Data Sheet

SiI3114 PCI to Serial ATA Controller

Data Sheet

Document # SiI-DS-0103-D

February 2007

Copyright Notice

Copyright © 2007 Silicon Image, Inc. All rights reserved. These materials contain proprietary and confidential information (including trade secrets, copyright and other interests) of Silicon Image, Inc. You may not use these materials except only for your bona fide non-commercial evaluation of your potential purchase of products and/services from Silicon Image or its affiliates, and/or only in connection with your purchase of products and/or services from Silicon Image or its affiliates, and only in accordance with the terms and conditions herein. You have no right to copy, modify, transfer, sublicense, publicly display, create derivative works of or distribute these materials, or otherwise make these materials available, in whole or in part, to any third party.

Trademark Acknowledgment

Silicon Image[™], VastLane[™], SteelVine[™], PinnaClear[™], Simplay[™], Simplay HD[™], Satalink[™], and TMDS[™] are trademarks or registered trademarks of Silicon Image, Inc. in the United States and other countries. HDMI[™], the HDMI logo and High-Definition Multimedia Interface[™] are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC.

Further Information

To request other materials, documentation, and information, contact your local Silicon Image, Inc. sales office or visit the Silicon Image, Inc. web site at www.siliconimage.com.

Revision	Date	Comment
A	09/08/03	Derived from Preliminary datasheet Rev 0.65.
A1	10/16/03	Updated Table 2-6 SerDes Reference Clock Input Requirements; Updated Table 2-1 Absolute Maximum Ratings; Corrected inconsistent sentences (minor fixes including mistyping)
A2	10/30/03	Updated Section 8.2 Serial ATA Device Initialization
A3	02/05/04	Corrected part number on cover page to SiI3114CT176 from SiI3114CT144
A4	04/05/05	Updated the part number on cover page to SiI3114 from SiI3114CT176; Added Part Ordering Number in section 4. Package Drawing; Updated Marking Specification in section 4. Package Drawing
В	07/21/06	Corrected inconsistent sentences (minor fixes including mistyping); Updated Sil company logo
С	11/29/06	This datasheet is no longer under NDA. Removed confidential markings
D	02/23/07	New formatting applied throughout entire document.

Revision History

© 2007 Silicon Image. Inc.

Table of Contents

Overview	1
Key Benefits	1
Features	
Overall Features	
PCI Features Serial ATA Features	
Other Features	
Applications	
References	
Functional Description	
PCI Interface	
PCI Initialization	
PCI Bus Operations	
PCI Configuration Space	
Deviations from the Specification	
Electrical Characteristics	
Device Electrical Characteristics	
SATA Interface Timing Specifications	
SATA Interface Transmitter Output Jitter Characteristics	
CLKI SerDes Reference Clock Input Requirements	
PCI 33 MHz Timing Specifications	
PCI 66 MHz Timing Specifications	
Flash Memory Timing Specifications	7
Pin Definitions	8
SiI3114 Pin Listing	8
SiI3114 Pin Diagram	13
Sil 3114 Pin Descriptions	14
PCI 66MHz 32-bit	
Miscellaneous I/O Serial ATA Signals	
Package Drawing	
Package Markings	20
Block Diagram	21
Auto-Initialization	22
Auto-Initialization from Flash	22
Auto-Initialization from EEPROM	23
Register Definitions	25
PCI Configuration Space	
Device ID – Vendor ID	26
PCI Status – PCI Command	
PCI Class Code – Revision ID BIST – Header Type – Latency Timer – Cache Line Size	28 28
Bist – freader type – Latency filler – Cache Line Size Base Address Register 0	
Base Address Register 1	

Base Address Register 2	
Base Address Register 3	
Base Address Register 4	
Base Address Register 5	
Subsystem ID – Subsystem Vendor ID	
Expansion ROM Base Address	
Capabilities Pointer	
Max Latency – Min Grant – Interrupt Pin – Interrupt Line	
Configuration	
Software Data Register	
Power Management Capabilities	
Power Management Control + Status	
PCI Bus Master – Channel 0/2	
PRD Table Address – Channel 0/2	
PCI Bus Master – Channel 1/3	
PRD Table Address – Channel 1/3	
Data Transfer Mode – Channel 0/2	
Data Transfer Mode – Channel 1/3	
System Configuration Status – Command	
System Software Data Register	
Flash Memory Address – Command + Status	
Flash Memory Data	
EEPROM Memory Address – Command + Status	
EEPROM Memory Data	
Channel 0/2 Task File Configuration + Status	
Channel 1/3 Task File Configuration + Status	
BA5 Indirect Address	
BA5 Indirect Access	
Internal Register Space – Base Address 0	
Channel 0/2 Task File Register 0	
Channel 0/2 Task File Register 1	
Internal Register Space – Base Address 1	
Channel 0/2 Task File Register 2	
Internal Register Space – Base Address 2	
Channel 1/3 Task File Register 0	
Channel 1/3 Task File Register 1	
Internal Register Space – Base Address 3	
Channel 1/3 Task File Register 2	
5	
Internal Register Space – Base Address 4	
PCI Bus Master – Channel 0/2	
PRD Table Address – Channel 0/2	
PCI Bus Master – Channel 1/3	
PRD Table Address – Channel 1/3	
Internal Register Space – Base Address 5	
PCI Bus Master – Channel X	
PRD Table Address – Channel X	
PCI Bus Master2 – Channel X	
Summary Interrupt Status	
PRD Address – Channel X	
PCI Bus Master Byte Count – Channel X	
FIFO Valid Byte Count and Control – Channel X	
System Configuration Status – Command	
System Software Data Register	
Flash Memory Address – Command + Status	
Flash Memory Data	
EEPROM Memory Address – Command + Status	
EEPROM Memory Data	

FIFO Port – Channel X	
FIFO Pointers1– Channel X	61
FIFO Pointers2– Channel X	
Channel X Task File Register 0	
Channel X Task File Register 1	
Channel X Task File Register 2 Channel X Read Ahead Data	
Channel X Task File Register 0 – Command Buffering	
Channel X Task File Register 1 – Command Buffering	
Channel X Extended Task File Register – Command Buffering	65
Channel X Virtual DMA/PIO Read Ahead Byte Count	
Channel X Task File Configuration + Status	65
Data Transfer Mode – Channel X	
Serial ATA SControl	
Serial ATA SStatus	
Serial ATA SError	
Serial ATA SActive	
SMisc Serial ATA PHY Configuration	
SenarATA FTT Conliguration	
SFISCfg	
RxFIS0-RxFIS6	
Programming Sequences	
Recommended Initialization Sequence for the SiI3114	
Serial ATA Device Initialization	
Issue ATA Command	
PIO Mode Read/Write Operation	
Watchdog Timer Operation	
PIO Mode Read Ahead Operation	78
MDMA/UDMA Read/Write Operation	78
Virtual DMA Read/Write Operation	79
Using Virtual DMA with Non-DMA Capable Devices	
Using Virtual DMA with DMA Capable Devices	81
Second PCI Bus Master Registers Usage	82
Power Management	83
Power Management Summary	
Partial Power Management Mode	
Slumber Power Management Mode	
Hot Plug Support	
FIS Support	
FIS Summary	
FIS Transmission	
FIS Reception	
FIS Types Not Affiliated with Current ATA/ATAPI Operations	
BIST Support	
BIST Signals DMA Setup	
	ъЯ

ATA Command Decoding	
Data Modes	90
ATA Commands Obsolesced Commands Read/Write Long	
Vendor Specific Command Support Silicon Image's Vendor Specific Commands Vendor Specific, Reserved, Retired and Obsolesced Commands Definitions Scheme	93 93 94 94
Bridge Device Vendor Specific Commands Feature Set/Command Summary VS Lock VS Unlock Vendor Specific VS Unlock Reserved VS Unlock Individual VS Set General Protocol VS Set Command Protocol	
State Transitions	
Protocols Summary	112
Reading and Writing of Task File and Device Control Registers	116 116
LED Support	116
Flash and EEPROM Programming Sequences	117
Flash Memory Access PCI Direct Access Register Access	117 117
EEPROM Memory Access EEPROM Write Operation EEPROM Read Operation	118

_

List of Figures

Figure 1. Address Lines During Configuration Cycle	. 3
Figure 2. Flash Memory Timing	7
Figure 3. SiI3114 Pin Diagram 1	13
Figure 4. Package Drawing – 176 TQFP 1	19
Figure 5. Marking Specification – SiI3114CT176	20
Figure 6. Marking Specification – SiI3114CTU	20
Figure 7. SiI3114 Block Diagram	21
Figure 8. Auto-Initialization from Flash Timing	22
Figure 9. Auto-Initialization from EEPROM Timing	23
Figure 10. Hot Plug Logic State Diagram 8	

List of Tables

Table 1. Absolute Maximum Ratings	
Table 2. DC Specifications	4
Table 3. SATA Interface DC Specifications	5
Table 4. SATA Interface Timing Specifications	
Table 5. SATA Interface Transmitter Output Jitter Characteristics	6
Table 6. CLKI SerDes Reference Clock Input Requirements	6
Table 7. PCI 33 MHz Timing Specifications	
Table 8. PCI 66 MHz Timing Specifications	7
Table 9. SiI3114 Pin Listing	8
Table 10. Pin Types	
Table 11. Auto-Initialization from Flash Timing	. 22
Table 12. Flash Data Description	. 22
Table 13. Auto-Initialization from EEPROM Timing	. 23
Table 14. Auto-Initialization from EEPROM Timing Symbols	. 23
Table 15. EEPROM Data Description	
Table 16. SiI3114 PCI Configuration Space	
Table 17. Sil3114 Internal Register Space – Base Address 0	
Table 18. SiI3114 Internal Register Space – Base Address 1	
Table 19. SiI3114 Internal Register Space – Base Address 2	
Table 20. SiI3114 Internal Register Space – Base Address 3	
Table 21. SiI3114 Internal Register Space – Base Address 3	
Table 22. SiI3114 Internal Register Space – Base Address 5 Table 23. Software Data Data Data Data Space - Gfact 00	
Table 23. Software Data Byte, Base Address 5, Offset 00 _H	
Table 24. Software Data Byte, Base Address 5, Offset 10 _H	
Table 25. SError Register Bits (DIAG Field)	
Table 26. SError Register Bits (ERR Field)	. 69
Table 27. Physical Region Descriptor (PRD) Format	. 82
Table 28. Power Management Register Bits	
Table 29. FIS Summary	
Table 30. Configuration Bits for FIS Reception	
Table 31. Default FIS Configurations	
Table 32. ATA Commands Supported	
Table 33. Data FIS	
Table 34. Vendor Specific Command Summary	
Table 35. 16-Entry Command Protocol Table	100
Table 36. Registers Used When Issuing VS Set Command Table 37. Default State - VS_LOCKED	108
Table 38. VS_VS	
Table 39. VS_RSV	
Table 40. VS_IND	
Table 41. VS_VS_RSV	
Table 42. VS_VS_IND	
Table 43. VS_RSV_IND	
Table 44. VS_VS_RSV_IND	
Table 45. Protocol Code Encoding Scheme	
Table 46. Vendor Specific Protocol Code (in Alphabetical Order) Table 47. Vendor Specific Protocol Code (by Protocol Code)	
Table 47. Vendor Specific Protocol Code (by Protocol Code) Table 48. Vendor Specific Protocol Code (in Alphabetical Order)	
Table 48. Vendor Specific Protocol Code (in Alphabetical Order)	CII

Overview

The Silicon Image SiI3114 is a single-chip solution for a PCI to Serial ATA controller. It accepts host commands through the PCI bus, processes them, and transfers data between the host and Serial ATA devices. It can be used to control four independent Serial ATA channels. Each channel has its own Serial ATA bus and will support one Serial ATA device. The SiI3114 supports a 32-bit 66 MHz PCI bus and the Serial ATA Generation 1 transfer rate of 1.5 Gbit/s (150 MB/s).

Key Benefits

The Silicon Image SiI3114 PCI to Serial ATA Controller is the perfect single-chip solution for designs that need to accommodate storage peripherals with the new Serial ATA interface. Any system with a PCI bus interface can simply add the Serial ATA interface by adding a card with the SiI3114 and loading the driver into the system.

The SiI3114 comes complete with drivers for Windows 98, Windows Millennium, Windows NT 4.0, Windows 2000, XP, Windows 2003, Netware 5.1, 6.0, 6.5, Red Hat Linux 8.0, 9.0, SuSE Linux 8.1, 8.2 and United Linux 1.0.

Features

Overall Features

- Standalone PCI to Serial ATA host controller chip
- Compliant with PCI Specification, revision 2.3.
- Compliant with Programming Interface for Bus Master IDE Controller, revision 1.0.
- Driver support for Windows 98, Windows Millennium, Windows NT 4.0, Windows 2000, XP, Windows 2003, Netware 5.1, 6.0, 6.5, Red Hat Linux 8.0, 9.0, SuSE Linux 8.1, 8.2 and United Linux 1.0
- Supports up to 4Mbit external Flash or EPROM for BIOS expansion.
- Supports an external EEPROM, flash, or EPROM for programmable device ID, subsystem vendor ID, subsystem product ID, and PCI sub-class code.
- Supports the Silicon Image specific driver for special chip functions.
- Fabricated in a 0.18μ CMOS process with a 1.8 volt core and 3.3 volt I/Os.
- Supports Plug and Play.
- Supports ATAPI device
- Supports Activity LEDs, one for each channel with 12mA open drain driving capability.
- Available in a 176-pin TQFP package.

PCI Features

- Supports 66 MHz PCI with 32-bit data.
- Supports PCI PERR and SERR reporting.
- Supports PCI bus master operations: Memory Read, Memory Read Multiple, and Memory Write.
- Supports PCI bus target operations: Configuration Read, Configuration Write, I/O Read, I/O Write, Memory Read, Memory Write, Memory Read Line (Memory Read) and Memory Read Multiple (Memory Read)
- Supports byte alignment for odd-byte PCI address access.
- Supports jumper configurable PCI class code.
- Supports programmable and EEPROM, Flash and EPROM loadable PCI class code.
- Supports Base Address Register 5 in memory space.

Serial ATA Features

- Integrated Serial ATA Link and PHY logic
- Compliant with Serial ATA 1.0 specifications
- Supports four independent Serial ATA channels.
- Supports Serial ATA Generation 1 transfer rate of 1.5Gbit/s.
- Supports Spread Spectrum in receiver
- Single PLL architecture, 1 PLL for all four ports
- Programmable drive strengths for Backplane applications

Other Features

- Features independent 256-byte FIFOs (32-bit x 64 deep) per Serial ATA channel for host reads and writes.
- Supports legacy type operations (Master/Slave drive access) using I/O-mapped register space
- Supports 4 concurrent operations using memory-mapped register space
- Features Serial ATA to PCI interrupt masking.
- Features Watch Dog Timer for fault resiliency.
- Provides 8 bits of General Purpose I/O (GPIO)

Applications

- PC motherboards
- Serial ATA drive add on cards
- Serial ATA RAID cards

References

For more details about the Serial ATA technology, the reader is referred to the following industry specifications:

- Serial ATA / High Speed Serialized AT Attachment specification, Revision 1.0
- PCI Local Bus Specification Revision 2.3
- Advanced Power Management Specification Revision 1.0
- PCI IDE Controller Specification Revision 1.0
- Programming Interface for Bus Master IDE Controller, Revision 1.0

Functional Description

The SiI3114 is a PCI-to-Serial ATA controller chip that transfers data between the PCI bus and storage media (e.g hard disk drive, etc). The SiI3114 consists of the following functional blocks:

- PCI Interface. Provides the interface to any system that has a PCI bus. Instructions and system clocks are based on this interface.
- Serial ATA Interface. Four separate channels to access storage media such as hard disk drive, floppy disk drive, CD-ROM.

PCI Interface

The SiI3114 PCI interface is compliant with the PCI Local Bus Specification (Revision 2.3). The SiI3114 can act as a PCI master and a PCI slave, and contains the SiI3114 PCI configuration space and internal registers. When the SiI3114 needs to access shared memory, it becomes the bus master of the PCI bus and completes the memory cycle without external intervention. In the mode when it acts as a bridge between the PCI bus and the Serial ATA bus it will behave as a PCI slave.

PCI Initialization

Generally, when a system initializes a module containing a PCI device, the configuration manager reads the configuration space of each PCI device on the PCI bus. Hardware signals select a specific PCI device based on a bus number, a slot number, and a function number. If a device that is addressed (via signal lines) responds to the configuration cycle by claiming the bus, then that function's configuration space is read out from the device during the cycle. Because any PCI device. Based on the information read, the configuration manager will assign system resources to each supported function within the device. Sometimes new information needs to be written into the function's configuration space. This is accomplished with a configuration write cycle.

PCI Bus Operations

The SiI3114 behaves either as a PCI master or a PCI slave device at any time and switches between these modes as required during device operation. As a PCI slave, the SiI3114 responds to the following PCI bus operations:

- I/O Read
- I/O Write

Silicon Image, Inc.

- Configuration Read
- Configuration Write
- Memory Read
- Memory Write

All other PCI cycles are ignored by the SiI3114.

As a PCI master, the SiI3114 generates the following PCI bus operations:

- Memory Read Multiple
- Memory Read
- Memory Write

PCI Configuration Space

This section describes how the SiI3114 implements the required PCI configuration register space. The intent of PCI configuration space definition is to provide an appropriate set of configuration registers that satisfy the needs of current and anticipated system configuration mechanisms, without specifying those mechanisms or otherwise placing constraints on their use. These registers allow for:

- Full device relocation (including interrupt binding)
- Installation, configurations, and booting without user interventions
- System address map construction by device-independent software

Figure 1 illustrates the address line assignments during the configuration cycle.

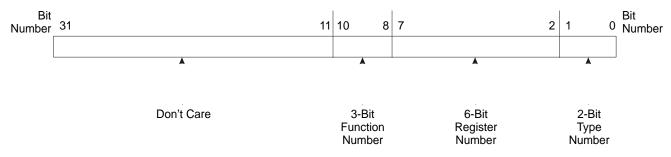


Figure 1. Address Lines During Configuration Cycle

The SiI3114 only responds to Type 0 configuration cycles. Type 1 cycles, which pass a configuration request on to another PCI bus, are ignored.

The address phase during a SiI3114 configuration cycle indicates the function number and register number being addressed which can be decoded by observing the status of the address lines AD[31:0].

The value of the signal lines AD[7:2] during the address phase of configuration cycles selects the register of the configuration space to access. Valid values are between 0 and 15, inclusive. Accessing registers outside this range results in an all-0s value being returned on reads, and no action being taken on writes.

The Class Code register contains the Class Code, Sub-Class Code, and Register-Level Programming Interface registers.

All writable bits in the configuration space except offset 44h, 8Ch are reset to their defaults by the hardware reset, PCI RESET (RST#) asserted. After reset, the SiI3114 is disabled and will only respond to PCI configuration write and PCI configuration read cycles.

Deviations from the Specification

The SiI3114 product has been developed and tested to the specification listed in this document. As a result of testing and customer feedback, we may become aware of deviations to the specification that could affect the component's operation. To ensure awareness of these deviations by anyone considering the use of the SiI3114, we have included an Errata section at the end of this specification. Please ensure that the Errata section is

carefully reviewed. It is also important that you have the most current version of this specification. If there are any questions, please contact Silicon Image, Inc.

Electrical Characteristics

Device Electrical Characteristics

Specifications are for Commercial Temperature range, 0°C to +70°C, unless otherwise specified.

Symbol	Parameter	Ratings	Unit
VDDO	I/O Supply Voltage	4.0	V
VDDI, VDDP VDDA, VDDX	Digital, PLL, Analog and Oscillator Supply Power	2.15	V
V _{PCI_IN}	Input Voltage for PCI signals	-0.3 ~ 6.0	V
V _{NONPCI_IN}	Input Voltage for Non-PCI signals	-0.3 ~ VDDO+0.3	V
V _{CLKI_IN}	Input Voltage for CLKI	-0.3 ~ VDDX+0.3	V
I _{OUT}	DC Output Current	16	mA
θ_{JA}	Thermal Resistance (Junction to Ambient)	32.6	°C/W
T _{STG}	Storage Temperature	-65 ~ 150	°C

Table 1. Absolute Maximum Ratings

Table 2. DC Specifications

Symbol	Parameter	Condition Type		Limits			
				Min	Тур	Max	
VDDI VDDA VDDP	Supply Voltage (Digital, Analog, PLL, Oscillator)	-	-	1.71	1.8	1.89	V
VDDP							
VDDO	Supply Voltage(I/O)	-	-	3.0	3.3	3.6	V
IDD _{1.8V}	1.8V Supply Current	-	-	-	325 ¹	430 ²	mA
IDD _{3.3V}	3.3V Supply Current	C _{LOAD} = 20pF	-	-	12 ¹	40 ²	mA
VIH	Input High Voltage	-	3.3V PCI	0.5xVDDO	-	-	V
		-	Non-PCI	2.0	-	-	
VIL	Input Low Voltage	-	3.3V PCI	-	-	0.3xVDDO	V
	_	-	Non-PCI	-	-	0.8	
V _{OH}	Output High Voltage	I _{OUT} = -500uA	3.3V PCI	0.9xVDDO	-	-	V
		-	Non-PCI	2.4	-	-	
V _{OL}	Output Low Voltage	I _{OUT} = 1500uA	3.3V PCI	-	-	0.1xVDDO	V
		-	Non-PCI	-	-	0.4	
V+	Input High Voltage	-	Schmitt	-	1.8	2.3	V
V-	Input Low Voltage	-	Schmitt	0.5	0.9	-	V
V _H	Hysteresis Voltage	-	Schmitt	0.4	-	-	V
I _{IH}	Input High Current	$V_{IN} = VDD$	-	-10	-	10	uA
I _{IL}	Input Low Current	V _{IN} = VSS	-	-10	-	10	uA
I _{ILOD}	Open Drain output sink current	-	-	-	-	12	mA
I _{OZ}	3-State Leakage Current	-	-	-10	-	10	uA

Notes: ¹ Using the random data pattern (read/write operation) at 1.8V or 3.3V power supply, PCI

interface = 33 MHz.

² Using the maximum toggling data pattern (read/write operation) at 1.89V or 3.6V power supply , PCI interface = 66 MHz.

