 1 into a 3 1/2 inch floppy drive.
- 2) Select the 3 1/2 inch drive using My Computer or File Manager.
- 3) Double-click the Setup.exe icon.

The setup program prompts for the remaining disks and installs a Windows application group.

7.2 Hardware Connection

There are three hardware components to the bq2014H EVM:

- 1) DM2014H circuit module
- 2) EV2200 PC interface board
- 3) PC

7.2.1 Connecting the DM2014H to a Battery Pack

Figure 7–1 shows how to connect the DM2014H to a stack of cells, the sense resistor, and the system load/charger.

Figure 7–1. DM2014H Connection to Cells, Sense Resistor, and System Load/Charger

7.2.2 PC Interface Connection

The following steps configure the hardware for interface to the PC:

- 1) Connect the DM2014H based smart battery to the EV2200 using wire leads as in Table 7–1.
- 2) Connect the PC serial cable to the EV2200 and the PC COM port.

Table 7–1. DM2014H-to-EV2200 Connection

DM2014H Based Battery	EV2200
P1/HDQ	SMBD/HDQ1 or SMBC/HDQ2
P7/PACK-	VSS

The bq2014H EVM is now set up for operation.

Operation

This chapter details the operation of the bq2014H EVM software.

Topic

Page

Starting the Program8-	2
Initialization	2
Data Screen	4
Status Screen	5
Pro Screen	5
Data Logging	6
	Initialization8-Data Screen8-Status Screen8-Pro Screen8-

8.1 Starting the Program

Run EV2200-xxH from the Start|Programs|EV2200-xxH menu sequence. The software requests the PC communications port the first time it is run after installation. Choose the Retry Auto-detection button for automatic port configuration. After the port is detected, the software displays the bq2014H data screen.

Figure 8–1. Initial Data Screen

40 eachertel SES-									
Fragisters IF Dac C Har				Pol	iq Fire	[11	: Les	a)
PL083 1				- 5	-	Death			
TMPSB 1							105.1		
MALL I				514		d Capito	* 1		-
5470 I						364	-that		
LHD 1				1916	Masard	Tiachae	× Г	-	which is
PL052 1 PPD 1					i.e.	es Vela		-	-
PPU 1							-		
DC7L I DRvM I	PLOST	π	TO	1R	R	TT	Π	π	10
SDR 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10000	12	(12)	Sec. 1	100	and the second second	
DMP 3		DHGS	- HFF			YOR		EDVI	EDVE
10049	TMPGG	π	顶	10	Π.	व	TT :	TT I	III.
V58 8		THP:	THE	TMPS	24470	663	1412	GET	618
2.00	PLGST	IT .	m	IX.	家	DE .	IT.	R	10
	and the second second			1.000	1000		1000	1000	1.4

The data screen may not show correct information until parameters in the software are initialized.

8.2 Initialization

This section describes the settings that must be made before the EVM software can properly display data.

8.2.1 Device Program Settings

Select the bq2014H option from the Options|Device Selection pulldown menu. This sets the software to operate with the bq2014H. The program may prompt to quit and restart the program. If so, follow the on-screen instructions and restart the program. Once restarted, the software should be set up to work with the bq2014H.

8.2.2 HDQ Port

Note whether the HDQ line from the DM2014H is connected to SMBD/HDQ1 or SMBC/HDQ2 of the EV2200. Select HDQ1 for the SMBD/HDQ1 connection or HDQ2 for the SMBC/HDQ2 connection from the Options|HDQ pulldown menu.

8.2.3 Setup Parameters

Select the Setup tab.

Figure 8–2. Setup Screen

Circuit Configuration	Flogkamming Pine	Table Data
Birs: 0.55 Ofwes HB1 TOO K. Direct HB2 TTOO K. Direct DOCT D 0 CACD 0 0	H L X Pagi F F F Pagi F F F Pagi F F F Pagi F F F Pagi F F F	PEC T15 rwh PEC/SR = UMD 2004 rwh Disclay State LED i Chrite 44 Set Disclays Rel2 3 pit day Tell Disclays Compensatory 1102 24 100 10-28C 20-30C 30-48C 100 10-28C 10-70C 10-70C
With Settings to Device	ED/v1+#1.2/1(/TS/258)	
Sam Setup to Divit.	VTS THE THE	Cell Court 1 #W ECV/F [2538
ReistDevice	Wide VTS to Device	Save VTS In Disk

Enter the corresponding resistor values in the Circuit Configuration box. These values can be saved to disk using the Save Setup to Disk button so that they are automatically called up when the program loads.