Symbol	Parameter	Condition		Unit		
			Min	Тур	Max	
V _{DOUT_00}	TX+/TX- differential peak-to-peak voltage swing.	Terminated by 50 Ohms. Tx Swing Value = 00	400	500	600	mV
V _{DOUT_01}	TX+/TX- differential peak-to-peak voltage swing.	Terminated by 50 Ohms. Tx Swing Value = 01	500	600	700	mV
V _{DOUT_10}	TX+/TX- differential peak-to-peak voltage swing.	Terminated by 50 Ohms. Tx Swing Value = 10	550	700	800	mV
V _{DOUT_11}	TX+/TX- differential peak-to-peak voltage swing.	Terminated by 50 Ohms. Tx Swing Value = 11	650	800	900	mV
V_{DIN}	RX+/RX- differential peak-to-peak input sensitivity	-	325	-	-	mV
V _{DICM}	RX+/RX- differential Input common-mode voltage	-	200	300	450	mV
V _{DOCM}	TX+/TX-differential Output common-mode voltage	-	200	300	450	mV
V_{SDT}	Squelch detector threshold	-	100	50	200	mV
Z _{DIN}	Differential input impedance	REXT = 1k 1% for 25MHz SerDes Ref Clk REXT = 4.99k 1% for 100MHz SerDes Ref Clk	85	100	115	ohms
Z _{DOUT}	Differential output impedance	REXT = 1k 1% for 25MHz SerDes Ref Clk REXT = 4.99k 1% for 100MHz SerDes Ref Clk	85	100	115	ohms

Table 3. SATA Interface DC Specifications

SATA Interface Timing Specifications

Table 4. SATA Interface Timing Specifications

Symbol	Parameter	Condition		Limits		Unit
			Min	Тур	Max	
T _{TX_RISE_FALL}	Rise and Fall time at transmitter	20%-80%	133	-	274	ps
T _{TX_SKEW}	Tx differential skew	-	-	-	20	ps
T _{TX_DC_FREQ}	Tx DC clock frequency skew	-	-350	-	+350	ppm
T _{TX_AC_FREQ}	Tx AC clock frequency skew	SerDes Ref Clk = SSC AC modulation, subject to the "Downspread SSC" triangular modulation (30-33KHz) profile per 6.6.4.5 in SATA 1.0 specification	-5000	-	+0	ppm

SATA Interface Transmitter Output Jitter Characteristics

Symbol	Parameter	Condition		Unit		
			Min	Тур	Max	
RJ _{5UI}	5UI later Random Jitter	Measured at Tx output pins 1sigma deviation	-	4.5	-	ps rms
RJ _{250UI}	250UI later Random Jitter	Measured at Tx output pins 1sigma deviation	-	6.0	-	ps rms
DJ₅∪ı	5UI later Deterministic Jitter	Measured at Tx output pins peak to peak phase variation Random data pattern	-	40	-	ps
DJ _{250UI}	250UI later Deterministic Jitter	Measured at Tx output pins peak to peak phase variation Random data pattern	-	45	-	ps

Table 5. SATA Interface Transmitter Output Jitter Characteristics

CLKI SerDes Reference Clock Input Requirements

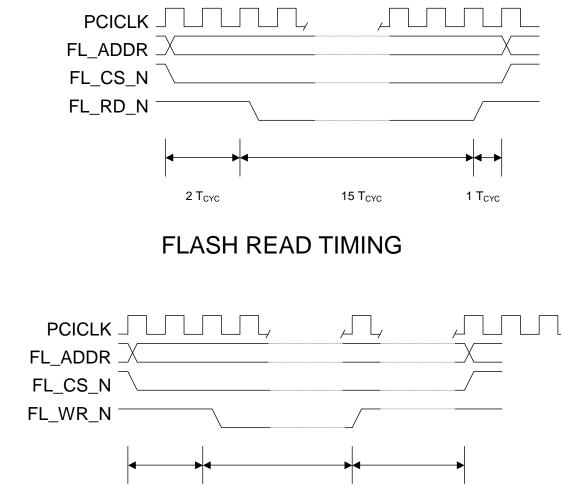
Table 6. CLKI SerDes Reference Clock Input Requirements

Symbol	ol Parameter Condition Limits			Unit		
			Min	Тур	Max	
T _{CLKI_FREQ}	Nominal Frequency	REXT = 1k 1% REXT = 4.99k 1%	-	25 100	-	MHz
$V_{CLK_{IH}}$	Input High Voltage	-	0.7xVDDX	-	-	V
V _{CLK_IL}	Input Low Voltage	-	-	-	0.3xVDDX	V
T _{CLKI_J}	CLKI frequency tolerance	-	-100		+100	ppm
T _{CLKI_RISE_FALL}	Rise and Fall time at CLKI	25MHz reference clock, 20%-80% 100MHz reference clock, 20%-80%	-	-	4 2	ns
T _{CLKI_RC_DUTY}	CLKI duty cycle	20%-80%	40	-	60	%

Notes: CLKI must be 1.8V swing when external clock input to this pin

PCI 33 MHz Timing Specifications

Table 7. PCI 33 MHz Timing Specifications


Symbol	Parameter	Lin	Unit	
		Min	Max	
T _{VAL}	CLK to Signal Valid – Bussed Signals	2.0	11.0	ns
T _{VAL (PTP)}	CLK to Signal Valid – Point to Point	2.0	11.0	ns
T _{ON}	Float to Active Delay	2.0	-	ns
T _{OFF}	Active to Float Delay	-	28.0	ns
T _{SU}	Input Setup Time – Bussed Signals	7.0	-	ns
T _{SU (PTP)}	Input Setup Time – Point to Point	10.0	-	ns
Т _Н	Input Hold Time	0.0	-	ns

PCI 66 MHz Timing Specifications

Symbol	Parameter	Lin	Unit	
		Min	Max	
T _{VAL}	CLK to Signal Valid – Bussed Signals	2.0	6.0	ns
T _{VAL (PTP)}	CLK to Signal Valid – Point to Point	2.0	6.0	ns
T _{ON}	Float to Active Delay	2.0	-	ns
T _{OFF}	Active to Float Delay	-	14.0	ns
T _{SU}	Input Setup Time – Bussed Signals	3.0	-	ns
T _{SU (PTP)}	Input Setup Time – Point to Point	5.0	-	ns
Т _н	Input Hold Time	0.0	-	ns

Table 8. PCI 66 MHz Timing Specifications

Flash Memory Timing Specifications

FLASH WRITE TIMING

 $15 T_{CYC}$

 $13 T_{CYC}$

 $2 T_{CYC}$

Figure 2. Flash Memory Timing

Pin Definitions

Sil3114 Pin Listing

This section describes the pins of the SiI3114 PCI-to-Serial ATA host controller. Table 9 provides information on pin numbers, pin names, pin types, drive types where applicable, internal resistors where applicable, and descriptions. Table 10 shows the pin types used in the SiI3114.

Pin #	Pin Name	Туре	Internal Resistor	Description
1	N/C	N/C	-	No internal connection
2	GNDA	GND	-	Analog Ground
3	TxP0	0	-	Channel 0 Differential Transmit +ve
4	TxN0	0	-	Channel 0 Differential Transmit -ve
5	GNDA	GND	-	Analog Ground
6	VDDA	PWR	-	1.8V SerDes Power
7	GNDA	GND	-	Analog Ground
8	RxN0	I	-	Channel 0 Differential Receive -ve
9	RxP0	I	-	Channel 0 Differential Receive +ve
10	VDDA	PWR	-	1.8V SerDes Power
11	GNDA	GND	-	Analog Ground
12	TxP1	0	-	Channel 1 Differential Transmit +ve
13	TxN1	0	-	Channel 1 Differential Transmit -ve
14	GNDA	GND	-	Analog Ground
15	VDDA	PWR	-	1.8V SerDes Power
16	GNDA	GND	-	Analog Ground
17	RxN1	Ι	-	Channel 1 Differential Receive -ve
18	RxP1	Ι	-	Channel 1 Differential Receive +ve
19	VDDA	PWR	-	1.8V SerDes Power
20	VDDX	PWR	-	1.8V supply for Crystal Oscillator
21	XTALO	0	-	Crystal Oscillator Output
22	XTALI/CLKI	I	-	Crystal Oscillator Input or external clock input
23	GNDA	GND	-	Analog Ground
24	REXT	I	-	External Reference Resistor Input
25	VDDP	PWR	-	1.8V PLL Power
26	GNDA	GND	-	Analog Ground
27	TxP2	0	-	Channel 2 Differential Transmit +ve
28	TxN2	0	-	Channel 2 Differential Transmit -ve
29	GNDA	GND	-	Analog Ground
30	VDDA	PWR	-	1.8V SerDes Power
31	GNDA	GND	-	Analog Ground
32	RxN2	I	-	Channel 2 Differential Receive -ve
33	RxP2	I	-	Channel 2 Differential Receive +ve
34	VDDA	PWR	-	1.8V SerDes Power
35	GNDA	GND	-	Analog Ground
36	TxP3	0	-	Channel 3 Differential Transmit +ve
37	TxN3	0	-	Channel 3 Differential Transmit -ve
38	GNDA	GND	-	Analog Ground
39	VDDA	PWR	-	1.8V SerDes Power
40	GNDA	GND	-	Analog Ground

Table	9. Si	13114	Pin	Listing
-------	-------	-------	-----	---------

Pin Name Pin # Internal Description Type Resistor 41 RxN3 I Channel 3 Differential Receive -ve Channel 3 Differential Receive +ve RxP3 I 42 -PWR 43 VDDA 1.8V SerDes Power -44 N/C N/C No internal connection -45 VDDO PWR 3.3 Volt Power -46 VSSO GND -Ground 47 EEPROM SDAT I/O PU – 70k **EEPROM Serial Data** EEPROM SCLK I/O PU – 70k **EEPROM Serial Clock** 48 PU – 70k 49 FL_ADDR[00] / I/O Flash Memory Address 0 / Mass Storage-RAID PCI CLASS_SEL Class Select 50 FL_ADDR[01] / BA5_EN I/O PU – 70k Flash Memory Address 1 / Base Address Register 5 Enable PU – 70k Flash Memory Address 2 FL_ADDR[02] 0 51 52 FL_RD_N 0 PU – 70k Flash Memory Read Strobe FL_WR_N 53 0 PU – 70k Flash Memory Write Strobe FL_ADDR[03] 0 PU – 70k Flash Memory Address 3 54 PU – 70k 55 FL_ADDR[04] 0 Flash Memory Address 4 56 FL ADDR[05] 0 PU - 70k Flash Memory Address 5 57 FL_ADDR[06] 0 PU – 70k Flash Memory Address 6 PWR 58 VDDO 3.3 Volt Power -59 VSSO GND Ground -VDDI PWR 1.8V Internal core Power 60 -61 VSSI GND -Ground PU – 70k Flash Memory Address 7 62 FL_ADDR[07] 0 FL_ADDR[08] 0 PU – 70k Flash Memory Address 8 63 PU – 70k 64 FL_ADDR[09] 0 Flash Memory Address 9 LED0 OD PU – 70k Channel 0 activity LED indicator 65 66 FL ADDR[10] 0 PU – 70k Flash Memory Address 10 PU - 70k Flash Memory Address 11 67 FL_ADDR[11] 0 0 PU – 70k Flash Memory Address 12 68 FL_ADDR[12] FL_ADDR[13] 0 PU – 70k Flash Memory Address 13 69 OD PU – 70k 70 LED1 Channel 1 activity LED indicator PWR 1.8V Internal core Power 71 VDDI -VSSI GND Ground 72 -PWR 3.3 Volt Power 73 VDDO -GND Ground 74 VSSO -PU – 70k Flash Memory Address 14 75 FL_ADDR[14] 0 PU – 70k Flash Memory Address 15 76 FL_ADDR[15] 0 77 PU – 70k Flash Memory Address 16 FL_ADDR[16] 0 78 LED2 OD PU – 70k Channel 2 activity LED indicator PU – 70k 79 FL_ADDR[17] 0 Flash Memory Address 17 0 PU – 70k Flash Memory Address 18 80 FL_ADDR[18] FL CS N 0 PU – 70k Flash Memory Chip Select 81 82 VDDI PWR 1.8V Internal Core Power 83 VSSI GND Ground -84 LED3 OD PU – 70k Channel 3 activity LED indicator FL_DATA[00] I/O PU – 70k Flash Memory Data 0 85 PU – 70k I/O Flash Memory Data 1

Table 9. Sil3114 Pin Listing (continued)

86

FL_DATA[01]

Pin #	Pin Name	Туре	Internal Resistor	Description
87	FL_DATA[02]	I/O	PU – 70k	Flash Memory Data 2
88	VDDO	PWR	-	3.3 Volt Power
89	VSSO	GND	-	Ground
90	FL_DATA[03]	I/O	PU – 70k	Flash Memory Data 3
91	FL_DATA[04]	I/O	PU – 70k	Flash Memory Data 4
92	FL_DATA[05]	I/O	PU – 70k	Flash Memory Data 5
93	FL_DATA[06]	I/O	PU – 70k	Flash Memory Data 6
94	FL_DATA[07]	I/O	PU – 70k	Flash Memory Data 7
95	PCI_INTA_N	OD	-	PCI Interrupt
96	PCI_RST_N	I-Schmitt	-	PCI Reset
97	PCI_CLK	I	-	PCI Clock
98	PCI_GNT_N	Ι	-	PCI Bus Grant
99	VDDO	PWR	-	3.3 Volt Power
100	VSSO	GND	-	Ground
101	VDDI	PWR	-	1.8V Internal Core Power
102	VSSI	GND	-	Ground
103	PCI_REQ_N	Т	-	PCI Bus Request
104	PCI_AD31	I/O	-	PCI Address/Data
105	PCI_AD30	I/O	-	PCI Address/Data
106	PCI_AD29	I/O	-	PCI Address/Data
107	PCI_AD28	I/O	-	PCI Address/Data
108	PCI_AD27	I/O	-	PCI Address/Data
109	PCI_AD26	I/O	-	PCI Address/Data
110	VDDO	PWR	-	3.3 Volt Power
111	VSSO	GND	-	Ground
112	PCI_AD25	I/O	-	PCI Address/Data
113	PCI_AD24	I/O	-	PCI Address/Data
114	PCI_CBE3	I/O	-	PCI Command/Byte Enable
115	PCI_IDSEL	I	-	PCI ID Select
116	PCI_AD23	I/O	-	PCI Address/Data
117	PCI_AD22	I/O	-	PCI Address/Data
118	PCI_AD21	I/O	-	PCI Address/Data
119	VDDI	PWR	-	1.8V Internal Core Power
120	VSSI	GND	-	Ground
121	VDDO	PWR	-	3.3 Volt Power
122	VSSO	GND	-	Ground
123	PCI_AD20	I/O	-	PCI Address/Data
124	PCI_AD19	I/O	-	PCI Address/Data
125	PCI_AD18	I/O	-	PCI Address/Data
126	PCI_AD17	I/O	-	PCI Address/Data
127	PCI_AD16	I/O	-	PCI Address/Data
128	PCI_CBE2	I/O	-	PCI Command/Byte Enable
129	PCI_FRAME_N	I/O	-	PCI Frame
130	PCI_IRDY_N	I/O	-	PCI Initiator Ready
131	PCI_PERR_N	I/O	-	PCI Parity Error
132	VDDO	PWR	-	3.3 Volt Power

Pin #	Pin Name	Туре	Internal Resistor	Description
133	VSSO	GND	-	Ground
134	PCI_STOP_N	I/O	-	PCI Stop
135	PCI_DEVSEL_N	I/O	-	PCI Device Select
136	PCI_TRDY_N	I/O	-	PCI Target Ready
137	PCI_SERR_N	OD	-	PCI System Error
138	VDDI	PWR	-	1.8V Internal Core Power
139	VSSI	GND	-	Ground
140	PCI_PAR	I/O	-	PCI Parity
141	PCI_CBE1	I/O	-	PCI Command/Byte Enable
142	PCI_AD15	I/O	-	PCI Address/Data
143	PCI_AD14	I/O	-	PCI Address/Data
144	VDDO	PWR	-	3.3 Volt Power
145	VSSO	GND	-	Ground
146	PCI_AD13	I/O	-	PCI Address/Data
147	PCI_AD12	I/O	-	PCI Address/Data
148	VDDI	PWR	-	1.8 Volt Core Power
149	VSSI	GND	-	Ground
150	PCI_AD11	I/O	-	PCI Address/Data
151	PCI_AD10	I/O	-	PCI Address/Data
152	PCI_M66EN	Ι	-	PCI 66 MHz Enable
153	PCI_AD09	I/O	-	PCI Address/Data
154	PCI_AD08	I/O	-	PCI Address/Data
155	PCI_CBE0	I/O	-	PCI Command/Byte Enable
156	VDDO	PWR	-	3.3 Volt Power
157	VSSO	GND	-	Ground
158	VDDI	PWR	-	1.8 Volt Core Power
159	VSSI	GND	-	Ground
160	PCI_AD07	I/O	-	PCI Address/Data
161	PCI_AD06	I/O	-	PCI Address/Data
162	PCI_AD05	I/O	-	PCI Address/Data
163	PCI_AD04	I/O	-	PCI Address/Data
164	PCI_AD03	I/O	-	PCI Address/Data
165	PCI_AD02	I/O	-	PCI Address/Data
166	PCI_AD01	I/O	-	PCI Address/Data
167	PCI_AD00	I/O	-	PCI Address/Data
168	VDDO	PWR	-	3.3 Volt Power
169	VSSO	GND	-	Ground
170	GPIOEN	Ι	PD -60k	GPIO Enable
171	TEST_MODE	Ι	PD -60k	Test Mode Enable
172	TMS	I	PU -70k	JTAG Test Mode Select
173	ТСК	Ι	PU -70k	JTAG Test Clock
174	TDO	0	-	JTAG Test Data Out
175	TDI	I	PU -70k	JTAG Test Data In
176	TRSTN	Ι	PU -70k	JTAG Test Reset

Table 9. Sil3114 Pin Listing (continued)

Pin Type	Description
I	Input Pin with LVTTL Thresholds
I-Schmitt	Input Pin with Schmitt Trigger
0	Output Pin
Т	Tri-state Output Pin
I/O	Bi-directional Pin
OD	Open Drain Output Pin

Table 10. Pin Types

Note: PCI pins are 5V tolerant.

Silicon Image, Inc.

Sil 3114 Pin Diagram

Figure 3 shows the SiI3114 pinout. Note that most PCI signals are not labeled with the "PCI_" prefix as used elsewhere.

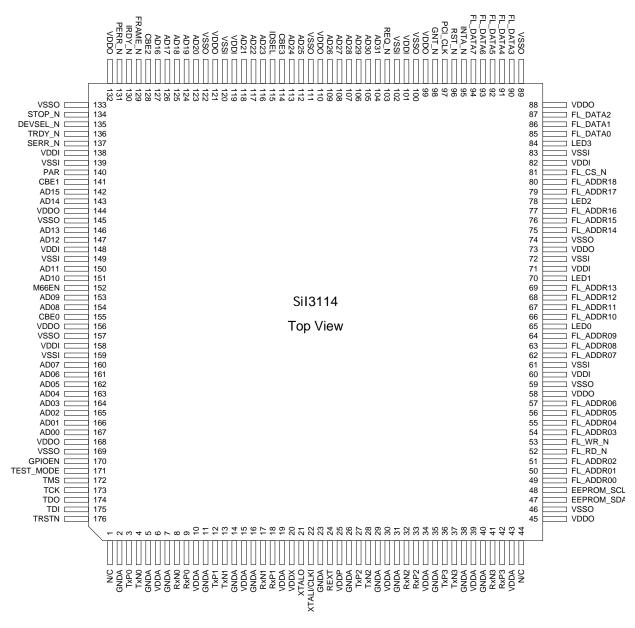


Figure 3. SiI3114 Pin Diagram

SiI3114 Pin Descriptions

PCI 66MHz 32-bit

PCI Address and Data Pin Names: PCI_AD[31..00]

Pin Numbers: 104-109, 112, 113, 116-118, 123-127, 142, 143, 146, 147, 150, 151, 153, 154, 160-167 Address and Data buses are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phases. PCI supports both read and write bursts. The address phase is the first clock cycle in which PCI_FRAME_N signal is asserted. During the address phase, PCI_AD[31:0] contain a physical address (32 bits). For I/O, this can be a byte address. For configuration and memory it is a dword address. During data phases, PCI_AD[7:0] contain the least significant byte (LSB) and PCI_AD[31:24] contain the most significant byte (MSB). Write data is stable and valid when PCI_IRDY_N is asserted; read data is stable and valid when PCI_TRDY_N is asserted. Data is transferred during those clocks where both PCI_IRDY_N and PCI_TRDY_N are asserted.

PCI Command and Byte Enables

Pin Names: PCI_CBE[3..0] Pin Numbers: 114, 128, 141, 155 Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, PCI_CBE[3:0]_N define the bus command. During the data phase, PCI_CBE[3:0]_N are used as Byte Enables. Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data.

PCI ID Select Pin Name: PCI_IDSEL Pin Number: 115 This signal is used as a chip select during configuration read and write transactions.

PCI Frame Cycle Pin Name: PCI_FRAME_N Pin Number: 129 Cycle Frame is driven by the current master to indicate the beginning and duration of an access. PCI_FRAME_N is asserted to indicate that a bus transaction is beginning. While PCI_FRAME_N is asserted, data transfers continue. When PCI_FRAME_N is deasserted, the transaction is in the final data phase or has completed.

PCI Initiator Ready

Pin Name: PCI_IRDY_N

Pin Number: 130

Initiator Ready indicates the initializing agent's (bus master's) ability to complete the current data phase of the transaction. This signal is used with PCI_TRDY_N. A data phase is completed on any clock when both PCI_IRDY_N and PCI_TRDY_N are sampled as asserted. Wait cycles are inserted until both PCI_IRDY_N and PCI_TRDY_N are asserted together.

PCI Target Ready

Pin Name: PCI_TRDY_N

Pin Number: 136

Target Ready indicates the target agent's ability to complete the current data phase of the transaction. PCI_TRDY_N is used with PCI_IRDY_N. A data phase is completed on any clock when both PCI_TRDY_N and PCI_IRDY_N are sampled asserted. During a read, PCI_TRDY_N indicates that valid data is present on PCI_AD[31:0]. During a write, it indicates the target is prepared to accept data.

PCI Device Select Pin Name: PCI_DEVSEL_N Pin Number: 135 Device Select, when actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, PCI_DEVSEL_N indicates to a master whether any device on the bus has been selected.

Silicon Image, Inc.

PCI Stop Pin Name: PCI_STOP_N Pin Number: 134 PCI_STOP_N indicates the current target is requesting that the master stop the current transaction.

PCI Parity Error Pin Name: PCI_PERR_N Pin Number: 131 PCI_PERR_N indicates a data parity error between the current master and target on PCI. On a write transaction, the target always signals data parity errors back to the master on PCI_PERR_N. On a read transaction, the master asserts PCI_PERR_N to indicate to the system that an error was detected.

PCI System Error

Pin Name: PCI_SERR_N

Pin Number: 137

System Error is for reporting address parity errors, data parity errors on Special Cycle Command, or any other system error where the result will be catastrophic. The PCI_SERR_N is a pure open drain and is actively driven for a single PCI clock by the agent reporting the error. The assertion of PCI_SERR_N is synchronous to the clock and meets the setup and hold times of all bused signals. However, the restoring of PCI_SERR_N to the deasserted state is accomplished by a weak pull-up. Note that if an agent does not want a non-maskable interrupt (NMI) to be generated, a different reporting mechanism is required.

PCI Parity

Pin Name: PCI_PAR Pin Number: 140

PCI_PAR is even parity across PCI_AD[31:0] and PCI_CBE[3:0]_N. Parity generation is required by all PCI agents. PCI_PAR is stable and valid one clock after the address phase. For data phases PCI_PAR is stable and valid one clock after either PCI_IRDY_N is asserted on a write transaction or PCI_TRDY_N is asserted on a read transaction. Once PCI_PAR is valid, it remains valid until one clock after the completion of the current data phase. (PCI_PAR has the same timing as PCI_AD[31:0] but delayed by one clock.)

PCI Request Pin Name: PCI_REQ_N Pin Number: 103 This signal indicates to the arbiter that this agent desires use of the PCI bus.

PCI Grant

Pin Name: PCI_GNT_N

Pin Number: 98

This signal indicates to the agent that access to the PCI bus has been granted. In response to a PCI request, this is a point-to-point signal. Every master has its own PCI_GNT_N, which must be ignored while PCI_RST_N is asserted.

PCI Interrupt A

Pin Name: PCI_INTA_N Pin Number: 95

Interrupt A is used to request an interrupt on the PCI bus. PCI_INTA_N is open collector and is an open drain output.

PCI Clock Signal Pin Names: PCI_CLK Pin Number: 97 Clock Signal provides timing for all transactions on PCI and is an input to every PCI device. All other PCI signals (except PCI_RST_N, and PCI_INTA_N) are sampled on the rising edge of PCI_CLK. All other timing parameters are defined with respect to this edge. PCI Reset Pin Name: PCI_RST_N Pin Number: 96 PCI_RST_N is an active low input that is used to set the internal registers to their initial state. PCI_RST_N is typically the system power-on reset signal as distributed on the PCI bus.

PCI M66EN Pin Name: PCI_M66EN Pin Number: 152 This pin configures the PCI bus operating frequency. When low, the PCI bus operates from 0 to 33 MHz. When high, the PCI bus operates from 33MHz to 66MHz.

Miscellaneous I/O

Flash Signals Pin Name: FL_ADDR00 / CLASS_SEL Pin Number: 49 When PCI_RST_N is deasserted, this p

When PCI_RST_N is deasserted, this pin is an output and represents flash memory address bit 0. During reset, it is sampled to configure Mass Storage class or RAID mode in the PCI Class Code register. A high on this pin sets Mass Storage class, a low sets RAID mode. The configuration state is latched internally when PCI_RST_N is deasserted. This pad is internally pulled high to enable Mass Storage class if left unconnected.

Pin Name: FL_ADDR01 / BA5_EN

Pin Number: 50

When PCI_RST_N is deasserted, this pin is an output and represents flash memory address bit 1 During reset, it is sampled to configure Base address register 5. A high on this pin enables base address register 5, a low disables base address register 5. The configuration state is latched internally when PCI_RST_N is deasserted. This pin is internally pulled high to enable Base address register 5 when left unconnected.

Pin Name: FL_ADDR[02-18] Pin Numbers: 51, 54-57, 62-64, 66-69, 75-77, 79, 80 Flash Memory address bits; 19 total for 512K address space. Flash address pins 14 to 18 are used to select internal test modes in conjunction with the TEST_MODE pin.

Pin Name: FL_DATA[0-7] Pin Numbers: 85-87, 90-94 8-bit Flash memory data bus or GPIO pins

Pin Name: FL_RD_N Pin Number: 52 Flash read enable signal, active low

Pin Name: FL_WR_N Pin Number: 53 Flash write enable signal, active low

Pin Name: FL_CS_N Pin Number: 81 Flash chip select signal, active low

Serial EEPROM Interface Signals Pin Name: EEPROM_SDAT Pin Number: 47 Serial Interface (I2C) data line

Pin Name: EEPROM_SCLK Pin Number: 48 Serial Interface (I2C) clock Silicon Image, Inc.

LED Drivers Pin Names: LED[0..3] Pin Numbers: 65, 70, 78, 84 These are 12mA open-drain outputs to drive Activity LEDs for Channels 0 to 3 respectively.

GPIO

Pin Name: GPIO_EN Pin Number: 170 This pin enables the use of the flash Data pins for General Purpose I/O.

Test

Pin Names: TMS, TCK, TDO, TDI, TRSTN Pin Numbers: 172-176 These pins are used for JTAG operation. The TRSTN pin must be tied to ground if the JTAG function is not used

Pin Name: TEST_MODE Pin Number: 171 This pin is used for chip testing. This pin must be left open or tied to ground for normal operation.

Power Supply & Ground Pin Name: VDDO Pin Numbers: 45, 58, 73, 88, 99, 110, 121, 132, 144, 156, 168 3.3 V Power Supply Input

Pin Name: VDDI Pin Numbers: 60, 71, 82, 101, 119, 138, 148, 158 1.8V Power Supply Input for internal core

Pin Name: VSSO Pin Number: 46, 59, 74, 89, 100, 111, 122, 133, 145, 157, 169 Ground reference point to power supply for I/O.

Pin Name: VSSI Pin Number: 61, 72, 83, 102, 120, 139, 149, 159 Ground reference point to power supply for core.

Serial ATA Signals

Power Supply & Ground Pin Name: VDDA Pin Numbers: 6, 10, 15, 19, 30, 34, 39, 43 SerDes 1.8 V Power supply Pins

Pin Name: VDDP Pin Number: 25 PLL 1.8 V Power supply Pin

Pin Name: VDDX Pin Number: 20 Oscillator 1.8 V Power supply Pin

Pin Name: GNDA Pin Numbers: 2, 5, 7, 11, 14, 16, 23, 26, 29, 31, 35, 38, 40 SerDes Ground High Speed Serial Signals Pin Names: RxN[0..3] Pin Numbers: 8, 17, 32, 41 Differential receive negative side.

Pin Names: RxP[0..3] Pin Numbers: 9, 18, 33, 42 Differential receive positive side.

Pin Names: TxN[0..3] Pin Numbers: 4, 13, 28, 37 Differential transmit negative side

Pin Names: TxP[0..3] Pin Numbers: 3, 12, 27, 36 Differential transmit positive side

Other SerDes Signals Pin Name: XTALO Pin Number: 21 Crystal oscillator pin for SerDes reference clock. A 25MHz crystal must be used.

Pin Name: XTALI/CLKI

Pin Number: 22

Crystal oscillator pin for SerDes reference clock. When external clock source is selected, the external clock (either 25MHz or 100 MHz) will come in through this pin. The clock must be 1.8V swing and the precision requirement is ±100ppm.

Pin Name: REXT

Pin Number: 24

External reference resistor pin for termination calibration. This pin provides the additional function of selecting frequency of the clock source. For 25MHz, a 1K, 1% resistor is connected to ground. For 100MHz, a 4.99K, 1% resistor is connected to ground.

Package Drawing

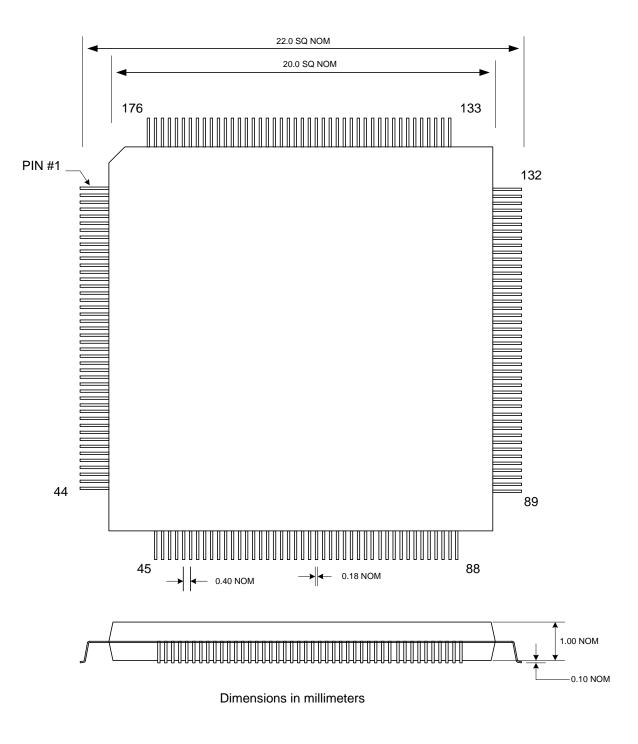


Figure 4. Package Drawing – 176 TQFP

Part Ordering Number: SiI3114CT176 (176 pin TQFP standard package) SiI3114CTU (176 pin TQFP universal package)

Package Markings

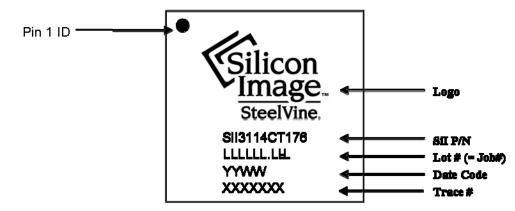


Figure 5. Marking Specification – SiI3114CT176

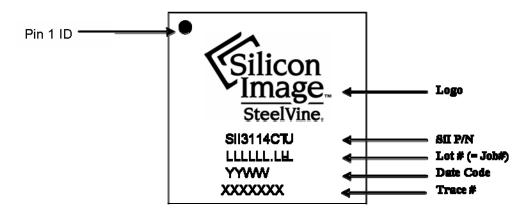
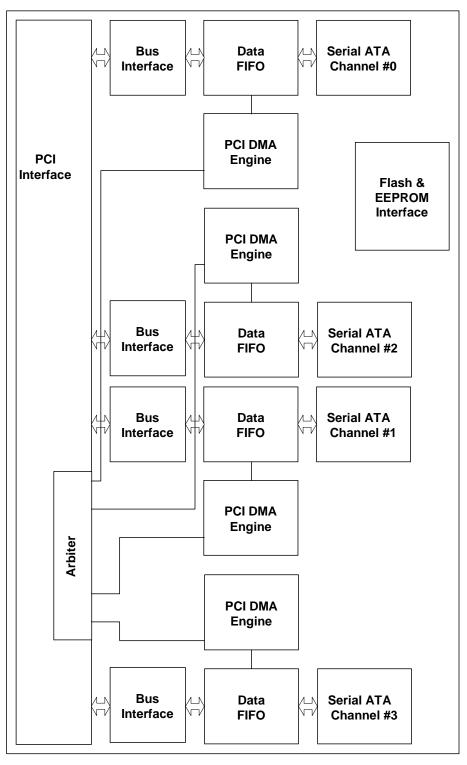



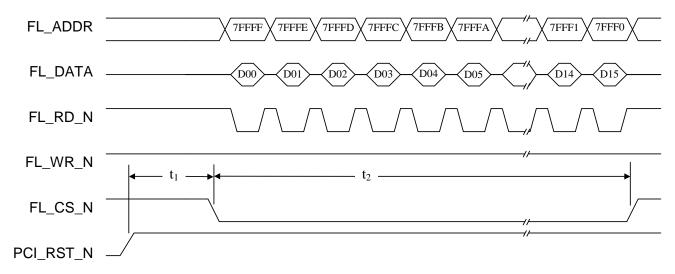
Figure 6. Marking Specification – SiI3114CTU

Silicon Image, Inc.

Block Diagram

The SiI3114 contains the major logic modules shown in Figure 7.

Auto-Initialization


The SiI3114 supports an external flash and/or EEPROM device for BIOS extensions and user-defined PCI configuration header data.

Auto-Initialization from Flash

The SiI3114 initiates the flash detection and configuration space loading sequence upon the release of PCI_RST_N. It begins by reading the highest two addresses (7FFFF_H and 7FFFE_H), checking for the correct data signature pattern — AA_H and 55_H, respectively. If the data signature pattern is correct, the SiI3114 continues to sequence the address downward, reading a total of sixteen bytes. If the Data Signature is correct (55_H at 7FFFC_H), the last twelve bytes are loaded into the PCI Configuration Space registers.

Note: If both flash and EEPROM are installed, the PCI Configuration Space registers will be loaded with the EEPROM's data.

While the sequence is active, the SiI3114 responds to all PCI bus accesses with a Target Retry.

Figure 8. Auto-Initialization from Flash Timing

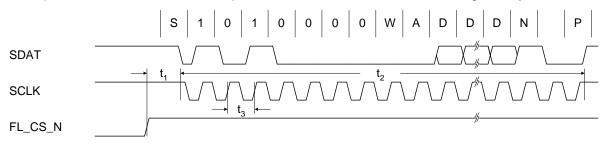
Parameter	Value	Description		
t ₁	660 ns	PCI reset to Flash Auto-Initialization cycle begin		
t ₂	9600 ns	Flash Auto-Initialization cycle time		

Table 11. Auto-Initialization from Flash Timing

Table 12. Flash Data Description

Address	Data Byte	Description
7FFFF _H	D00	Data Signature = AA _H
7FFFE _H	D01	Data Signature = 55 _H
7FFFD _H	D02	AA = 120 ns flash device / Else, 240 ns flash device
7FFFC _H	D03	Data Signature = 55 _H
7FFFB _H	D04	PCI Device ID [23:16]
7FFFA _H	D05	PCI Device ID [31:24]
7FFF9 _H	D06	PCI Class Code [15:08]
7FFF8 _H	D07	PCI Class Code [23:16]
7FFF7 _H	D08	PCI Sub-System Vendor ID [07:00]

Address	Data Byte	Description
7FFF6 _H	D09	PCI Sub-System Vendor ID [15:08]
7FFF5 _H	D10	PCI Sub-System ID [23:16]
7FFF4 _H	D11	PCI Sub-System ID [31:24]
7FFF3 _H	D12	SATA PHY Config [07:00] (default: 0xB0)
7FFF2 _H	D13	SATA PHY Config [15:08] (default: 0x80)
7FFF1 _H	D14	SATA PHY Config [23:16] (default: 0x00)
7FFF0 _H	D15	SATA PHY Config [31:24] (default: 0x20)


Table 12. Flash Data Description (continued)

Auto-Initialization from EEPROM

The SiI3114 initiates the EEPROM detection and configuration space loading sequence after the Flash read sequence. The SiI3114 supports up to 256-byte EEPROM with a 2-wire serial interface. The sequence of operations consists of the following.

- 1. START condition defined as a high-to-low transition on SDAT while SCLK is high.
- 2. Control byte = 1010 (Control Code) + 000 (Chip Select) + 0 (Write Address)
- 3. Acknowledge
- 4. Starting address field = 00000000.
- 5. Acknowledge
- 6. Sequential data bytes separated by Acknowledges.
- 7. STOP condition.

While the sequence is active, the SiI3114 responds to all PCI bus accesses with a Target Retry.

Figure 9. Auto-Initialization from EEPROM Timing

Table 13. Auto-Initialization fr	om EEPROM Timing
----------------------------------	------------------

Parameter	Value	Description
t ₁	26.00 μs	End of Auto-Initialization from Flash to start of Auto-Initialization from EEPROM
t ₂	2.66 ms	Auto-Initialization from EEPROM cycle time
t ₃	19.26 μs	EEPROM serial clock period

Table 14. Auto-Initialization from EEPROM Timing Symbols

Parameter	Description
S	START condition
W	R/W 0 = Write Command, 1 = Read Command
A	Acknowledge
D	Serial data
N	No-Acknowledge
Р	STOP condition

Address	Data Byte	Description
00 _H	D00	Memory Present Pattern = AA _H
01 _H	D01	Memory Present Pattern = 55 _H
02 _H	D02	Data Signature = AA _H
03 _H	D03	Data Signature = 55 _H
04 _H	D04	PCI Device ID [23:16]
05 _H	D05	PCI Device ID [31:24]
06 _H	D06	PCI Class Code [15:08]
07 _H	D07	PCI Class Code [23:16]
08 _H	D08	PCI Sub-System Vendor ID [07:00]
09 _H	D09	PCI Sub-System Vendor ID [15:08]
0A _H	D10	PCI Sub-System ID [23:16]
0B _H	D11	PCI Sub-System ID [31:24]
0C _H	D12	SATA PHY Config [07:00] (default: 0xB0)
0D _H	D13	SATA PHY Config [15:08] (default: 0x80)
0E _H	D14	SATA PHY Config [23:16] (default: 0x00)
0F _H	D15	SATA PHY Config [31:24] (default: 0x20)

Table 15. EEPROM Data Dese	ription
----------------------------	---------

Register Definitions

This section describes the registers within the SiI3114.

PCI Configuration Space

The PCI Configuration Space registers define he operation of the SiI3114 on the PCI bus. These registers are accessible only when the SiI3114 detects a Configuration Read or Write operation, with its IDSEL asserted, on the 32-bit PCI bus. Table 16 outlines the PCI Configuration space for the SiI3114.

Address		Registe	er Name		Access						
Offset	31	16	15	00	Туре						
00 _H	Devi	ce ID	Vend	dor ID	R/W						
04 _H	PCIS	Status	PCI Co	mmand	R/W						
08 _H	PCI Class Code Revision ID										
0C _H	BIST	Header Type	Latency Timer	Cache Line Size	R/W						
10 _H			ss Register 0		R/W						
14 _H		Base Addres	ss Register 1		R/W						
18 _H		Base Addres	ss Register 2		R/W						
1C _H		Base Addres	ss Register 3		R/W						
20 _H			ss Register 4		R/W						
24 _H		Base Addres	ss Register 5		R/W						
28 _H		Rese	erved		-						
2C _H	Subsy	stem ID	Subsystem	n Vendor ID	R/W						
30 _H	-		/ Base Address		R/W						
34 _H	Reserved Capabilities Ptr										
38 _H		Rese	erved		R/W						
3C _H	Max Latency	Min Grant	Interrupt Pin	Interrupt Line	R/W						
40 _H	Reserved Configuration										
44 _H	Software Data Register										
48 _H	Reserved										
4C _H		Rese	erved		-						
50 _Н		Rese	erved		-						
54 _H		Rese	erved		-						
58 _H		Rese	erved		-						
5C _H		Rese	erved		-						
60 _H	Power Manager	nent Capabilities	Next Item Pointer	Capability ID	R/W						
64 _H	Data	Reserved	Functions Cor	trol and Status	R/W						
68 _H		Rese	erved		-						
6C _H		Rese	erved		-						
70 _H	Reserved	PCI Bus Master Status – Channel 0/2	Reserved	PCI Bus Master Command – Channel 0/2	R/W						
74 _H		PRD Table Addre	ess – Channel 0/2	•	R/W						
78 _H	Reserved	PCI Bus Master Status – Channel 1/3	Reserved	PCI Bus Master Command – Channel 1/3	R/W						
7C _H		PRD Table Addre	ess – Channel 1/3		R/W						
80 _H		Reserved		Channel 0/2 Data Transfer Mode	R/W						

Address	Re	giste	er Name		Access					
Offset	31	16	15	00	Туре					
84 _H	Reserved	Reserved Channel 1/3 Data Transfer Mode								
88 _H	System Configuration Status		System (Command	R/W					
8C _H	Systen	n So	ftware Data		R/W					
90 _H	Flash Memory Ad	dres	s – Command + Statu	IS	R/W					
94 _H	Reserved Flash Memory Data									
98 _H	EEPROM Memory Address – Command + Status									
9C _H	Reserved EEPROM Memory Data									
A0 _H	Reserved		Channel 0/2 Config + Status							
A4 _H		Rese	erved		R/W					
A8 _H		Rese	erved		R/W					
AC _H		Rese	erved		R/W					
B0 _H	Reserved		Channel 1/3 Config + Status	Channel 1/3 Cmd + Status	R/W					
B4 _H		Rese	erved		R/W					
B8 _H	Reserved									
BC _H		Rese	erved		R/W					
C0 _H	BA5 Ir	ndire	ct Address		R/W					
C4 _H	BA5 I	ndire	ect Access		R/W					

Table 16. Sil3114 PCI Configuration Space (continued)

Device ID – Vendor ID

Address Offset: 00_H Access Type: Read /Write Reset Value: 0x3114_1095

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	Device ID										Vendor ID																				

This register defines the Device ID and Vendor ID associated with the SiI3114. The register bits are defined below.

Bit [31:16]: Device ID (R/W) – Device ID. This value in this bit field is determined by any one of three
options:

1) This field defaults to 0x3114 to identify the device as a Silicon Image SiI3114.

2) Loaded from an external memory device: If an external memory device — flash or EEPROM — is present with the correct signature, the Device ID is loaded from that device after reset. See "Auto-Initialization" section on page 22 for more information.

3) System programmable : If Bit 0 of the Configuration register (40_H) is set, the bytes are system programmable.

• Bit [15:00]: Vendor ID (R) – Vendor ID. This field defaults to 0x1095 to identify the vendor as Silicon Image.

Silicon Image, Inc.

PCI Status – PCI Command

Address Offset: 04_H Access Type: Read/Write/Write-One-to-Clear Reset Value: 0x02B0_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Det Par Err	Sig Sys Err	Rcvd M Abort	Rcvd T Abort	Sig T Abort	aimiT loon	Devsel Hming	Det M Data Par Err	Fast B-to-B Capable	Reserved	66 MHz Capable	Capabilities List	Int Status				Rese	rved				Int Disable	Fast B-to-B Enable	SERR Enable	Address Stepping	Par Error Response	VGA Palette	Memory Wr & Inv	Special Cycles	Bus Master	Memory Space	IO Space

This register defines the various control functions associated with the PCI bus. The register bits are defined below.