Table 8–1. Resistor Designations for Setup Screen Input

Circuit Configuration NAME	Schematic Identifier
Rsns	R10—50 mΩ
RB1	R6
RB2	R7

The Initial Settings box programs selected registers of the bq2014H. The value can be entered in the selected box and written to the device by depressing the Write Settings to Device button.

The screen also displays how pins 2 (Prog1) through 7 (Prog6) are programmed. The Reset Device button initializes the bq2014H with the programmed settings. A device reset can also be performed by writing LMD = 0and then PPFC = 0 using the Data screen.

The Table Data box interprets the programming for self-discharge and display modes. It also shows the programmed full battery capacity in terms of mVh and mAh (mAh = mVh/Rsns). The programmed full capacity or count (PFC) is set by the programming of pins 2-5.

8.3 Data Screen

After the setup parameters are entered, return to the bq2014H data screen to see the bq2014H registers. The screen displays the names and values of all the accessible registers of the bq2014H. The values can be displayed in hexadecimal or decimal. The Polling Frequency box sets the data polling rate of the data fields.

Figure 8–3. bq2014H Data Screen

le Conserva 5-232 Interfac	tions Og			-	_	_	-	_	_	
Registers @ Dec _ C	Hex	Piegister VSRL DOR	14		Pol	ing Freq	www.	23	:: s*	×
PLOST	212	PITC		-	1	maning	Casach	2		
TMP	100	INFS5	-	12				_		
NACH	-41			1				30		
NACL.	13				3	Retoine	u Casac	N/F	606	nih
BATID	D									
CMD:	1.64				LIMM	Received	Dischol	7 F	2317	estáb
FL052	142								_	
PED	199					Bil	terp Viceo	p# [874.4	197
PPU	1.30									
CPI VSB	171	A		-	-	-	-	-	24	
V15	162	FL0S1	IT	1	10	Π	III	IT	II	<u>IO</u>
CALT	- 41		CHSS	0.0	. 0		POV	1	EDV1	EOVF.
DACD		TMP	In	T	F	IT.	10	17	1T	0
SAEH	32	Cher.	10.00	100	10.00	10.20	COL.	1000		
EAEL	90		TMP3	TMP2	THPI	THE	663	662	851	960
RICAC	29	FLG52	12	10	10	ात	1T	17	12	10
VERM	- 1		-			Contractor of		Contraction of the	100	1000
				DHZ	DRt	DFID	ENNT	va		DLVD
642014H Dat		Quite	1	Pio			Eeiup	1	27	45 PM

The registers can be written by selecting a data box, overwriting the present value with the desired value, and pressing ENTER. The data must be entered in the same base (decimal or hexadecimal) as the selected base. The screen also shows the bit status of the status flags registers FLGS1 and FLGS2.

8.4 Status Screen

The Status screen graphically illustrates bq2014H operation. The program shows the average current activity as well as the temperature and remaining capacity of the battery under evaluation.

Figure 8–4. Status Screen

nip and Gas Gasge Register	Current
	Average Current 821 st.
क नंद अंद कांद	a0c 1290
200 4 7 4 300	
254	F 1140
5 90%	100.1: 990
hat Flags	840
Dwgrg EDV	eso
HIND EDVE	
VOQ 1 VQ	540
DRATE OSC OMD	

8.5 Pro Screen

The Pro screen allows read and write access to all the registers of the bq2014H.

ГНО	41 I	Deel Frequency	Devel Contanto
iend Broak	tensi sata	10 ± 1m	243 247 251 255
	Eontenio	HOG Carenand	4 7 12
	000	0ec 23	16 21 24
4m 11	Hes 11	Hes 17	Dear
			C Her IF Decard

To read or write a location:

- Enter the address location of the register in the Address box. The register and address can be selected from the pulldown menu.
- Enter the data to be written if applicable.
- Depress the Read or Write button.

The Send Break button sends a communication timing reset signal to the bq2014H and should be depressed each time a bq2014H-based batter is connected to the EV2200.

The program can continuously read a single address by using the dwell feature. To use the dwell feature:

- Enter the address to read in the Dwell Address box, which can be selected with the pulldown menu.
- Set the dwell frequency in the Dwell Frequency box.
- Click the Dwell button in the Dwell Contents box.

The contents of the register will start to scroll at the selected frequency.

8.6 Data Logging

The bq2014H registers can be logged by using the data log function. To log the data and create a log file:

- Select File|Start Data Log from the pulldown menu.
- Enter a data log file name
- Press OK
- Set the data log interval
- Press Close
- To stop the data logging select File|Close Data Log from the pulldown menu.

The file can be imported into a text editor, spreadsheet, or word processor program.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.