- Bit [31]: Det. Par Err (R/W1C) Detected Parity Error. This bit set indicates that the SiI3114 detected a parity error on the PCI bus-address or data parity error-while responding as a PCI target.
- Bit [30]: Sig. Sys Err (R/W1C) Signaled System Error. This bit set indicates that the SiI3114 signaled SERR on the PCI bus.
- Bit [29]: Rcvd M Abort (R/W1C) Received Master Abort. This bit set indicates that the SiI3114 terminated a PCI bus operation with a Master Abort.
- Bit [28]: Rcvd T Abort (R/W1C) Received Target Abort. This bit set indicates that the SiI3114 received a Target Abort termination.
- Bit [27]: Sig. T Abort (R/W1C) Signaled Target Abort. This bit set indicates that the SiI3114 terminated a PCI bus operation with a Target Abort.
- Bit [26:25]: Devsel Timing (R) Device Select Timing. This bit field indicates the DEVSEL timing supported by the SiI3114. The hardwired value is 01_B for Medium decode timing.
- Bit [24]: Det M Data Par Err (R/W1C) Detected Master Data Parity Error. This bit set indicates that the SiI3114, as bus master, detected a parity error on the PCI bus. The parity error may be either reported by the target device via PERR# on a write operation or by the SiI3114 on a read operation.
- Bit [23]: Fast B-to-B Capable (R) Fast Back-to-Back Capable. This bit is hardwired to 1 to indicate that the SiI3114 is Fast Back-to-Back capable as a PCI target.
- Bit [22]: Reserved (R).
- Bit [21]: 66 MHz Capable (R) 66 MHz PCI Operation Capable. This bit is hardwired to 1 to indicate that the SiI3114 is 66 MHz capable.
- Bit [20]: Capabilities List (R) PCI Capabilities List. This bit is hardwired to 1 to indicate that the SiI3114 has a PCI Power Management Capabilities register linked at offset 34_H.
- Bit [19]: Interrupt Status (R)
- Bit [18:11]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [10]: Interrupt Disable (R/W).
- **Bit [09]**: Fast B-to-B Enable (R) Fast Back-to-Back Enable. This bit is hardwired to 0 to indicate that the SiI3114 does not support Fast Back-to-Back operations as bus master.
- **Bit [08]**: SERR Enable (R/W) SERR Output Enable. This bit set enables the SiI3114 to drive the PCI SERR# pin when it detects an address parity error. The Parity Error Response bit (06) must also be set to enable SERR# reporting.
- Bit [07]: Address Stepping (R) Address Stepping Enable. This bit is hardwired to 0 to indicate that the SiI3114 does not support Address Stepping.
- Bit [06]: Par Error Response (R/W) Parity Error Response Enable. This bit set enables the Sil3114 to respond to parity errors on the PCI bus. If this bit is cleared, the Sil3114 will ignore PCI parity errors.
- **Bit [05]**: VGA Palette (R) VGA Palette Snoop Enable. This bit is hardwired to 0 to indicate that the SiI3114 does not support VGA Palette Snooping.
- Bit [04]: Mem Wr & Inv (R) Memory Write and Invalidate Enable. This bit is hardwired to 0 to indicate that the SiI3114 does not support Memory Write and Invalidate.

- Bit [03]: Special Cycles (R) Special Cycles Enable. This bit is hardwired to 0 to indicate that the SiI3114 does not respond to Special Cycles.
- Bit [02]: Bus Master (R/W) Bus Master Enable. This bit set enables the SiI3114 to act as PCI bus master.
- Bit [01]: Memory Space (R/W) Memory Space Enable. This bit set enables the SiI3114 to respond to PCI memory space access.
- Bit [00]: IO Space (R/W) IO Space Enable. This bit set enables the SiI3114 to respond to PCI IO space access.

PCI Class Code – Revision ID

Address Offset: 08_H Access Type: Read/Write Reset Value: 0x0180_0002 or 0x0104_0002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PCI Class Code

Revision ID

This register defines the various control functions associated with the PCI bus. The register bits are defined below.

- Bit [31:08]: PCI Class Code (R) PCI Class Code. This value in this bit field is determined by any one of three options:
 - 1) The default value, set by an external jumper on the FL_ADDR[00]/CLASS_SEL pin:
 - If CLASS_SEL = 0, the value is 010400h for RAID mode
 - If CLASS_SEL = 1, the value is 018000h for Mass Storage class

2) Loaded from an external memory device: If an external memory device — flash or EEPROM — is present with the correct signature, the PCI Class Code is loaded from that device after reset. See "Auto-Initialization" section on page 22 for more information.

3) System programmable : If Bit 0 of the Configuration register (40_H) is set the three bytes are system programmable.

• Bit [07:00]: Revision ID (R) – Chip Revision ID. This bit field is hardwired to 02_H for the production chip.

BIST – Header Type – Latency Timer – Cache Line Size

Address Offset: 0C_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
BIST	Header Type	Latency Timer	Cache Line Size

This register defines the various control functions associated with the PCI bus. The register bits are defined below.

- Bit [31:24]: BIST (R). This bit field is hardwired to 00_H.
- Bit [23:16]: Header Type (R). This bit field is hardwired to 00_H.
- **Bit [15:08]**: Latency Timer (R/W). This bit field is used to specify the time in number of PCI clocks, the SiI3114 as a master is still allowed to control the PCI bus after its GRANT_L is deasserted. The lower four bits [0B:08] are hardwired to 0_H, resulting in a time granularity of 16 clocks.
- **Bit [07:00]**: Cache Line Size (R/W). This bit field is used to specify the system cacheline size in terms of 32-bit words. The upper 2 bits are not used, resulting a maximum size of 64 32-bit words. With the SiI3114 as a master, initiating a read transaction, it issues PCI command Read Multiple in place, when empty space in its FIFO is larger than the value programmed in this register.

Base Address Register 0

Address Offset: 10_H Access Type: Read/Write Reset Value: 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
											E	Base	Add	ress	Regi	ster ()													001	

This register defines the addressing of various control functions within the SiI3114. The register bits are defined below.

- Bit [31:03]: Base Address Register 0 (R/W). This register defines the I/O Space base address for Channel 0 task file registers.
- Bit [02:00]: Base Address Register 0 (R). This bit field is not used and is hardwired to 001B

Base Address Register 1

Address Offset: 14_H Access Type: Read/Write Reset Value: 0x0000_0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00

Base Address Register 1

01

This register defines the addressing of various control functions within the SiI3114. The register bits are defined below.

- Bit [31:02]: Base Address Register 1 (R/W). This register defines the I/O Space base address for Channel 0 Device Control- Alternate Status register.
- Bit [01:00]: Base Address Register 1 (R). This bit field is not used and is hardwired to 01_B.

Base Address Register 2

Address Offset: 18_H Access Type: Read/Write Reset Value: 0x0000_0001

31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
											E	Base	Addr	ess	Regi	ster 2	2													001	
															-																

This register defines the addressing of various control functions within the SiI3114. The register bits are defined below.

- **Bit [31:03]**: Base Address Register 2 (R/W). This register defines the I/O Space base address for Channel 1 task file registers.
- Bit [02:00]: Base Address Register 2 (R). This bit field is not used and is hardwired to 001_B.

Base Address Register 3

Address Offset: 1C_H Access Type: Read/Write Reset Value: 0x0000_0001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Base Address Register 3

01

This register defines the addressing of various control functions within the SiI3114. The register bits are defined below.

- **Bit [31:02]**: Base Address Register 3 (R/W). This register defines the I/O Space base address for Channel 1 Device Control- Alternate Status register.
- Bit [01:00]: Base Address Register 3 (R). This bit field is not used and is hardwired to 01_B.

Base Address Register 4

Address Offset: 20_H Access Type: Read/Write Reset Value: 0x0000_0001

Base Address Register 4	0001
	1

This register defines the addressing of various control functions within the SiI3114. The register bits are defined below.

- Bit [31:04]: Base Address Register 4 (R/W). This register defines the I/O Space base address for the PCI bus master registers.
- Bit [03:00]: Base Address Register 4 (R). This bit field is not used and is hardwired to 0001_B.

Base Address Register 5

Address Offset: 24_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
								Bas	se Ac	dres	s Re	giste	r 5												0	0000	0000	0			

This register defines the addressing of various control functions within the SiI3114. This register is enabled when input BA5_EN is set to one. See description for pin FL_ADDR[01]/BA5_EN in "Miscellaneous I/O" section on page 16 for more information. The register bits are defined below.

- Bit [31:10]: Base Address Register 5 (R/W). This register defines the Memory Space base address for all Silicon Image driver specific functions.
- Bit [09:00]: Base Address Register 5 (R). This bit field is not used and is hardwired to 000_H.

Subsystem ID – Subsystem Vendor ID

Address Offset: 2C_H Access Type: Read/Write Reset Value: 0x3114_1095

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	Subsystem ID																			S	ubsy	/sten	1 Ven	dor I	D						

This register defines the Subsystem ID fields associated with the PCI bus. The register bits are defined below.

- Bit [31:16]: Subsystem ID (R) Subsystem ID. The value in this bit field is determined by any one of three options:
 - 1) The default value of 0x3114

2) Loaded from an external memory device: If an external memory device — flash or EEPROM — is present with the correct signature, the Subsystem ID is loaded from that device after reset. See "Auto-Initialization" section on page 22 for more information.

3) System programmable: If Bit 0 of the Configuration register (40_H) is set the two bytes are system programmable.

• Bit [15:00]: Subsystem Vendor ID (R) – Subsystem Vendor ID. The value in this bit field is determined by any one of three options:

1) The default value of 0x1095

2) Loaded from an external memory device : If an external memory device – Flash or EEPROM – is present with the correct signature, the Subsystem Vendor ID is loaded from that device after reset. See "Auto-Initialization" section on page 22 for more information.

3) System programmable: If Bit 0 of the Configuration register (40_H) is set the two bytes are system programmable.

Expansion ROM Base Address

Address Offset: 30_H Access Type: Read/Write Reset Value: 0x0000_0000

Expansion ROM Base Address

000_0000_0000_0000_000

This register defines the Expansion ROM base address associated with the PCI bus. The register bits are defined below.

- Bit [31:19]: Expansion ROM Base Address (R/W) Expansion ROM Base Address. This bit field defines the upper bits of the Expansion ROM base address.
- Bit [18:01]: Not Used (R). This bit field is hardwired to 00000_H. The minimum Expansion ROM address range is 512K bytes.
- Bit [00]: Exp ROM Enable (R/W) Expansion ROM Enable. This bit is set to enable the Expansion ROM access.

Exp ROM Enable

Capabilities Pointer

Address Offset: 34_H Access Type: Read Reset Value: 0x0000_0060

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08																												
											Rese	rved														Capa	biliti	es Po	ointe	r	

This register defines the link to a list of new capabilities associated with the PCI bus. The register bits are defined below.

- Bit [31:08]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [07:00]: Capabilities Pointer (R) Capabilities Pointer. This bit field defaults to 60_H to define the address for the 1st entry in a list of PCI Power Management capabilities.

Max Latency – Min Grant – Interrupt Pin – Interrupt Line

Address Offset: 3C_H Access Type: Read/Write Reset Value: 0x0000_0100

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
Max Latency	Min Grant	Interrupt Pin	Interrupt Line

This register defines the various control functions associated with the PCI bus. The register bits are defined below.

- Bit [31:24]: Max Latency (R) Maximum Latency. This bit field is hardwired to 00_H.
- Bit [23:16]: Min Grant (R) Minimum Grant. This bit field is hardwired to 00_H.
- Bit [15:08]: Interrupt Pin (R) Interrupt Pin Used. This bit field is hardwired to 01_H to indicate that the SiI3114 uses the INTA# interrupt.
- Bit [07:00]: Interrupt Line (R/W) Interrupt Line. This bit field is used by the system to indicate interrupt line routing information. The SiI3114 does not use this information.

Configuration

Address Offset: 40_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	! 1 [•]	1 1	0 0)9	80	07	06	05	04	03	02	01	00
														Res	erved	1															BA5 Ind Acc Ena	PCI Hdr Wr Ena

This register defines the various control functions associated with the PCI bus. The register bits are defined below.

• Bit [31:02]: Reserved (R). This bit field is hardwired to 0000000_H.

- Bit [01]: BA5 Ind Acc Ena (R/W) BA5 Indirect Access Enable. This bit is set to enable indirect access to BA5 address space using Configuration Space registers C0_H and C4_H (BA5 Indirect Address and BA5 Indirect Access).
- Bit [00]: PCI Hdr Wr Ena (R/W) PCI Configuration Header Write Enable. This bit is set to enable write access to the following registers in the PCI Configuration Header: Device ID (03-02_H), PCI Class Code (09-0B_H), Subsystem Vendor ID (2D-2C_H), and Subsystem ID (2F-2E_H).

Software Data Register

Address Offset: 44_H Access Type: Read/Write Reset Value: Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Software Data

This register is used by the software for non-resettable data storage. The contents are unknown on power-up and are never cleared by any type of reset.

Power Management Capabilities

Address Offset: 60_H Access Type: Read Only Reset Value: 0x0622_0001

3	51	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
		PME	E Sup	port		PPM D2 Support	PPM D1 Support		uxilia Surrer	-	Dev Special Init	Reserved	PME Clock	PF	PM R	ev			Next	terr	n Poi	nter					с	apab	ility I	D		

This register defines the power management capabilities associated with the PCI bus. The register bits are defined below.

- Bit [31:27]: PME Support (R) Power Management Event Support. This bit field is hardwired to 00_H to indicate that the SiI3114 does not support PME.
- Bit [26]: PPM D2 Support (R) PCI Power Management D2 Support. This bit is hardwired to 1 to indicate support for the D2 Power Management State.
- Bit [25]: PPM D1 Support (R) PCI Power Management D1 Support. This bit is hardwired to 1 to indicate support for the D1 Power Management State.
- Bit [24:22]: Auxiliary Current (R) Auxiliary Current. This bit field is hardwired to 000_B.
- Bit [21]: Dev Special Init (R) Device Special Initialization. This bit is hardwired to 1 to indicate that the SiI3114 requires special initialization
- Bit [20]: Reserved (R). This bit is reserved and returns zero on a read.
- Bit [19]: PME Clock (R) Power Management Event Clock. This bit is hardwired to 0. The SiI3114 does not support PME.
- Bit [18:16]: PPM Rev (R) PCI Power Management Revision. This bit field is hardwired to 010_B to indicate compliance with the PCI Power Management Interface Specification revision 1.1.
- Bit [15:08]: Next Item Pointer (R) PCI Additional Capability Next Item Pointer. This bit field is hardwired to 00_H to indicate that there are no additional items on the Capabilities List.
- Bit [07:00]: Capability ID (R) PCI Additional Capability ID. This bit field is hardwired to 01_H to indicate that this Capabilities List is a PCI Power Management definition.

Power Management Control + Status

Address Offset: 64_H Access Type: Read/Write Reset Value: 0x6400_4000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
				PPM	Data							Rese	erved				PME Status		РРМ рата эсане	PI	PM D	ata S	iel	PME Ena			Rese	erved			1010	

This register defines the power management capabilities associated with the PCI bus. The register bits are defined below.

- Bit [31:24]: PPM Data (R) PCI Power Management Data. This bit field is hardwired to 0x64.
- Bit [23:16]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [15]: PME Status (R) PME Status. This bit is hardwired to 0. The Sil3114 does not support PME.
- Bit [14:13]: PPM Data Scale (R) PCI Power Management Data Scale. This bit field is hardwired to 10_B to indicate a scaling factor of 10 mW.
- Bit [12:09]: PPM Data Sel (R/W) PCI Power Management Data Select. This bit field is set by the system to indicate which data field is to be reported through the PPM Data bits (although current implementation hardwires the PPM Data to indicate 1 Watt).
- Bit [08]: PME Ena (R) PME Enable. This bit is hardwired to 0. The SiI3114 does not support PME.
- Bit [07:02]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [01:00]**: PPM Power State (R/W) PCI Power Management Power State. This bit field is set by the system to dictate the current Power State: 00 = D0 (Normal Operation), 01 = D1, 10 = D2, and 11 = D3 (Hot).

PCI Bus Master – Channel 0/2

Address Offset: 70_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23	22 2	1 2) 19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Reserved	PBM Sim	PBM DMA Cap 1		Reserved	DMA Comp	PBM Error	PBM Active				Rese	erved					Rese	rved		PBM Rd-Wr	Pointood		PBM Enable

This register defines the PCI bus master register for Channel 0/2 in the SiI3114. The register bits are also mapped to Base Address 4, Offset 00_H , Base Address 5, Offset 00_H , and Base Address 5, Offset 10_H (Note that these registers are, however, not identical). See "PCI Bus Master – Channel X" section on page 53 for bit definitions.

PRD Table Address – Channel 0/2

Address Offset: 74_H Access Type: Read/Write Reset Value: 0x0000_0000

	31 3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
--	------	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

PRD Table Address – Channel 0/2

Reserved

This register defines the PRD Table Address register for Channel 0/2 in the SiI3114. The register bits are also mapped to Base Address 4, Offset 04_H and Base Address 5, Offset 04_H . See "PRD Table Address – Channel X" section on page 54 for bit definitions.

PCI Bus Master – Channel 1/3

Address Offset: 78_H Access Type: Read/Write Reset Value: 0x0000_0000

;	31	3	60	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
					Rese	erved	I			PBM Simplex	PBM DMA Cap 1	PBM DMA Cap 0		eserve	DMA Comp	PBM Error	PBM Active				Rese	erved	I				Rese	rved		PBM Rd-Wr	Decorved		PBM Enable

This register defines the PCI bus master register for Channel 1/3 in the SiI3114. The register bits are also mapped to Base Address 4, Offset 08_H , Base Address 5, Offset 08_H , and Base Address 5, Offset 18_H (Note that these registers are, however, not identical). See "PCI Bus Master – Channel X" section on page 53 for bit definitions.

PRD Table Address – Channel 1/3

Address Offset: 7C_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
											PR	D Ta	ble A	ddre	ss –	Char	nnel ⁻	1/3													served

This register defines the PRD Table Address register for Channel 1/3 in the SiI3114. The register bits are also mapped to Base Address 4, Offset $0C_H$ and Base Address 5, Offset $0C_H$. See "PRD Table Address – Channel X" section on page 54 for bit definitions.

Data Transfer Mode – Channel 0/2

Address Offset: 80_H Access Type: Read/Write Reset Value: 0x0000_0022

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
												Rese	rved													Deviesen	Device 1	Transfer Mode	Portorio		Device 0	Transfer Mode

This register defines the transfer mode register for Channel 0/2 in the SiI3114. The register bits are also mapped to Base Address 5, Offset B4_H. See "Data Transfer Mode – Channel X" section on page 66 for bit definitions.

Data Transfer Mode – Channel 1/3

Address Offset: 84_H Access Type: Read/Write Reset Value: 0x0000_0022

3	1 :	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
												Rese	rved												pontoto	eserve	Device 1	Transfer Mode	pontoto	naviacav	Device 0	Transfer Mode

This register defines the transfer mode register for Channel 1/3 in the SiI3114. The register bits are also mapped to Base Address 5, Offset F4_H. See "Data Transfer Mode – Channel X" section on page 66 for bit definitions.

System Configuration Status – Command

Address Offset: 88_H Access Type: Read/Write Reset Value: 0x0000_0000

;	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
			Rese	erved			Chnl3 Int Block	Chni2 Int Block	Chnl1 Int Block	Chnl0 Int Block		Re	eserv	ed		M66EN		Rese	erved	I	Chnl2 Module Rst	Chnl3 Module Rst	FF2 Module Rst	FF3 Module Rst	Chnl0 Module Rst	Chnl1 Module Rst	FF0 Module Rst	FF1 Module Rst	Pererved	20100	ARB Module Rst	PBM Module Rst

This register defines the system configuration status and command register for the SiI3114. The register bits are also mapped to Base Address 5, Offset 48_{H} . See "System Configuration Status – Command" section on page 57 for bit definitions.

System Software Data Register

Address Offset: 8C_H Access Type: Read/Write Reset Value: Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

System Software Data

This register is used by the software for non-resettable data storage. The contents are unknown on power-up and are never cleared by any type of reset. The register bits are also mapped to Base Address 5, Offset $4C_{H}$. See "System Software Data Register" section on page 58 for bit definitions.

Flash Memory Address – Command + Status

Address Offset: 90_H Access Type: Read/Write Reset Value: 0x0800_0000

31		30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	F	Rese	rved		Mem Init Done	Mem Init	Mem Access Start	Mem Access Type		Re	eserv	ed									Μ	lemo	ry Ac	Idres	s							

This register defines the address and command/status register for flash memory interface in the SiI3114. The register bits are also mapped to Base Address 5, Offset 50_{H} . See "Flash Memory Address – Command + Status" section on page 58 for bit definitions.

Flash Memory Data

Address Offset: 94_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Reserved

Memory Data

This register defines the data register for flash memory interface in the SiI3114. The register bits are also mapped to Base Address 5, Offset 54_{H} . See "Flash Memory Data" section on page 59 for bit definitions.

EEPROM Memory Address – Command + Status

Address Offset: 98_H Access Type: Read/Write Reset Value: 0x0800_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
	Re	serv	ed	Mem Error	Mem Init Done	Mem Init	Mem Access Start	Mem Access Type								Rese	rved										Me	em A	ddres	ss		

This register defines the address and command/status register for EEPROM memory interface in the SiI3114. The register bits are also mapped to Base Address 5, Offset 58_{H} . See "EEPROM Memory Address – Command + Status" section on page 59 for bit definitions.

EEPROM Memory Data

Address Offset: 9C_H Access Type: Read/Write Reset Value: 0x0000_00XX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
											Rese	erved														M	emoi	ry Da	ta		
																												, 20			

This register defines the data register for EEPROM memory interface in the SiI3114. The register bits are also mapped to Base Address 5, Offset $5C_{H}$. See "EEPROM Memory Data" section on page 60 for bit definitions.

Channel 0/2 Task File Configuration + Status

Address Offset: A0_H Access Type: Read/Write Reset Value: 0x6515_0101

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Reserved	Reserved	Watchdog Int Ena	Watchdog Ena	Watchdog Timeout	Interrupt Status	Virtual DMA Int	IORDY Monitoring		R	leser	rved	1		Channel Rst	Buffered Cmd	Reserved

This register defines the task file configuration and status register for Channel 0/2 in the SiI3114. The register bits are also mapped to Base Address 5, Offset $A0_{H}$. See "Channel X Task File Configuration + Status" section on page 65 for bit definitions.

Channel 1/3 Task File Configuration + Status

Address Offset: B0_H Access Type: Read/Write Reset Value: 0x6515_0101

31	3	30 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
								Rese	erved								Reserved	Watchdog Int Ena	Watchdog Ena	Watchdog Timeout	Interrupt Status	Virtual DMA Int	IORDY Monitoring			Rese	erved	l		Channel Rst	Buffered Cmd	Reserved

This register defines the task file configuration and status register for Channel 1/3 in the SiI3114. The register bits are also mapped to Base Address 5, Offset $E0_{H}$.See "Channel X Task File Configuration + Status" section on page 65 for bit definitions.

BA5 Indirect Address

Address Offset: C0_H Access Type: Read/Write Reset Value: 0x0000_0000

3	1 3	60	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
			Reserved																	Add	ress				0	00						

This register permits the indirect addressing of registers normally referenced using Base Address 5. Any register that is not accessible by any means other that via Base Address 5 is indirectly addressable. Bits 1 and 0 of the Indirect Address must always be written with zeroes. The following BA5 address ranges are not indirectly accessible, but are accessible either in Configuration Space or via other Base Address registers: $00-0C_H$, $80-8C_H$, $C0-CC_H$, $200-20C_H$, $280-28C_H$, $2C0-2CC_H$.

BA5 Indirect Access

Address Offset: C4_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

As defined for indirectly accessed register

This register provides the indirect access addressed by the BA5 Indirect Address register. The use of indirect access must be enabled by setting bit 1 of the Configuration register (40_H).

Access to these registers is modified by the "shadow" Channel 0/2 Device Select bit. The "shadow" Channel 0/2 Device Select bit is written from bit 4 of the byte written to the Channel 0/2 Task File Device+Head register (06_{H}).

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI I/O space. Table 17 shows the internal register space for base 0 addresses.

		5			
Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Starting Sector Number	Sector Count	Features (W) Error (R)	Data	R/W
04 _H	Command+Status	Device+Head	Cylinder High	Cylinder Low	R/W

Table 17. SiI 3114 Internal Register Space – Base Address 0

Channel 0/2 Task File Register 0

Address Offset: 00_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	1	0	09	08	07	06	05	04	03	02	01	00
	St	arting	g Se	ctor I	Numb	ber				S	ector	Cou	nt				Fe	atur	es (\	W)	Erro	or (F	र)									
																											Data	(byt	e acc	ess)		
																						0	Data	(wor	d ac	cess)						
													[Data	(dwo	rd ac	cess)														

This register defines four of the Channel 0/2 Task File registers in the SiI3114. The register bits are also mapped to Base Address 5, Offset 80_{H} . See "Channel X Task File Register 0" section on page 62 for bit definitions. The value in the "shadow" Channel 0/2 Device Select bit is used to select the Task File registers for either Channel 0 (Master, bit is 0) or Channel 2 (Slave, bit is 1).

Channel 0/2 Task File Register 1

Address Offset: 04_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
Command + Status	Device+Head	Cylinder High	Cylinder Low

This register defines four of the Channel 0/2 Task File registers in the Sil3114. The register bits are also mapped to Base Address 5, Offset 84_H. See "Channel X Task File Register 1" section on page 62 for bit definitions. Except for writing the Device+Head Task File register, the value in the "shadow" Channel 0/2 Device Select bit is used to select the Task File registers for either Channel 0 (Master; bit is 0) or Channel 2 (Slave; bit is 1). For writing the Device+Head Task File register, the value being written to bit 4 of the register (the Device Select bit) is used to select the Task File register for either Channel 0 (Master; bit is 0) or Channel 2 (Slave; bit is 1). For writing the Device+Head Task File register for either Channel 0 (Master; bit is 0) or Channel 2 (Slave; bit is 1); a 0 is always written to bit 4 of either Device+Head Task File register while the value being written to bit 4 is written to the "shadow" Device Select bit.

Access to this register is modified by the "shadow" Channel 0/2 Device Select bit.

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI I/O space. Table 18 shows the internal register space for base 1 addresses.

Table 18. Sil 3114 Internal Register Space – Base Address 1

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Reserved	Device Control Auxiliary Status	Reserved	Reserved	R/W

Channel 0/2 Task File Register 2

Address Offset: 00_H Access Type: Read/Write Reset Value: 0x0000_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
				Rese	rved								Cont y Sta							Rese	rved	I						Rese	erved			

This register defines one of the Channel 0/2 Task File registers in the SiI3114. The register bits are also mapped to Base Address 5, Offset 88_{H} . See "Channel X Task File Register 2" section on page 63 for bit definitions. The value in the "shadow" Channel 0/2 Device Select bit is used to select the Task File registers for either Channel 0 (Master; bit is 0) or Channel 2 (Slave; bit is 1).

Access to these registers is modified by the "shadow" Channel 1/3 Device Select bit. The "shadow" Channel 1/3 Device Select bit is written from bit 4 of the byte written to the Channel 1/3 Task File Device+Head register (offset 06_{H}).

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI I/O space. Table 19 shows the internal register space for base 2 addresses.

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Starting Sector Number	Sector Count	Features (W) Error (R)	Data	R/W
04 _H	Command+Status	Device+Head	Cylinder High	Cylinder Low	R/W

Channel 1/3 Task File Register 0

Address Offset: 00_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
Starting Sector Number	Sector Count	Features (W) Error (R)	
			Data (byte access)
		Data (wo	d access)
	Data (dwo	rd access)	

This register defines four of the Channel 1/3 Task File registers in the SiI3114. The register bits are also mapped to Base Address 5, Offset $C0_H$. See "Channel X Task File Register 0" section on page 62 for bit definitions. The value in the "shadow" Channel 1/3 Device Select bit is used to select the Task File registers for either Channel 1 (Master; bit is 0) or Channel 3 (Slave; bit is 1).

Channel 1/3 Task File Register 1

Address Offset: 04_H Access Type: Read/Write Reset Value: 0x0000_0000

~	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			Com	iman	d + S	tatus	5				D	evice	+Hea	ad					C)	lind	er Hi	gh					C	ylind	er Lo	w		

This register defines four of the Channel 1/3 Task File registers in the SiI3114. The register bits are also mapped to Base Address 5, Offset C4_H. See "Channel *X* Task File Register 1" section on page 62 for bit definitions. Except for writing the Device+Head Task File register, the value in the "shadow" Channel 1/3 Device Select bit is used to select the Task File registers for either Channel 1 (Master; bit is 0) or Channel 3 (Slave; bit is 1). For writing the Device+Head Task File register, the value being written to bit 4 of the register (the Device Select bit) is used to select the Task File register for either Channel 1 (Master; bit is 0) or Channel 3 (Slave; bit is 1); a 0 is always

written to bit 4 of either Device+Head Task File register while the value being written to bit 4 is written to the "shadow" Device Select bit.

Internal Register Space – Base Address 3

Access to this register is modified by the "shadow" Channel 1/3 Device Select bit.

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI I/O space. Table 20 shows the internal register space for base 3 addresses.

Table 20. Sil3114 Internal Register Space – Base Address 3

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Reserved	Device Control Auxiliary Status	Reserved	Reserved	R/W

Channel 1/3 Task File Register 2

Address Offset: 00_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30) 29) 2	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			R	ese	rved							vice kiliary								Rese	erved							Rese	erved			

This register defines one of the Channel 1/3 Task File registers in the SiI3114. The register bits are also mapped to Base Address 5, Offset C8_H. See "Channel X Task File Register 2" section on page 63 for bit definitions. The value in the "shadow" Channel 1/3 Device Select bit is used to select the Task File registers for either Channel 1 (Master; bit is 0) or Channel 3 (Slave; bit is 1).

Access to these registers is modified by the "shadow" Device Select bits.

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI I/O space. Table 21 shows the internal register space for base 4 addresses.

Table 21. SiI 3114 Internal Register Space – Base Address 4

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Reserved	PCI Bus Master Status – Channel 0/2	Software Data	PCI Bus Master Command – Channel 0/2	R/W
04 _H		PRD Table Addre	ess – Channel 0/2		R/W
08 _H	Reserved	PCI Bus Master Status – Channel 1/3	Reserved	PCI Bus Master Command – Channel 1/3	R/W
0C _H		PRD Table Addre	ess – Channel 1/3	•	R/W

PCI Bus Master – Channel 0/2

Address Offset: 00_H Access Type: Read/Write Reset Value: 0x0000_XX00

 31	M Simplex A Simp														14	13	12	11	10	09	08	07	06	05	04	03	02	01	00		
			Res	erved	I			ŝ	MA Cap	DMA Cap		Š	2 DMA Com	Ш	BM Activ	Watchdog	Chnl 1/3 DMA Comp			Soft	ware				Rese	erved	I	PBM Rd-Wr	01400	neveen	PBM Enable

This register defines the PCI bus master register for Channel 0/2 in the SiI3114. See "PCI Bus Master – Channel X" section on page 53 for bit definitions. The value in the "shadow" Channel 0/2 Device Select bit is used to control access to the appropriate Channel 0 (Master; bit is 0) or Channel 2 (Slave; bit is 1) PCI Bus Master register bits. (The "shadow" Channel 1/3 Device Select bit controls the Channel 1/3 DMA Comp bit.)

PRD Table Address – Channel 0/2

Address Offset: 04_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PRD Table Address – Channel 0/2

Reserved

This register defines the PRD Table Address register for Channel 0/2 in the SiI3114. The register bits are also mapped to PCI Configuration Space, Offset 74_H and Base Address 5, Offset 04_H. See "PRD Table Address – Channel *X*" section on page 54 for bit definitions. Writing to this register address results in both the Channel 0 and Channel 2 PRD Table Address registers being written. The read value is selected based upon the "shadow" Channel 0/2 Device Select bit.

PCI Bus Master – Channel 1/3

Address Offset: 08_H Access Type: Read/Write Reset Value: 0x0000_0000

 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			Rese	erved				PBM Simplex	PBM DMA Cap 1	PBM DMA Cap 0		Keserved	Chnl 1/3 DMA Comp	PBM Error	PBM Active				Rese	erved					Rese	erved		PBM Rd-Wr	pontosod		PBM Enable

This register defines the PCI bus master register for Channel 1/3 in the SiI3114. See "PRD Table Address – Channel X" section on page 54 for bit definitions. The value in the "shadow" Channel 1/3 Device Select bit is used to control access to the appropriate Channel 1 (Master; bit is 0) or Channel 3 (Slave; bit is 1) PCI Bus Master register bits.

PRD Table Address – Channel 1/3

Address Offset: 0C_H Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PRD Table Address – Channel 1/3

Reserved

This register defines the PRD Table Address register for Channel 1/3 in the SiI3114. The register bits are also mapped to PCI Configuration Space, Offset $7C_H$ and Base Address 5, Offset $0C_H$. See "PRD Table Address – Channel X" section on page 54 for bit definitions. Writing to this register address results in both the Channel 1 and Channel 3 PRD Table Address registers being written. The read value is selected based upon the "shadow" Channel 1/3 Device Select bit.

These registers are 32-bits wide and define the internal operation of the SiI3114. The access types are defined as follows: R=read, W=write, and C=clearable by some write operation. Access to this register is through the PCI Memory space. Base Address 5 accesses can be disabled by setting input BA5_EN low. Table 22 shows the internal register space for base 5 addresses.

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
00 _H	Reserved	PCI Bus Master Status – Channel 0	Software Data	PCI Bus Master Command – Channel 0	R/W
04 _H		PRD Table Addr	ess – Channel 0		R/W
08 _H	Reserved	PCI Bus Master Status – Channel 1	Reserved	PCI Bus Master Command – Channel 1	R/W
0C _H		PRD Table Addr	ess – Channel 1		R/W
10 _H	PCI Bus Master Status – Channel 1	PCI Bus Master Status2 – Channel 0	Software Data	PCI Bus Master Command2 – Channel 0	R/W
14 _H		Rese	erved		-
18 _H	Reserved	PCI Bus Master Status2 – Channel 1	Reserved	PCI Bus Master Command2 – Channel 1	R/W
1C _H		Rese	erved		-
20 _H		PRD Address	s – Channel 0		R
24 _H		PCI Bus Master Byte	e Count – Channel 0		R
28 _H		PRD Address	s – Channel 1		R
2C _H		PCI Bus Master Byte	e Count – Channel 1		R
30 _H		Rese	erved		-
34 _H			erved		-
38 _H		Rese	erved		-
3C _H		Rese	erved		-
40 _H	FIFO Valid Byte 0	Count – Channel 0	FIFO Wr Request Control – Channel 0	FIFO Rd Request Control – Channel 0	R/W
44 _H	FIFO Valid Byte 0	Count – Channel 1	FIFO Wr Request Control – Channel 1	FIFO Rd Request Control – Channel 1	R/W
48 _H	System Config	guration Status	System C	Command	R/W
4C _H			ftware Data		R/W
50 _H	FI	ash Memory Address	 Command and Stat 	us	R/W
54 _H	Rese	erved	GPIO Control	Flash Memory Data	R/W
58 _H	EEP	ROM Memory Addres	ss – Command and S		R/W
5C _H		Reserved		EEPROM Memory Data	R/W
60 _H			- Channel 0		R/W
64 _H			erved		-
68 _H	FIFO Byte1 Write Pointer – Channel 0	FIFO Byte1 Read Pointer – Channel 0	FIFO Byte0 Write Pointer – Channel 0	FIFO Byte0 Read Pointer – Channel 0	R

Table 22. SiI 3114 Internal Register Space – Base Address 5

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
6C _H	FIFO Byte3 Write Pointer – Channel	FIFO Byte3 Read Pointer – Channel	FIFO Byte2 Write Pointer – Channel	FIFO Byte2 Read Pointer – Channel	R
70	0		0	0	DAA
70 _H		FIFO Port -			R/W
74 _H		Rese			-
78 _H	FIFO Byte1 Write Pointer – Channel 1	FIFO Byte1 Read Pointer – Channel 1	FIFO Byte0 Write Pointer – Channel 1	FIFO Byte0 Read Pointer – Channel 1	R
7C _H	FIFO Byte3 Write Pointer – Channel 1	FIFO Byte3 Read Pointer – Channel 1	FIFO Byte2 Write Pointer – Channel 1	FIFO Byte2 Read Pointer – Channel 1	R
80 _H	Channel 0 TF Starting Sector Number	Channel 0 TF Sector Count	Channel 0 TF Features Channel 0 TF Error	Channel 0 TF Data	R/W
84 _H	Channel 0 TF Command+Status	Channel 0 TF Device+Head	Channel 0 TF Cylinder High	Channel 0 TF Cylinder Low	R/W
88 _H	Reserved	Channel 0 TF Device Control Auxiliary Status	Reserved	Reserved	R/W
8C _H		Channel 0 Rea	ad Ahead Data		R/W
90 _H	Channel 0 TF Starting Sector Number2	Channel 0 TF Sector Count2	Channel 0 TF Features2 Channel 0 TF Error2	Reserved	R/W
94 _H	Channel 0 TF Cmd	Channel 0 TF Device+Head2	Channel 0 TF Cylinder High2	Channel 0 TF Cylinder Low2	R/W
98 _H	Channel 0 TF Cylinder High 2 Ext	Channel 0 TF Cylinder Low 2 Ext	Channel 0 TF Starting Sector 2 Ext	Channel 0 TF Sector Count 2 Ext	R/W
9C _H	Cha	nnel 0 Virtual DMA/PI	O Read Ahead Byte C	count	R/W
A0 _H	Rese	erved	Channel 0 Config + Status	Channel 0 Cmd + Status	R/W
A4 _H		Rese	erved		R/W
A8 _H		Rese	erved		R/W
AC _H		Rese	erved		R/W
B0 _H		Channel 0 T	est Register		R/W
B4 _H		Reserved		Channel 0 Data Transfer Mode	R/W
B8 _H		Rese	erved		-
BC _H		Rese	erved		-
C0 _H	Channel 1 TF Starting Sector Number	Channel 1 TF Sector Count	Channel 1 TF Features Channel 1 TF Error	Channel 1 TF Data	R/W
C4 _H	Channel 1 TF Command+Status	Channel 1 TF Device+Head	Channel 1 TF Cylinder High	Channel 1 TF Cylinder Low	R/W
C8 _H	Reserved	Channel 1 TF Device Control Auxiliary Status	Rese	erved	R/W
CCH		Channel 1 Rea	ad Ahead Data		R/W
D0 _H	Channel 1 TF Starting Sector Number2	Channel 1 TF Sector Count2	Channel 1 TF Features2 Channel 1 TF Error2	Reserved	R/W
D4 _H	Channel 1 TF Cmd	Channel 1 TF Device+Head2	Channel 1 TF Cylinder High2	Channel 1 TF Cylinder Low2	R/W

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
D8 _H	Channel 1 TF Cylinder High 2 Ext	Channel 1 TF Cylinder Low 2 Ext	Channel 1 TF Starting Sector 2 Ext	Channel 1 TF Sector Count 2 Ext	R/W
DC _H	Cha	nnel 1 Virtual DMA/Pl	O Read Ahead Byte C	count	R/W
E0 _H	Rese	erved	Channel 1 Config + Status	Channel 1 Cmd + Status	R/W
E4 _H		Rese	erved		R/W
E8 _H		Rese	erved		R/W
ECH		Rese	erved		R/W
F0 _H		Channel 1 T	est Register		R/W
F4 _H		Reserved		Channel 1 Data Transfer Mode	R/W
F8 _H		Rese	erved		-
FC _H		Rese	erved		-
100 _H		SControl (channel 0)		R/W
104 _H		SStatus (d	channel 0)		R
108 _H		SError (c	hannel 0)		R/C
10C _H		SActive (d	channel 0)		R/W
110 _H		Rese	erved		-
114 _H		Rese	erved		-
118 _Н		Rese	erved		-
11С _н		Rese	erved		-
120 _H		Rese	erved		-
124 _H		Rese	erved		-
128 _H		Rese	erved		-
12C _H		Rese	erved		-
130 _H		Rese	erved		-
134 _H		Rese	erved		-
138 _H		Rese	erved		-
13C _Н			erved		-
140 _H		SMisc (c	hannel 0)		R/W
144 _H			figuration		R/W
148 _H			nannel 0)		R/W
14C _H		÷ :	channel 0)		R/W
150 _Н			erved		-
154 _Н			erved		-
158 _H			erved		-
15С _Н			erved		-
160 _H			channel 0)		R
164 _H			channel 0)		R
168 _H			channel 0)		R
16C _H		(channel 0)		R
170 _H		•	channel 0)		R
174 _H		,	channel 0)		R
178 _H		· · · · · · · · · · · · · · · · · · ·	channel 0)		R
17C _H			erved		-
		,	,		R/W
		,	,		R/W R/C
180 _н 184 _н 188 _н		SControl (SStatus (d	channel 1) channel 1) hannel 1)		

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
18C _H			channel 1)		R/W
190 _Н			erved		-
194 _H			erved		-
198 _H			erved		-
19C _H			erved		-
1A0 _H			erved		-
1A4 _H			erved		-
1A8 _H			erved		-
1AC _H			erved		-
1B0 _H			erved		-
1B4 _H			erved		-
1B8 _H			erved		-
1BC _H			erved		-
1C0 _H		,	hannel 1)		R/W
1C4 _H		PHY Configuratio			R/W
1C8 _H		(nannel 1)		R/W
1CC _H		•	channel 1)		R/W
1D0 _H			erved		-
1D4 _H			erved		-
1D8 _H			erved		-
1DC _H			erved		-
1E0 _H		,	channel 1)		R
1E4 _H		•	channel 1)		R
1E8 _H		•	channel 1)		R
1EC _H		,	channel 1)		R
1F0 _H		•	channel 1)		R
1F4 _H		,	channel 1)		R
1F8 _H			channel 1)		R
1FC _H			erved		-
200 _H	Reserved	PCI Bus Master Status – Channel 2	Software Data	PCI Bus Master Command – Channel 2	R/W
204 _H		PRD Table Addr	ress – Channel 2		R/W
208 _H	Reserved	PCI Bus Master Status – Channel 3	Reserved	PCI Bus Master Command – Channel 3	R/W
20C _H		PRD Table Addr	ress – Channel 3	•	R/W
210 _H	PCI Bus Master Status – Channel 1	PCI Bus Master Status2 – Channel 2	Software Data	PCI Bus Master Command2 – Channel 2	R/W
214 _H		Summary Int	errupt Status	•	-
218 _H	Reserved	PCI Bus Master Status2 – Channel 3	Reserved	PCI Bus Master Command2 – Channel 3	R/W
21C _H		Rese	erved		-
220 _H		PRD Address	s – Channel 2		R
224 _H		PCI Bus Master Byte	e Count – Channel 2		R
228 _H		PRD Address	s – Channel 3		R
22C _H		PCI Bus Master Byte	e Count – Channel 3		R
230 _H		Rese	erved		-

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
234 _H		Rese	erved		-
238 _H		Rese	erved		-
23C _H		Rese	erved		-
240 _H	FIFO Valid Byte 0	Count – Channel 2	FIFO Wr Request Control – Channel 2	FIFO Rd Request Control – Channel 2	R/W
244 _H	FIFO Valid Byte (Count – Channel 3	FIFO Wr Request Control – Channel 3	FIFO Rd Request Control – Channel 3	R/W
248 _H	System Config	guration Status	System C	Command	R/W
24C _H		System So	ftware Data		R/W
250 _н - 25С _н		Rese	erved		R/W
260 _H		FIFO Port -	- Channel 2		R/W
264 _H		Rese	erved		-
268 _H	FIFO Byte1 Write Pointer – Channel 2	FIFO Byte1 Read Pointer – Channel 2	FIFO Byte0 Write Pointer – Channel 2	FIFO Byte0 Read Pointer – Channel 2	R
26C _H	FIFO Byte3 Write Pointer – Channel 2	FIFO Byte3 Read Pointer – Channel 2	FIFO Byte2 Write Pointer – Channel 2	FIFO Byte2 Read Pointer – Channel 2	R
270 _H	_	FIFO Port -	- Channel 3	_	R/W
274 _H		_	erved		-
278 _H	FIFO Byte1 Write Pointer – Channel 3	FIFO Byte1 Read Pointer – Channel 3	FIFO Byte0 Write Pointer – Channel 3	FIFO Byte0 Read Pointer – Channel 3	R
27C _H	FIFO Byte3 Write Pointer – Channel 3	FIFO Byte3 Read Pointer – Channel 3	FIFO Byte2 Write Pointer – Channel 3	FIFO Byte2 Read Pointer – Channel 3	R
280 _H	Channel 2 TF Starting Sector Number	Channel 2 TF Sector Count	Channel 2 TF Features Channel 2 TF Error	Channel 2 TF Data	R/W
284 _H	Channel 2 TF Command+Status	Channel 2 TF Device+Head	Channel 2 TF Cylinder High	Channel 2 TF Cylinder Low	R/W
288 _H	Reserved	Channel 2 TF Device Control Auxiliary Status	Reserved	Reserved	R/W
28C _H			ad Ahead Data		R/W
290 _H	Channel 2 TF Starting Sector Number2	Channel 2 TF Sector Count2	Channel 2 TF Features2 Channel 2 TF Error2	Reserved	R/W
294 _H	Channel 2 TF Cmd	Channel 2 TF Device+Head2	Channel 2 TF Cylinder High2	Channel 2 TF Cylinder Low2	R/W
298 _H	Channel 2 TF Cylinder High 2 Ext	Channel 2 TF Cylinder Low 2 Ext	Channel 2 TF Starting Sector 2 Ext	Channel 2 TF Sector Count 2 Ext	R/W
29C _H	Cha	nnel 2 Virtual DMA/PI	O Read Ahead Byte C	Count	R/W
2A0 _H	Rese	erved	Channel 2 Config + Status	Channel 2 Cmd + Status	R/W
2A4 _H		Rese	erved		R/W
2A8 _H		Rese	erved		R/W
2AC _H		Rese	erved		R/W
2B0 _H		Channel 2 T	est Register		R/W

Address		Registe	er Name		Access
Offset	31	16	15	00	Туре
2B4 _H		Reserved		Channel 2 Data Transfer Mode	R/W
2B8 _H		Rese	erved		-
2BC _H		Rese	erved		-
2C0 _H	Channel 3 TF Starting Sector Number	Channel 3 TF Sector Count	TF Error	Channel 3 TF Data	R/W
2C4 _H	Channel 3 TF Command+Status	Channel 3 TF Device+Head	Channel 3 TF Cylinder High	Channel 3 TF Cylinder Low	R/W
2C8 _H	Reserved	Channel 3 TF Device Control Auxiliary Status	Rese	rved	R/W
2CC _H		Channel 3 Rea	ad Ahead Data		R/W
2D0 _H	Channel 3 TF Starting Sector Number2	Channel 3 TF Sector Count2	Channel 3 TF Features2 Channel 3 TF Error2	Reserved	R/W
2D4 _H	Channel 3 TF Cmd	Channel 3 TF Device+Head2	Channel 3 TF Cylinder High2	Channel 3 TF Cylinder Low2	R/W
2D8 _H	Channel 3 TF Cylinder High 2 Ext	Channel 3 TF Cylinder Low 2 Ext	Channel 3 TF Starting Sector 2 Ext	Channel 3 TF Sector Count 2 Ext	R/W
2DC _H	Cha	nnel 3 Virtual DMA/PI	O Read Ahead Byte C	ount	R/W
2E0 _H	Rese	erved	Channel 3 Config + Status	Channel 3 Cmd + Status	R/W
2E4 _H		Rese	erved		R/W
2E8 _H		Rese	erved		R/W
2EC _H		Rese	erved		R/W
2F0 _H		Channel 3 T	est Register		R/W
2F4 _H		Reserved		Channel 1 Data Transfer Mode	R/W
2F8 _H			erved		-
2FC _H			erved		-
300 _H			channel 2)		R/W
304 _Н			channel 2)		R
308 _H			hannel 2)		R/C
30C _H		,	channel 2)		R/W
310 _H			erved		-
<u>314_н 318_н</u>			erved erved		-
31C _H			erved		-
320 _H			erved		-
324 _H			erved		-
328 _H			erved		-
32C _H			erved		-
330 _H			erved		-
334 _H			erved		-
338 _H			erved		-
33C _H			erved		-
340 _H			hannel 2)		R/W
344 _H		Rese	erved		R/W
348 _H		SIEN (cł	nannel 2)		R/W

Address	Register Name	Access
Offset	31 16 15 00	Туре
34C _H	SFISCfg (channel 2)	R/W
350 _Н	Reserved	-
354 _H	Reserved	-
358 _H	Reserved	-
35C _H	Reserved	-
360 _H	RxFIS0 (channel 2)	R
364 _H	RxFIS1 (channel 2)	R
368 _Н	RxFIS2 (channel 2)	R
36C _H	RxFIS3 (channel 2)	R
370 _H	RxFIS4 (channel 2)	R
374 _Н	RxFIS5 (channel 2)	R
378 _H	RxFIS6 (channel 2)	R
37C _H	Reserved	-
380 _H	SControl (channel 3)	R/W
384 _H	SStatus (channel 3)	R/W
388 _H	SError (channel 3)	R/C
38C _H	SActive (channel 3)	R/W
390 _H	Reserved	-
394 _H	Reserved	-
398 _H	Reserved	-
39C _H	Reserved	-
3A0 _H	Reserved	-
3A4 _H	Reserved	-
3A8 _H	Reserved	-
3AC _H	Reserved	-
3В0 _Н	Reserved	-
3В4 _Н	Reserved	-
3B8 _H	Reserved	-
3BC _H	Reserved	-
3С0 _Н	SMisc (channel 3)	R/W
3C4 _H	Reserved	R/W
3C8 _H	SIEN (channel 3)	R/W
3CC _H	SFISCfg (channel 3)	R/W
3D0 _H	Reserved	-
3D4 _H	Reserved	-
3D8 _H	Reserved	-
3DC _H	Reserved	-
3E0 _H	RxFIS0 (channel 3)	R
3E4 _H	RxFIS1 (channel 3)	R
3E8 _H	RxFIS2 (channel 3)	R
3EC _H	RxFIS3 (channel 3)	R
3F0 _H	RxFIS4 (channel 3)	R
3F4 _H	RxFIS5 (channel 3)	R
3F8 _H	RxFIS6 (channel 3)	R
3FC _H	Reserved	-

PCI Bus Master – Channel X

 $\begin{array}{l} \mbox{Address Offset: } 00_{\rm H}\,/\,08_{\rm H}\,/\,200_{\rm H}\,/\,208_{\rm H} \\ \mbox{Access Type: Read/Write} \\ \mbox{Reset Value: } 0x0000_XX00 \end{array}$

•••	31	3	0 2	9	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
				I	Rese	rved	I			PBM Simplex	PBM DMA Cap 1	PBM DMA Cap 0		nexies	сһһІХ DMA Comp	PBM Error	PBM Active	Watchdog	ChnIX+1 DMA Comp			Soft	ware				Rese	erved		PBM Rd-Wr	Reserved	Int Steering	PBM Enable

This register defines the PCI bus master register for Channel x in the SiI3114. The register bits are defined below.

- Bit [31:24]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [23]: PBM Simplex (R) PCI Bus Master Simplex Only. This read-only bit field is hardwired to zero to indicate that all channels can operate as PCI bus master at any time.
- Bit [22]: PBM DMA Cap 1 (R/W) PCI Bus Master DMA Capable Device 1. This bit field has no effect. The device is always capable of DMA as a PCI bus master.
- Bit [21]: PBM DMA Cap 0 (R/W) PCI Bus Master DMA Capable Device 0. This bit field has no effect. The device is always capable of DMA as a PCI bus master.
- Bit [20:19]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [18]**: Channel X DMA Comp (R/W1C) Channel X DMA Completion Interrupt. During write DMA operation, this bit set indicates that the Channel X interrupt has been asserted and all data has been written to system memory. During Read DMA, This bit set indicates that the Channel X interrupt has been asserted.

This bit must be cleared (Write 1 to Clear) by software when set during DMA operation (PBM Enable, bit 0 is set).

- Bit [17]: PBM Error (R/W1C) PCI Bus Master Error Channel X. This bit set indicates that a PCI bus error occurred while the SiI3114 was bus master. Additional information is available in the PCI Status register in PCI Configuration space.
- Bit [16]: PBM Active (R) PCI Bus Master Active Channel X. This bit set indicates that the SiI3114 is currently active in a data transfer as PCI bus master. This bit is cleared by the hardware when all data transfers have completed or PBM Enable bit is not set.
- Bit[15]: Watchdog Timer Status (R) This bit is an ORed result of bit 12 in the four Channel Task File Timing + Configuration + Status registers. When set indicates that one or more of the four Channel Watchdog timers has expired. This bit appears only in the Channel 0 (offset 00_H) and Channel 2 (offset 200_H) registers; this bit is reserved in the Channel 1 (offset 08_H) and Channel 3 (offset 208_H) registers.
- Bit[14]: Channel X+1 Interrupt Status (R) This bit is a copy of the Channel X DMA Completion Interrupt (bit 18) in the PCI Bus Master (this) register for Channel X+1. This bit appears only in the Channel 0 (offset 00_H) and Channel 2 (offset 200_H) registers; this bit is reserved in the Channel 1 (offset 08_H) and Channel 3 (offset 208_H) registers.
- Bit [13:08]: Software Data (R/W) System Software Data Storage. This bit field is used for read/write data storage by the system. The properties of this bit field are detailed below. This bit field appears only in the Channel 0 (offset 00_H) and Channel 2 (offset 200_H) registers; this bit field is reserved in the Channel 1 (offset 08_H) and Channel 3 (offset 208_H) registers.

Bit Location	Default	Description
[13:12]	XX _B	Not cleared by any reset
[11:10]	00 _B	Cleared by PCI reset
[09:08]	XX _B	Cleared only by a D0-D3 power state change

Table 23. Software Data Byte, Base Address 5, Offset 00_H

• Bit [07:04]: Reserved (R). This bit field is reserved and returns zeros on a read.

- Bit [03]: PBM Rd-Wr (R/W) PCI Bus Master Read-Write Control. This bit is set to specify a DMA write operation from Channel X to system memory. This bit is cleared to specify a DMA read operation from system memory to the Channel X device.
- Bit [02]: Reserved (R). This bit is reserved and returns zero on a read.
- Bit [01]: Interrupt Steering (R/W). This bit is set to 1 to allow interrupts from all four channels. If the bit is a 0 (the default), only interrupts from the channel selected by the "shadow" Device Select bit are enabled. This bit appears only in the Channel 2 (offset 200_H) register; this bit is reserved in the Channel 0 (offset 00_H), Channel 1 (offset 08_H), and Channel 3 (offset 208_H) registers.
- **Bit [00]**: PBM Enable (R/W) PCI Bus Master Enable Channel X. This bit is set to enable PCI bus master operations for Channel X. PCI bus master operations can be halted by clearing this bit, but will erase all state information in the control logic. If this bit is cleared while the PCI bus master is active, the operation will be aborted and the data discarded. While this bit is set, accessing Channel X Task File or PIO data registers will be terminated with Target-Abort.

PRD Table Address – Channel X

Address Offset: $04_H / 0C_H / 204_H / 20C_H$ Access Type: Read/Write Reset Value: 0x0000_0000

PRD Table Address	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
g g															Tabl																	rved
														PRD	labi	e Ado	iress															Kese

This register defines the PRD Table Address register for Channel X in the SiI3114. The register bits are defined below.

- Bit [31:02]: PRD Table Address (R/W) Physical Region Descriptor Table Address. This bit field defines the Descriptor Table base address.
- Bit [01:00]: Reserved (R). This bit field is reserved and returns zeros on a read.

PCI Bus Master2 – Channel X

Address Offset: $10_{H} / 18_{H} / 210_{H} / 218_{H}$ Access Type: Read/Write Reset Value: 0x0808_XX00 (Chnl 0/2) / 0x0008_0000 (Chnl 1/3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
ChnlX+1 PBM Simplex	ChnIX+1 PBM DMA Cap 0	ChnIX+1 PBM DMA Cap 1	ChnIX+1 Watchdog	ChnIX+1 Buffer Empty	ChnlX+1 DMA Comp	ChnIX+1 PBM Error	ChnIX+1 PBM Active	Chnl X PBM Simplex	ChnlX PBM DMA Cap 1	hnlX PBM DMA Cap 0	ChnlX Watchdog	ChnlX Buffer Empty	ChnlX DMA Comp	ChnlX PBM Error	ChnlX PBM Active	Watchdog	ChnlX+1 DMA Comp			Soft	ware			Reserved	2ATAINTX+1	Reserved	SATAINTX	PBM Rd-Wr	Docorroad	•	PBM Enable
	F	Reser	ved f	or Cl	nni 1/	/3			0	C									Res	erve	d for	Chnl	1/3								

This register defines the second PCI bus master register for Channel *X* in the SiI3114. The system must access these register bits through this address to enable the Large Block Transfer Mode.

The register bits are defined below.

- Bit [31:24]: (R) These bits are copies of PCI Bus Master Channel X+1 bits. This bit field (and bits 15 to 5) appears only in the Channel 0 (offset 10_H) and Channel 2 (offset 210_H) registers; this bit field is reserved in the Channel 1 (offset 18_H) and Channel 3 (offset 218_H) registers.
- Bit [23]: PBM Simplex (R) PCI Bus Master Simplex Only. This read-only bit field is hardwired to zero to indicate that all channels can operate as PCI bus master at any time.

- Bit [22]: PBM DMA Cap 1 (R/W) PCI Bus Master DMA Capable Device 1. This bit field has no effect. The device is always capable of DMA as a PCI bus master.
- Bit [21]: PBM DMA Cap 0 (R/W) PCI Bus Master DMA Capable Device 0. This bit field has no effect. The device is always capable of DMA as a PCI bus master.
- Bit [20]: Watchdog (R): This bit is a copy of bit 12 in Channel X Task File Configuration + Status register.
- Bit [19]: Channel X Buffer empty (R). This bit set indicates the Channel X FIFO is empty.
- **Bit [18]**: Channel X DMA Comp (R/W1C) Channel X DMA Completion Interrupt. During write DMA operation, this bit set indicates that the Channel X interrupt has been asserted and all data has been written to system memory. During Read DMA, this bit set indicates that the Channel X interrupt has been asserted.

This bit must be cleared by software (Write 1 to Clear) when set during DMA operation (PBM Enable, bit 0 is set).

- Bit [17]: PBM Error (R/W1C) PCI Bus Master Error Channel 0. This bit set indicates that a PCI bus
 error occurred while the SiI3114 was bus master. Additional information is available in the PCI Status
 register in PCI Configuration space.
- Bit [16]: PBM Active (R) PCI Bus Master Active Channel 0. This bit set indicates that the SiI3114 is currently active in a data transfer as PCI bus master. This bit is cleared by the hardware when all data transfers have completed or PBM Enable bit is not set.
- **Bit[15]** : Watchdog Timer Status (R) This bit is an ORed result of bit 12 in the four Channel Task File Timing + Configuration + Status registers. When set indicates that one or more of the four Channel Watchdog timers has expired.
- **Bit[14]** : Channel *X*+1 DMA Completion Interrupt Status (R) This bit is a copy of the Channel *X* DMA Completion Interrupt (bit 18) in the PCI Bus Master register for Channel *X*+1.
- Bit [13:08]: Software Data (R/W) System Software Data Storage. This bit field is used for read/write data storage by the system. The properties of this bit field are detailed below.

Bit Location	Default	Description
[13:12]	XX _B	Not cleared by any reset
[11:10]	00 _B	Cleared by PCI reset
[09:08]	XX _B	Cleared only by a D0-D3 power state change

Table 24. Software Data Byte, Base Address 5, Offset 10_H

- Bit [07]: Reserved (R). This bit is reserved and returns zeros on a read.
- Bit [06]: SATAINTX+1 This bit is the logical OR of all Serial ATA interrupt sources for channel X+1.
- Bit [05]: Reserved (R). This bit is reserved and returns zeros on a read.
- **Bit [04]**: SATAINTX This bit is the logical OR of all Serial ATA interrupt sources for channel *X*.
- Bit [03]: PBM Rd-Wr (R/W) PCI Bus Master Read-Write Control. This bit is set to specify a DMA write operation from Channel X to system memory. This bit is cleared to specify a DMA read operation from system memory to the Channel X device.
- Bit [02:01]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [00]**: PBM Enable (R/W) PCI Bus Master Enable Channel X. This bit is set to enable PCI bus master operations for Channel X. PCI bus master operations can be halted by clearing this bit, but will erase all state information in the control logic. If this bit is cleared while the PCI bus master is active, the operation will be aborted and the data discarded. While this bit is set, accessing Channel X Task File or PIO data registers will be terminated with Target-Abort.

Summary Interrupt Status

Address Offset: 214_H Access Type: Read/Write Reset Value: 0x0808_0808

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Chni0 Interrupt Status	Reserved	SATAINTO	ChnI0 Watchdog	Chnl0 Buffer Empty	Chnio DMA Comp	Chnl0 PBM Error	Chnl0 PBM Active	Chnl1 Interrupt Status	Reserved	SATAINT1	Chnl1 Watchdog	Chnl1 Buffer Empty	Chnl1 DMA Comp	Chnl1 PBM Error	Chnl1 PBM Active	Chnl2 Interrupt Status	Reserved	SATAINT2	Chnl2 Watchdog	Chnl2 Buffer Empty	Chni2 DMA Comp	Chnl2 PBM Error	Chnl2 PBM Active	Chnl3 Interrupt Status	Reserved	SATAINT3	Chnl3 Watchdog	Chnl3 Buffer Empty	Chni3 DMA Comp	Chnl3 PBM Error	Chnl3 PBM Active

This register provides a single register containing a summary of the interrupt status of all four channels.

The Interrupt Status bits are replicas of bit 11 of the Task File Configuration + Status register. The other bits are replicas of bits in the PCI Bus Master2 registers.

PRD Address – Channel X

Address Offset: $20_H / 28_H / 220_H / 228_H$ Access Type: Read Only Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PRD Address

This register reflects the current DMA address and uses for diagnostic purposes only.

• **Bit [31:00]**: PRD Address (R) – This field is the current DMA Address.

PCI Bus Master Byte Count – Channel X

Address Offset: $24_H / 2C_H / 224_H / 22C_H$ Access Type: Read Only Reset Value: $0x0000_0000$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
End of Table						B	Syte (Coun	ıt Hig	h												Byt	te Co	unt L	_ow						

This register defines the byte count register in the PCI bus master logic for Channel X in the SiI3114. The register bits are defined below.

- Bit [31]: End of Table (R). This bit set indicates that this is the last entry in the PRD table.
- **Bit [30:16]** Byte Count High (R). This bit field is the PRD entry byte count extension for Large Block Transfer Mode. Under generic mode, this bit field is reserved and returns zeros on a read.
- Bit [15:00] Byte Count Low (R). This bit field reflects the current DMA byte count value.

FIFO Valid Byte Count and Control – Channel X

Address Offset: $40_H / 44_H / 240_H / 244_H$ Access Type: Read/Write Reset Value: 0x0000_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			Re	serv	ed					FIFC) Val	id By	rte Co	ount				Re	serv	ed		-	IFO V eq C			Re	serv	ed			FO R eq Ci	

This register defines the FIFO valid byte count register and PCI bus request control for Channel *X* in the SiI3114. The register bits are defined below.

The FIFO Write Request Control and FIFO Read Request Control fields in these registers provide threshold settings for establishing when PCI requests are made to the Arbiter. The Arbiter arbitrates among the four requests using fixed priority with masking. The fixed priority is, from highest to lowest: channel 0; channel 1; channel 2; and channel 3. If multiple requests are present, the arbiter grants PCI bus access to the highest priority channel that is not masked. That channel's request is then masked as long as any unmasked requests are present.

- Bit [31:25]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [24:16]: FIFO Valid Byte Count (R). This bit field provides the valid byte count for the data FIFO for Channel X. A value of 000_H indicates empty, while a value of 100_H indicates a full FIFO with 256 bytes.
- Bit [15:11]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [10:08]: FIFO Wr Req Ctrl (R/W) FIFO Write Request Control. This bit field defines the FIFO threshold to assign priority when requesting a PCI bus write operation. A value of 00_H indicates that write request priority is set whenever the FIFO contains greater than 32 bytes, while a value of 07_H indicates that write request priority is set whenever the FIFO contains greater than 7x32 bytes (=224 bytes). This bit field is useful when multiple DMA channels are competing for the PCI bus.
- Bit [07:03]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [02:00]: FIFO Rd Req Ctrl (R/W) FIFO Read Request Control. This bit field defines the FIFO threshold to assign priority when requesting a PCI bus read operation. A value of 00_H indicates that read request priority is set whenever the FIFO has greater than 32 bytes available space, while a value of 07_H indicates that read request priority is set whenever the FIFO has greater than 7x32 bytes (=224 bytes) available space. This bit field is useful when multiple DMA channels are competing for accessing the PCI bus.

System Configuration Status – Command

Address Offset: 48_H Access Type: Read/Write Reset Value: 0x0000_0000

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
			Rese	erved			Chnl3 Int Block	Chnl2 Int Block	Chnl1 Int Block	Chnl0 Int Block		Re	eserv	ed		M66EN		Rese	erved		Chnl2 Module Rst	Chnl3 Module Rst	FF2 Module Rst	FF3 Module Rst	Chnl0 Module Rst	Chnl1 Module Rst	FF0 Module Rst	FF1 Module Rst	Reserved		ARB Module Rst	PBM Module Rst

This register defines the system configuration status and command register for the SiI3114. The register bits are defined below.

- Bit [31:26]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [25]: Chnl3 Int Block (R/W) Channel3 Interrupt Block. This bit is set to block interrupts from Channel 3.

- Bit [24]: Chnl2 Int Block (R/W) Channel 2 Interrupt Block. This bit is set to block interrupts from Channel 2.
- Bit [23]: Chnl1 Int Block (R/W) Channel 1 Interrupt Block. This bit is set to block interrupts from Channel 1.
- Bit [22]: Chnl0 Int Block (R/W) Channel 0 Interrupt Block. This bit is set to block interrupts from Channel 0.
- Bit [21:17]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [16]: M66EN (R) PCI 66MHz Enable. This bit reflects input pin M66EN.
- Bit [15:12]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [11]: Chnl2 Module Rst (R/W) Channel 2 Module Reset. This bit is set to reset the interface logic for Channel 2.
- Bit [10]: Chnl3 Module Rst (R/W) Channel 3 Module Reset. This bit is set to reset the interface logic for Channel 3.
- Bit [09]: FF2 Module Rst (R/W) FF2 Module Reset. This bit is set to reset the FIFO logic in Channel 2.
- Bit [08]: FF3 Module Rst (R/W) FF3 Module Reset. This bit is set to reset the FIFO logic in Channel 3.
- Bit [07]: Chnl0 Module Rst (R/W) Channel 0 Module Reset. This bit is set to reset the interface logic for Channel 0.
- Bit [06]: Chnl1 Module Rst (R/W) Channel 1 Module Reset. This bit is set to reset the interface logic for Channel 1.
- Bit [05]: FF0 Module Rst (R/W) FF0 Module Reset. This bit is set to reset the FIFO logic in Channel 0.
- Bit [04]: FF1 Module Rst (R/W) FF1 Module Reset. This bit is set to reset the FIFO logic in Channel 1.
- Bit [03:02]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [01]: ARB Module Rst (R/W) ARB Module Reset. This bit is set to reset the internal logic for the Arbiter.
- Bit [00]: PBM Module Rst (R/W) PBM Module Reset. This bit is set to reset the internal logic for the PCI Bus Master state machine.

System Software Data Register

Address Offset: 4C_H / 24C_H Access Type: Read/Write Reset Value: Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

System Software Data

This register is used by the software for non-resettable data storage. The contents are unknown on power-up and are never cleared by any type of reset.

Flash Memory Address – Command + Status

Address Offset: 50_H Access Type: Read/Write Reset Value: 0x0800_0000

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01 0	00
Reserved	Mem Init Done	Mem Init	Mem Access Start	Mem Access Type		Re	serve	əd									N	lemo	ry A	ddres	ss							

This register defines the address and command/status register for flash memory interface in the SiI3114. The register bits are defined below.

- Bit [31:28]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [27]: Memory Init Done (R) This bit set indicates that the memory initialization sequence is done. The memory sequence is activated upon the release of reset.
- Bit [26]: Mem Init (R) Memory Initialized. This bit set indicates that the memory was initialized properly (a correct data sequence was read from the Flash.)
- Bit [25]: Mem Access Start (R/W) Memory Access Start. This bit is set to initiate an operation to Flash memory. This bit is cleared when the operation is complete.
- Bit [24]: Mem Access Type (R/W) Memory Access Type. This bit is set to define a read operation from Flash memory. This bit is cleared to define a write operation to Flash memory.
- Bit [23:19]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [18:00]: Memory Address (R/W). This bit field is programmed with the address for a flash memory read or write access.

Flash Memory Data

Address Offset: 54_H Access Type: Read/Write Reset Value: 0x0000_0000

31	3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
								Rese	erved										GI	PIO C	Contr	ol					М	emo	ry Da	ta		

This register defines the data register for the Flash memory and GPIO interface in the SiI3114. The system writes to this register for a write operation to Flash memory, and reads from this register on a read operation from Flash memory. The GPIO Control bits control operation of the Flash data lines for use as General Purpose I/O. GPIO is only enabled when the GPIOEN pin is pulled high.

- Bit [31:16]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [15:08]**: GPIO Control The bits of this field are written to control the output type for corresponding Flash data lines; if a bit is a 1 the corresponding output is an open drain output (only driven low); if a 0 the corresponding output is always driven. The bits of this field, when read, report signal transition detection on the corresponding Flash data input; reading the register resets the transition detect bits.
- Bit [07:00]: Memory Data (R/W) Flash Memory Data. This bit field is used for Flash write data on a write operation, and returns the Flash read data on a read operation.

This register defines the data register for the Flash memory and GPIO interface in the Taurus. The GPIO Control bits control operation of the Flash data lines for use as General Purpose I/O. GPIO is enabled when the GPIOEN pin is pulled high.

EEPROM Memory Address – Command + Status

Address Offset: 58_H Access Type: Read/Write Reset Value: 0x0800_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
R	eser	ved	Mem Error	Mem Init Done	Mem Init	Mem Access Start	Mem Access Type								Rese	rved										M	em A	ddre	ss		

This register defines the address and command/status register for EEPROM memory interface in the SiI3114. The register bits are defined below.

• Bit [31:29]: Reserved (R). This bit field is reserved and returns zeros on a read.

- Bit [28]: Mem Error (R/W1C) Memory Access Error. This bit set indicates that the EEPROM interface logic detects three NAKs from the memory device (EEPROM most likely not present.)
- Bit [27]: Mem Init Done (R) Memory Initialization Done. This bit set indicates that the memory initialization sequence is done. The memory initialization sequence is activated upon the release of reset.
- Bit [26]: Mem Init (R) Memory Initialized. This bit set indicates that the memory was initialized properly (a correct data sequence was read from the EEPROM.)
- Bit [25]: Mem Access Start (R/W) Memory Access Start. This bit is set to initiate an operation to EEPROM memory. This bit is cleared when the operation is complete.
- Bit [24]: Mem Access Type (R/W) Memory Access Type. This bit is set to define a read operation from EEPROM memory. This bit is cleared to define a write operation to EEPROM memory.
- Bit [23:08]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [07:00]: Memory Address (R/W). This bit field is programmed with the address for an EEPROM memory read or write access.

EEPROM Memory Data

Address Offset: 5C_H Access Type: Read/Write Reset Value: 0x0000_00XX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
											Rese	erved														М	emoi	ry Da	ta		

This register defines the data register for EEPROM memory interface in the SiI3114. The system writes to this register for a write operation to EEPROM memory, and reads from this register on a read operation from EEPROM memory. The register bits are defined below.

- Bit [31:08]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [07:00]: Memory Data (R/W) EEPROM Memory Data. This bit field is used for EEPROM write data on a write operation, and returns the EEPROM read data on a read operation.

FIFO Port – Channel X

Address Offset: $60_H / 70_H / 260_H / 270_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FIFO Port

This register defines the direct access register for the FIFO port of Channel X in the SiI3114. This register is used for hardware debugging purposes only. The system can read from or write to this register for direct access to the data FIFO between the PCI bus and Channel X. While DMA is active, reading this register will be terminated with Target-Abort.

FIFO Pointers1– Channel X

Address Offset: $68_H / 78_H / 268_H / 278_H$ Access Type: Read Only Reset Value: 0x0000_0000

31	13	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
		FII	FO B	yte 1	Wr I	Point	ter			FI	FO B	yte 1	Rd I	Point	er			FI	FO B	yte O) Wr I	Point	er			FI	FO E	lyte () Rd	Point	ter	

This register provides visibility into the data FIFO for Channel X in the SiI3114. The data FIFO is organized as a four byte-wide x 64 deep memory array. There are separate write and read pointers for each of the byte slices. This register is used for hardware debugging purposes only. The register bits are defined below.

- Bit [31:24]: FIFO Byte 1 Wr Pointer (R). This bit field provides the write pointer for Byte 1.
- Bit [23:16]: FIFO Byte 1 Rd Pointer (R). This bit field provides the read pointer for Byte 1.
- Bit [15:08]: FIFO Byte 0 Wr Pointer (R). This bit field provides the write pointer for Byte 0.
- Bit [07:00]: FIFO Byte 0 Rd Pointer (R). This bit field provides the read pointer for Byte 0.

FIFO Pointers2– Channel X

Address Offset: $6C_H / 7C_H / 26C_H / 27C_H$ Access Type: Read Only Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00

	FIFO Byte 3 Wr Pointer	FIFO Byte 3 Rd Pointer	FIFO Byte 2 Wr Pointer	FIFO Byte 2 Rd Pointer
--	------------------------	------------------------	------------------------	------------------------

This register provides visibility into the data FIFO for Channel *X* in the SiI3114. The data FIFO is organized as a four byte-wide x 64 deep memory array. There are separate write and read pointers for each of the byte slices. This register is used for hardware debugging purposes only. The register bits are defined below.

- Bit [31:24]: FIFO Byte 3 Wr Pointer (R). This bit field provides the write pointer for Byte 3.
- Bit [23:16]: FIFO Byte 3 Rd Pointer (R). This bit field provides the read pointer for Byte 3.
- Bit [15:08]: FIFO Byte 2 Wr Pointer (R). This bit field provides the write pointer for Byte 2.
- Bit [07:00]: FIFO Byte 2 Rd Pointer (R). This bit field provides the read pointer for Byte 2.

Channel X Task File Register 0

Address Offset: $80_H / C0_H / 280_H / 2C0_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
	Sta	artin	g Seo	ctor I	Numb	ber				S	ector	Cou	nt				Fe	atur	es (V	/) E	rror (R)									
																										Data	(byt	e acc	ess)		
																						Data	(wor	d acc	cess))					
1													C	Data (dwo	d ac	cess)													

This register contains some of the Channel *X* Task File registers and provides access to the data bus. Access to this register is determined by the PCI bus Byte Enables at the time of the read or write operation, i.e., what is accessed is determined by the address and by the size of the access. The register bits are defined below.

- Bit [31:00]: Data (R/W). This bit field provides access to the Channel X Data. This register can be accessed as an 8-bit, 16-bit, or 32-bit word.
- Bit [31:24]: Task File Starting Sector Number (R/W). This bit field defines the Channel X Task File Starting Sector Number register. Access to this bit field is permitted if the PCI bus Byte Enable is active for this byte only.
- Bit [23:16]: Task File Sector Count (R/W). This bit field defines the Channel X Task File Sector Count register. Access to this bit field is permitted if the PCI bus Byte Enable is active for this byte only.
- **Bit [15:08]**: Task File Features (W). This write-only bit field defines the Channel X Task File Features register. Access to this bit field is permitted if the PCI bus Byte Enable is active for this byte only.
- **Bit [15:08]**: Task File Error (R). This read-only bit field defines the Channel X Task File Error register. Access to this bit field is permitted if the PCI bus Byte Enable is active for this byte only.

Channel X Task File Register 1

Address Offset: $84_H / C4_H / 284_H / 2C4_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
Command + Status	Device+Head	Cylinder High	Cylinder Low

This register defines one of the Channel X Task File registers in the SiI3114. Access to these bit fields is permitted if the PCI bus Byte Enables are active for one byte only.

The Channel 0 Device Select bit (bit 4 of the byte, bit 20 of this register) MUST be 0 for proper operation of the Channel 0 and Channel 2 registers when accessed via Base Address 5. The Channel 1 Device Select bit (bit 4 of the byte, bit 20 of this register) MUST be 0 for proper operation of the Channel 1 and Channel 3 registers when accessed via Base Address 5. The Device Select bit in the Channel 2 or Channel 3 Device+Head Task File is ignored.

The register bits are defined below.

- Bit [31:24]: Task File Command (W). This write-only bit field defines the Channel X Task File Command register.
- Bit [31:24]: Task File Status (R). This read-only bit field defines the Channel X Task File Status register.
- Bit [23:16]: Task File Device+Head (R/W). This bit field defines the Channel X Task File Device and Head register.

- Bit [15:08]: Task File Cylinder High (R/W). This bit field defines the Channel X Task File Cylinder High register.
- Bit [07:00]: Task File Cylinder Low (R/W). This bit field defines the Channel X Task File Cylinder Low register.

Channel X Task File Register 2

Address Offset: $88_H / C8_H / 288_H / 2C8_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00
Reserved	Device Control Auxiliary Status	Reserved	Reserved

This register defines one of the Channel *X* Task File registers in the SiI3114. Access to these bit fields is permitted if the PCI bus Byte Enable is active for one byte only.

The register bits are defined below.

- Bit [31:24]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [23:16]: Task File Device Control (W). This bit field defines the Channel X Task File Device Control register.
- Bit [23:16]: Task File Auxiliary Status (R). This bit field defines the Channel X Task File Auxiliary Status register.
- Bit [15:00]: Reserved (R). This bit field is reserved and returns zeros on a read.

Channel X Read Ahead Data

Address Offset: $8C_H / CC_H / 28C_H / 2CC_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Read Ahead Data

This register defines the read ahead data port for PIO transfers on Channel X in the SiI3114. This register can be accessed as an 8-bit, 16-bit, or 32-bit word, depending upon the PCI bus Byte Enables. The data written to this register must be zero-aligned.

Channel X Task File Register 0 – Command Buffering

Address Offset: $90_H / D0_H / 290_H / 2D0_H$ Access Type: Read/Write Reset Value: 0x0000_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
		St	artin	g Se	ctor I	Numt	ber				S	ector	Cou	nt						Feat	ures							Rese	erved	l		

This register defines one of the Channel *X* Task File registers used for Command Buffered accesses in the Sil3114. The register bits are defined below.

- Bit [31:24]: Task File Starting Sector Number (R/W). This bit field defines the Channel X Task File Starting Sector Number register.
- Bit [23:16]: Task File Sector Count (R/W). This bit field defines the Channel X Task File Sector Count register.
- **Bit [15:08]**: Task File Features (W). This write-only bit field defines the Channel X Task File Features register.
- Bit [07:00]: Reserved (R). This bit field is reserved and returns zeros on a read.

Channel X Task File Register 1 – Command Buffering

Address Offset: $94_H / D4_H / 294_H / 2D4_H$ Access Type: Read/Write Reset Value: 0x0000_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
				Com	nanc	1					D	evice	+Hea	ad					Cy	/linde	ər Hi	gh					C	ylind	er Lo	w		

This register defines one of the Channel X Task File registers used for Command Buffered accesses in the Sil3114. The register bits are defined below.

The Channel 0 and Channel 1 Device Select bits (bit 4 of the byte, bit 20 of this register) MUST be 0 for proper operation of the Task File registers when accessed via Base Address 5. The Device Select bits in the Channel 2 or Channel 3 Device+Head Task File is ignored.

- **Bit [31:24]**: Task File Command (W). This write-only bit field defines the Channel X Task File Command register.
- Bit [23:16]: Task File Device+Head (R/W). This bit field defines the Channel X Task File Device and Head register.
- Bit [15:08]: Task File Cylinder High (R/W). This bit field defines the Channel X Task File Cylinder High register.
- Bit [07:00]: Task File Cylinder Low (R/W). This bit field defines the Channel X Task File Cylinder Low register.

Channel X Extended Task File Register – Command Buffering

Address Offset: 98_H / D8_H / 298_H / 2D8_H Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
		Cylii	nder	High	Ext					Cyli	nder	Low	Ext					Sta	rt Se	ctor	Ext					Sec	tor C	ount	Ext		

This register defines one of the IDE Channel X Task File registers used for Command Buffered accesses in the SiI3114. The register bits are defined below. If this register is written, the IDE Channel X Task File Device+Head byte of the IDE Channel X Task File Register 1 – Command Buffering register must not be written.

- **Bit [31:24]**: Task File Cylinder High Ext(R/W). This write-only bit field defines the Channel X Task File Extended Cylinder High register.
- Bit [23:16]: Task File Cylinder Low Ext (R/W). This bit field defines the Channel X Task File Extended Cylinder Low register.
- Bit [15:08]: Task File Start Sector Ext (R/W). This bit field defines the Channel X Task File Extended Start Sector register.
- Bit [07:00]: Task File Sector Count Ext (R/W). This bit field defines the Channel X Task File Extended Sector Count register.

Channel X Virtual DMA/PIO Read Ahead Byte Count

Address Offset: $9C_H / DC_H / 29C_H / 2DC_H$ Access Type: Read/Write Reset Value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Virtual DMA/PIO Read Ahead Byte Count

This register defines the read ahead byte count register for Virtual DMA and PIO Read Ahead transfers on Channel *X* in the SiI3114. In Virtual DMA mode (PCI bus master DMA with PIO transfers), all 32 bits are used as the word-aligned byte count. In PIO Read Ahead mode, only the lower 16 bits are used as the word-aligned byte count.

Channel X Task File Configuration + Status

Address Offset: $A0_H / E0_H / 2A0_H / 2E0_H$ Access Type: Read/Write Reset Value: 0x6515_0101

31	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
								Rese	erved								Reserved	Watchdog Int Ena	Watchdog Ena	Watchdog Timeout	Interrupt Status	Virtual DMA Int			Re	eserv	ed			Channel Rst	Buffered Cmd	Reserved

This register defines the task file configuration and status register for Channel X in the SiI3114. The register bits are defined below.

• **Bit [31:16]**: Reserved (R). This bit field is reserved and defaults to 0x6515.

Not Used

- Bit [15]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [14]: Watchdog Int Ena (R/W) Channel X Watchdog Interrupt Enable. This bit is set to enable an interrupt when the Watchdog timer expires.
- Bit [13]: Watchdog Ena (R/W) Channel X Watchdog Timer Enable. This bit is set to enable the watchdog timer for Channel X. This bit is cleared to disable the watchdog timer.
- **Bit [12]**: Watchdog Timeout (R/W1C) Channel *X* Watchdog Timer Timeout. This bit set indicates that the watchdog timer for Channel *X* timed out. When enabled, and IORDY monitoring bit is also enabled, during Channel *X* PIO operation, the watchdog counter starts counting when IORDY signal is deasserted. If after 256 PCI clocks, the IORDY signal is still deasserted, the Watchdog Timer expires, this bit is set, the SiI3114 continues its operation, and stops monitoring IORDY signal. Software writes one to clear this bit. Once this bit is cleared, the SiI3114 starts monitoring IORDY on channel *X* again.
- Bit [11]: Interrupt Status (R) Channel X Interrupt Status. This bit set indicates that an interrupt is pending on Channel X. This bit provides real-time status of the Channel X interrupt.
- **Bit [10]**: Virtual DMA Int (R) Channel X Virtual DMA Completion Interrupt. This bit set indicates that the Virtual DMA data transfer has completed. This bit is cleared when PBM enable (bit 0 in PCI Bus Master Channel X) is cleared.
- Bit [09:03]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [02]: Channel Rst (R/W) Channel X Reset. When this bit is set, Channel X RST signal is asserted.
- **Bit [01]**: Buffered Cmd (R) Channel X Buffered Command Active. This bit set indicates that a Buffered Command is currently active. This bit is set when the first command byte is written to the command buffer. This bit is cleared when all of the task file bytes, including the command byte, have been written to the device.
- Bit [00]: Reserved (R). This bit is reserved and returns one on a read.

Data Transfer Mode – Channel X

Address Offset: $B4_H / F4_H / 2B4_H / 2F4_H$ Access Type: Read/Write Reset Value: 0x0000_0022

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
											Rese	rved												0,100	Daviasan	Device 1 Transfer	Mode	Dovroad		Device 0 Transfer	Mode

This register defines the transfer mode register for Channel 0 in the SiI3114. The register bits are defined below.

- Bit [31:08]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [07:06]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [05:04]**: Device 1 Transfer Mode (R/W) Channel X Device 1 Data Transfer Mode. This bit field is used to set the data transfer mode during PCI DMA transfer: 00_B or 01_B = PIO transfer; 10_B or 11_B = DMA transfer.
- Bit [03:02]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [01:00]**: Device 0 Transfer Mode (R/W) Channel X Device 0 Data Transfer Mode. This bit field is used to set the data transfer mode during PCI DMA transfer: 00_B or $01_B = PIO$ transfer; 10_B or $11_B = DMA$ transfer.

Serial ATA SControl

Address Offset: $100_H / 180_H / 300_H / 380_H$ Access Type: Read/Write Reset Value: 0x0000_0010

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
				Rese	erved							PN	ЛР			Rese	rved			IP	M			SF	۶D			DE	T	

This register is the SControl register as defined by the Serial ATA specification (section 10.1.3).

- Bit [31:20]: Reserved (R). This bit field is reserved and returns zeros on a read.
- Bit [19:16]: PMP This field is the 4-bit value to be placed in the Port Multiplier Port field of all transmitted FISes.
- Bit [15:12]: Reserved (R). This bit field is reserved (for the SPM field) and returns zeros on a read.
- **Bit [11:08]**: IPM This field identifies the interface power management states that may be invoked via the Serial ATA interface power management capabilities.

Value	Definition
0000	No interface power management restrictions (Partial and Slumber modes enabled)
0001	Transitions to the Partial power management state are disabled
0010	Transitions to the Slumber power management state are disabled
0011	Transitions to both the Partial and Slumber power management states are disabled
others	Reserved

• Bit [07:04]: SPD – This field identifies the highest allowed communication speed the interface is allowed to negotiate.

Value	Definition
0000	No restrictions
0001	Limit to Generation 1 (1.5 Gbit/s) (default value)
others	Reserved

• Bit [03:00]: DET – This field controls host adapter device detection and interface initialization.

Value	Action
0000	No action
0001	ATA Reset is generated until another value is written to the field
0100	No action
others	Reserved, no action

Serial ATA SStatus

Address Offset: $104_{\rm H}\,/\,184_{\rm H}\,/\,304_{\rm H}\,/\,384_{\rm H}$ Access Type: Read Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
									Rese	erved											IP	M			SF	۶D			DE	ĒT	

This register is the SStatus register as defined by the Serial ATA specification (section 10.1.1).

- Bit [31:12]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [11:08]**: IPM This field identifies the current interface power management state.

	Value	Definition
	0000	Device not present or communication not established
ſ	0001	Interface in active state
F	0010	Interface in Partial power management state
ſ	0110	Interface in Slumber power management state
ſ	others	Reserved

• Bit [07:04]: SPD - This field identifies the negotiated interface communication speed.

Value	Definition
0000	No negotiated speed
0001	Generation 1 communication rate (1.5 Gbit/s)
others	Reserved

• Bit [03:00]: DET – This field indicates the interface device detection and PHY state.

Value	Action
0000	No device detected and PHY communication not established
0001	Device presence detected but PHY communication not established
0011	Device presence detected and PHY communication established
0100	PHY in offline mode as a result of the interface being disabled or running in a BIST loopback mode
others	Reserved, no action

Until a device is detected (IPM and DET fields become nonzero), the SiI3114 issues a COMRESET every 100 milliseconds.

Serial ATA SError

Address Offset: $108_H / 188_H / 308_H / 388_H$ Access Type: Read/Clear Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
R	R	R	R	R	R	F	Т	S	Н	С	D	В	W	-	Ν	R	R	R	R	Е	Ρ	С	Т	R	R	R	R	R	R	Μ	I
	DIAG																					E	RR								

This register is the SError register as defined by the Serial ATA specification (section 10.1.2).

• Bit [31:16]: DIAG – This field contains bits defined as shown in the following table. Writing a 1 to the register bit clears the B, C, F, N, H, and W bits.

Bit	Definition	Description
В	10b to 8b decode error	Latched decode error or disparity error from the Serial ATA PHY
С	CRC error	Latched CRC error from the Serial ATA PHY
D	Disparity error	N/A, always 0; this error condition is combined with the decode error and reported as B error
F	Unrecognized FIS type	Latched Unrecognized FIS error from the Serial ATA Link
I	PHY Internal error	N/A, always 0
Ν	PHYRDY change	Indicates a change in the status of the Serial ATA PHY
Н	Handshake error	Latched Handshake error from the Serial ATA PHY
R	Reserved	Always 0
S	Link Sequence error	N/A, always 0
Т	Transport state transition error	N/A, always 0
W	ComWake	Latched ComWake status from the Serial ATA PHY

Table 25. SError Register Bits (DIAG Field)

• Bit [15:00]: ERR – This field contains bits defined as shown in the following table. The ERR Field is not implemented; all bits are always 0.

Table 26. SError	Register B	its (ERR Field)
------------------	------------	-----------------

Bit	Definition	Description
С	Non-recovered persistent Communication error or data integrity error	N/A, always 0
E	Internal Error	N/A, always 0
I	Recovered data Integrity error	N/A, always 0
М	Recovered communications error	N/A, always 0
Р	Protocol error	N/A, always 0
R	Reserved	Always 0
Т	Non-recovered Transient data integrity error	N/A, always 0

Serial ATA SActive

Address Offset: 10C_H / 18C_H / 30C_H / 38C_H Access Type: Read/Write 1/Clear Reset Value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SActive bits

The bits of this register may be written with a 1, but are cleared if the corresponding bits of the second dword of a FIS are set when the SDevice Bits FIS is received. All 32 bits may be cleared by writing 0x0000_0000 to the register; individual bits may not be cleared except by the hardware.

SMisc

Address Offset: $140_H / 1C0_H / 340_H / 3C0_H$ Access Type: Read/Write Reset Value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
FIS_Done	Transmit_FIS	Transmit_OK	IFIS_OK	IntrickFIS	Reject_IF	Accept_IF	Rx_IFIS	BDB	pterr	Scr_dis	Cont_dis	VS_Lock_Abort	fpdmawr	dmainen	dmaouten	Transmit_BIST	devdrvn	nienfis_dis	srst	ComWake	nm fierfa	2	pm_locken	reffismode	ынсне		TMMOUE		Reserved	озама	

This register contains bits for controlling Serial ATA power management, ComWake, loopback modes, and FIS transfers.

- **Bit [31]**: FIS_Done (R/W) This bit is used to indicate to the link logic that all the data for the Transparent FIS has been transferred and that the link can proceed to close out the FIS. This is used in Transparent FIS transmission. Please refer to the "FIS Support" section on page 85 for more details.
- **Bit [30]**: Transmit_FIS (W)– This bit is used to signal the link logic to start the process of transmitting a Transparent FIS. Please refer to the "FIS Support" section on page 85 for more details.
- Bit [29]: Transmit_OK (R)- This bit is used in Transparent FIS transmission. It is used by the link to signal to the host that the current Transparent FIS has been successfully transferred to the device, and that R_OK has been received.
- Bit [28]: IFIS_OK (R)– This bit is used in the reception of Interlocked FISes. This bit is set by the link logic to inform the host that the current Interlocked FIS has been successfully received with no errors.
- Bit [27]: IntrlckFIS (R)- This bit is set to indicate to the host driver that the link has detected an the arrival of an interlocked FIS and that the host should set up the DMA engine to start transfer of data
- Bit [26]: Reject_IFIS (W)- This bit is set by the host driver to indicate to the link that the current Interlocked FIS should be rejected. The link logic will respond to the device with an R_ERR when the complete FIS has been received.
- **Bit [25]**: Accept_IFIS (W)– This bit is set by the host driver to indicate to the link that the current interlocked FIS should be accepted. The link logic will respond to the device with R_OK
- Bit [24]: Rx_IFIS (W)– This bit is set by the host driver to inform the link/transport logic that the host has set up the DMA engine to transfer the incoming Interlocked FIS and that the DMA cycles can begin
- Bit [23]: SDB (R) This bit indicates that a Set Device Bits FIS has been received
- Bit [22]: pterr (R) This bit indicates that a Protocol Error has occurred. An interrupt will be generated if bit 20 of SIEN is set.
- Bit [21]: Scr_dis (R/W)– This bit disables the scrambling of data on the serial ATA bus. This is used only for debugging purposes and should not be changed by the user

Silicon Image, Inc.

- Bit [20]: Cont_dis (R/W)– Setting this bit disables the CONT primitive, i.e., the SiI3114 will always send the actual primitive instead of a CONT followed by random data.
- Bit [19]: VS_Lock_Abort (R/W)– This bit controls the changes to the entries in the Command Protocol Table upon receiving a VS_Lock command. If this bit is set, all Command Protocol Table will be cleared. If this bit is not set, the Command Protocol Table will not be cleared in the VS_Lock state.
- Bit [18]: fpdmawr (W)- Setting this bit initiates a DMA write transfer
- Bit [17]: dmainen(R/W)– This bit enables Read DMA operations for First Party DMA or transparent FIS operation.
- Bit [16]: dmaouten (R/W)- This bit enables Write DMA operations for First Party DMA or transparent FIS operation.
- Bit [15]: Reserved (R/W). This bit is reserved and returns zero on a read. Always write 0 to these bits.
- Bit [14]: devdrvn (R/W) This bit enables the protocol to be solely determined by FISes from the device.
- Bit [13]: nienfis_dis (R/W)– If this bit is set, a Control Register FIS will not be sent in response to a change in nIEN.
- Bit [12]: Reserved (W). Always write 0 to these bits.
- **Bit [11]**: ComWake/Clear_BSY (R/W)– When the Serial ATA interface is in PARTIAL or SLUMBER mode, setting this bit (to 1) asserts ComWake on the Serial ATA bus. When the Serial ATA interface is ON and an interlocked FIS is received, setting this bit (to 1) clears BSY in the ATA Status.
- Bit [10:09]: pm_fiscfg[1:0] (R/W)– Configuration for interpreting FISes with a different Port Multiplier port number from that specified in SControl.
- Bit [08]: pm_locken (R/W)– If set, no SYNC is sent after a DMA Activate FIS, a PIO Setup FIS for PIO Out, or an interlocked FIS when dmaouten (bit 16) is set.
- Bit [07]: regfismode (R/W) If set, received Register FIS will not be used to update task file if BSY = DRQ = 0.
- Bit [06]: PMCHG (R/W1C)– This bit reports a change in the Power Management mode. This bit corresponds to the interrupt enabled by bit 26 of SIEN. This bit is cleared by writing a 1.
- Bit [05:04]: PMMODE (R)– These bits report the power management mode status: bit 5 corresponds to Slumber mode; bit 4 to Partial mode. A transition on either of these bits causes a Power Management mode change interrupt.
- Bit [03:02]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [01:00]**: PMREQ (W) These bits initiate power management requests: setting bit 1 will send a Slumber mode request to the device; setting bit 0 will send a Partial mode request to the device.

Serial ATA PHY Configuration

Address Offset: 144_H Access Type: Read/Write Reset Value: 0x2000_80B0

[31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Rese	erved	I				Bypass OOB	Reserved	Tx_Swing_1		Re	serv	ed		Tx_Swing_0						Re	eserv	ed					

The PHY Configuration register is auto-initialized from external flash or EEPROM. The bit definitions are as follows:

- **Bit[31:22]**: Reserved. The values of these bits should not be changed from their defaults otherwise erratic operation may result
- Bit[21]: Bypass OOB sequence. If the bit set to 1, all channel Tx outputs random pattern data.
- **Bit[20]**: Reserved. The value of this bits should not be changed from their defaults otherwise erratic operation may result
- **Bit[19]**: Tx_Swing_1: This bit, together with Tx_Swing_0, sets the nominal output amplitude for the Transmitter

- **Bit[18:14]**: Reserved. The values of these bits should not be changed from their defaults otherwise erratic operation may result
- **Bit[13]**: Tx_Swing_0: This bit, together with Tx_Swing_1, sets the nominal output swing for the Transmitter. The available combinations are as follows:

Tx_Swing_1	Tx_Swing_0	Nominal Output Swing
0	0	500mV
0	1	600mV
1	0	700mV
1	1	800mV

• **Bit[12:0]**: Reserved. The values of these bits should not be changed from their defaults otherwise erratic operation may result.

SIEN

Address Offset: $148_H / 1C8_H / 348_H / 3C8_H$ Access Type: Read/Write Reset Value: 0x0000_0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
	Reserved		Transmit_OK	IFIS_OK	IntrickFIS	PMCHG	F	Reserved	SDB	н	с	pterr	в	w	Reserved	N								Res	erve	d						

This register contains bits for enabling interrupts.

- Bit [31:30]: Reserved (R). This bit field is reserved and returns zeros on a read.
- **Bit [29]**: Transmit_OK This bit enables an interrupt upon the assertion of the Transmit_OK bit in the SMisc register.
- Bit [28]: IFIS_OK This bit enables an interrupt upon the assertion of the IFIS_OK bit in the SMisc register.
- Bit [27]: IntrlckFIS This bit enables an interrupt upon the assertion of the IntrlckFIS bit in the SMisc register.
- Bit [26]: PMCHG This bit enables an interrupt upon a Power Management Mode change. The interrupt is reported in bit 6 of SMisc.
- Bit [25]: F This bit enables an interrupt upon the assertion of the F bit in the DIAG field of the SError register.
- Bit [24]: Reserved (R). This bit is reserved and returns zero on a read.
- Bit [23]: SDB This bit enables an interrupt upon the assertion of the SDB bit in the SMisc register.
- Bit [22]: H This bit enables an interrupt upon the assertion of the H bit in the DIAG field of the SError register.
- Bit [21]: C This bit enables an interrupt upon the assertion of the C bit in the DIAG field of the SError register.
- Bit [20]: pterr This bit enables the Pterr interrupt reported in SMisc bit 22.
- Bit [19]: B This bit enables an interrupt upon the assertion of the B bit in the DIAG field of the SError register.
- Bit [18]: W This bit enables an interrupt upon the assertion of the W bit in the DIAG field of the SError register.
- Bit [17]: Reserved (R). This bit is reserved and returns zeros on a read.
- Bit [16]: N This bit enables an interrupt upon the assertion of the N bit in the DIAG field of the SError register.
- Bit [15:00]: Reserved (R). This bit field is reserved and returns zeros on a read.

Silicon Image, Inc.

SFISCfg

Address Offset: $14C_H / 1CC_H / 34C_H / 3CC_H$ Access Type: Read/Write Reset Value: 0x1040_1555

31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Reserved		EIC 37cfu	2	10103	rioo4ug	EIC30cfc	20	EIS 41 of a	101108	EIC Acofe	5	EICEBO		CICKE of a	1001 018	EIS A1 of a		EISA6rfa		FICDOR		CICDE _{ofo}	rioercig	77200	riscred		risu4crg	EICDOcfe	riousug	EICOofa	-

This register contains bits for controlling Serial ATA FIS reception. See on page 86 for explanation of the configuration bits.

RxFIS0-RxFIS6

Address Offset: 160_{H} – 178_{H} / $1E0_{H}$ – $1F8_{H}$ / 360_{H} – 378_{H} / $3E0_{H}$ – $3F8_{H}$ Access Type: Read Reset Value: 0x???_???

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FIS Dword

These registers contain 7 dwords from a Serial ATA FIS reception.

Programming Sequences

The programming sequence for the SiI3114 is about the same as for the SiI3112 or SiI3512. However, SiI3114 supports up to four SATA devices (instead of two for the others).

In order to minimize the legacy BIOS code changes, the SiI3114 uses "Master/Slave" type of emulation for the register mapping of Base Address Register 0 ~ 4 (between SATA device 0 and device 2 or SATA device 1 and device 3). Therefore, the programmer will not be able to access SATA device 0 and device 2 (or device 1 and device 3) at the same time when BAR 0~4 are used to access the devices. SATA device 0 is equivalent to legacy Primary Master device, SATA device 1 is equivalent to legacy Secondary Master device, SATA device 2 is equivalent to legacy Primary Slave device, and SATA device 3 is equivalent to legacy Secondary Slave device.

In order to access all four SATA devices simultaneously, BAR5 registers must be used. They have a similar structure to the previous 2 channel controllers for the first 512 bytes (for device 0 and device 1), but they have an additional 512 bytes of registers to duplicate the register structures for the additional two SATA channels (device 2 and device 3).

When BAR5 registers are used to access all four SATA devices simultaneously, the interrupt steering bit at bit 1 in BAR5 offset 200h must be set. The interrupt steering bit must be reset when "Master/Slave" type of emulation is used. The reset value for this bit is 0. This bit must be remained set for simultaneous 4 channels operation. Any write operation to the BAR5 offset 200h register should mask the "Interrupt steering" bit and not to reset it by accident.

Recommended Initialization Sequence for the Sil3114

The recommended initialization sequence for the SiI3114 is detailed below.

Initialize PCI Configuration Space registers:

- Initialize Base Address Register 0 with the address of an 8-byte range in I/O space.
- Initialize Base Address Register 1 with the address of a 4-byte range in I/O space.
- Initialize Base Address Register 2 with the address of an 8-byte range in I/O space.
- Initialize Base Address Register 3 with the address of a 4-byte range in I/O space.
- Initialize Base Address Register 4 with the address of a 16-byte range in I/O space.
- Initialize Base Address Register 5 with the address of a 1024-byte range in memory space.
- To enable the bios expansion ROM, initialize the Expansion ROM Base Address Register with the address of a 512KB range in memory space.
- Enable I/O space access, memory space access, and bus master operation by setting bits [2:0] of the PCI Command register.

Note: The preceding configuration space register initialization is normally done by the motherboard BIOS in PC type systems.

If the arbiter's default FIFO read/write request thresholds are not suitable for the application they may be changed via the FIFO Valid Byte Count and Control Channel x register. The read threshold is defined by bits [05:00], and the write threshold is defined by bits [13:08] in the FIFO Valid Byte Count and Control – Channel x register. In most environments, setting these bit fields to zero results in the best utilization of the PCI bus by the SiI3114 controller.

If interrupt driven operation is **not** desired, set bits [23:22] of the System Configuration Status and Command register to block interrupts from reaching the PCI bus.

Serial ATA Device Initialization

This section provides a general overview of the steps necessary to initialize a Serial ATA device before it can be used for read/write operations.

Select the Serial ATA device. The device is selected by programming bits [23:16] in the Channel x Task File Register 1 register.

If interrupt driven operation is desired, ensure that interrupts are enabled by writing 0 to bits [23:16] of the Channel x Task File Register 2 register.

For ATA Devices Only:

Issue the Initialize Device Parameters command by

- Programming bits [23:16] in the Channel x Task File 0 register with the number of logical sectors per logical track.
- Programming bits [23:16] in the Channel x Task File 1 register with the maximum head number.
- Programming bits [31:24] in the Channel x Task File Register 1 register with the value = 91_H.
- Wait for the command to complete. This can be accomplished by waiting for an interrupt if interrupts have been enabled at both the controller and the device. If interrupts are not enabled, command completion can be detected by polling bits [31:24] of the Channel x Task File Register 1 register until the BUSY bit is no longer asserted.

If the device supports read/write multiple commands, issue the Set Multiple Mode command by:

- Programming bits [23:16] in the Channel x Task File 0 register with the number of sectors per block to use on the following Read/Write Multiple commands.
- Programming bits [31:24] in the Channel x Task File Register 1 register with the value = C6_H.
- Wait for the command to complete (see above).

For both ATA and ATAPI Devices:

Set device transfer mode by:

- Programming bits [15:08] in the Channel x Task File 0 register with the value 03_H to "Set the transfer mode based on value in Sector Count Register".
- Programming bits [23:16] in the Channel x Task File 0 register to the desired transfer mode. The settings are defined below:
 - $08_{\rm H} = PIO Mode 0$
 - $09_{\rm H} = \rm PIO \ Mode \ 1$
 - $0A_{H} = PIO Mode 2$
 - $0B_{H} = PIO Mode 3$
 - $0C_{H} = PIO Mode 4$
 - $20_{H} =$ Multiword DMA Mode 0
 - 21_{H} = Multiword DMA Mode 1
 - 22_{H} = Multiword DMA Mode 2
 - $40_{H} = UItra DMA Mode 0$
 - $41_{H} = Ultra DMA Mode 1$
 - $42_{H} = Ultra DMA Mode 2$
 - $43_{H} = Ultra DMA Mode 3$
 - $44_{H} = UItra DMA Mode 4$
 - $45_{H} = Ultra DMA Mode 5$
 - $46_{H} = Ultra DMA Mode 6$
- Programming bits [31:24] in the Channel x Task File Register 1 register with the value = EF_H.
- Wait for the command to complete (see above).

In order to use the controller's DMA capability to perform the data transfer for an ATA/ATAPI command, the controller needs to be configured for the transfer mode to use when transferring data to or from the ATA bus. The data transfer mode is set by programming bits [1:0] of the Channel x Data Transfer Mode register. The transfer mode select values are listed below:

 00_{B} = PIO/Virtual DMA Mode (the "interface" between the device and the controller is setup for "PIO mode", but the PCI interface is setup for DMA transfer).

 10_{B} = DMA Mode (the "interface" between the device and the controller is setup for "DMA mode", and the PCI interface is also setup for DMA transfer).

Note: If the "interface" between the device and the controller is setup for "PIO mode", and the PCI interface is also setup for PIO transfer, there is no need to change these two bits.

Issue ATA Command

The following describes the sequence to issue a read/write type command to an ATA device.

- 1. Select the device. The device is selected by programming bits [23:16] in the Channel x Task File Register 1 register.
- 2. Set the number of sectors to be transferred by programming bits [23:16] of the Channel x Task File Register 0 register.
- 3. Set the location of data to be transferred. The location is defined by programming the following:

Bits [31:24] in the Channel x Task File Register 0 register define the Starting Sector.

Bits [23:16] in the Channel x Task File Register 1 register define the Device and Head value.

Bits [15:08] in the Channel x Task File Register 1 register define the Cylinder High value.

Bits [07:00] in the Channel x Task File Register 1 register define the Cylinder Low value.

4. Issue the Read/Write PIO/DMA command by programming bits [31:24] in the Channel x Task File Register 1 register with the command desired.

PIO Mode Read/Write Operation

Once the SiI3114 is initialized via the initialization sequence described in the "Recommended Initialization Sequence for the SiI3114" section, the ATA device has been initialized for PIO mode data transfer per the guidelines in the "Serial ATA Device Initialization" section, and the controller channel has been initialized for PIO mode data transfer, PIO read/write operations may be performed by following the programming sequence described below.

Issue a PIO Read/Write command to device following the steps in Issue ATA Command section above.

Read Operation

Wait until a channel interrupt (bit 11 in the Channel x Task File Timing + Configuration + Status register is set).

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was error.

If no error, continue to read data via the Channel x Task File Register 0 register, until the expected number of sectors of data per interrupt are read.

Repeat the above three steps until all data for the read command has been transferred or an error has been detected.

Write Operation

Wait until bit 27(DRQ) in the Channel x Task File Register 1 register is set.

Continue to write data via the Channel x Task File Register 0 register until the expected number of sectors of data per interrupt are written.

Wait until a channel interrupt (bit 11 in the Channel x Task File Timing + Configuration + Status register is set).

Silicon Image, Inc.

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was error.

If no error, repeat the previous four steps until all data for the write command has been transferred or an error has been detected.

Watchdog Timer Operation

The purpose of the watchdog timer is to prevent the host system from hanging because a device operating in PIO mode stopped responding to task file accesses. If, during a task file access by the host, the device negates IORDY and then stops responding, the host will hang waiting for the access to complete. It is this type of hang, that the watchdog timer is designed to protect against.

The watchdog timer monitors the length of time the IORDY signal is negated. If the watchdog timer detects that the IORDY signal has remained negated longer than the watchdog timeout period (approximately 1000 PCI clocks), the watchdog timer will force the task file access cycle to complete, and set the watchdog timeout bit in the Channel x Task File Timing + Configuration + Status register. The data associated with a timed out access should be considered invalid. Additionally, the watchdog timer can be configured to generate an interrupt when a timeout is detected by setting bit 14 of the Channel x Task File Timing + Configuration + Status register.

The watchdog timer feature is disabled by default.

In addition to the controller channel initialization specified previously, add the following two steps to enable the watchdog timer:

- Enable the watchdog timer by setting bit 13 of the Channel x Task File Timing + Config + Status register.
- If an interrupt is desired whenever the watchdog times out, enable the watchdog interrupt by setting bit 14 of the Channel x Task File Timing + Config + Status register.

The following programming sequences are needed for each PIO Mode Read/Write Operation with the watchdog timer enabled:

Issue a Read/Write PIO Command to the ATA drive following the steps in "Issue ATA Command" section on page 76.

Read Operation

Wait for a channel interrupt.

If controller interrupts are disabled, poll for the interrupt by reading the Channel x Task File Timing + Configuration + Status register. If bit 12 is set, a watchdog timeout has occurred. If bit 11 is set, the ATA device is interrupting.

If the watchdog timeout bit is set,

Write 1 to bit 12 in the Channel x Task File Timing + Configuration + Status register to clear watchdog timeout status.

The watchdog timeout represents a fatal error as far as the current ATA command is concerned. A course of action that might be appropriate at this point might be to reset and reinitialize the ATA channel and then retrying the command that failed.

If the ATA device interrupt bit is set,

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was an error.

Write 1 to bit 18 of the PCI Bus Master – Channel x Register to clear the ATA interrupt.

If the ATA device is not reporting an error, continue to read data via the Channel x Task File Register 0 register, until the expected number of sectors of data per interrupt are read.

Repeat the read operation steps until all data for the read command has been transferred or an error has been detected.

Write Operation

Wait until bit 27(DRQ) in the Channel x Task File Register 1 register is set.

Continue to write data via the Channel x Task File Register 0 register until the expected number of sectors of data per interrupt are written.

Wait for a channel interrupt.

If controller interrupts are disabled, poll for the interrupt by reading the Channel x Task File Timing + Configuration + Status register. If bit 12 is set, a watchdog timeout has occurred. If bit 11 is set, the ATA device is interrupting.

If the watchdog timeout bit is set,

Write 1 to bit 12 in the Channel x Task File Timing + Configuration + Status register to clear watchdog timeout status.

The watchdog timeout represents a fatal error as far as the current ATA command is concerned. A course of action that might be appropriate at this point might be to reset and reinitialize the ATA channel and then retrying the command that failed.

If the ATA device interrupt bit is set,

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was an error.

Write 1 to bit 18 of the PCI Bus Master – Channel x Register to clear the ATA interrupt.

If no error, repeat the write operation steps until all data for the write command has been transferred or an error has been detected.

PIO Mode Read Ahead Operation

Read ahead operation allows the controller to "pre-fetch" data and store it in the controller's channel FIFO, where it will later be retrieved by the host. This mode of operation has the potential to speed-up PIO data transfers by not forcing the host to wait the programmed PIO cycle time for every access to the task file data register. The amount of any speed increase will depend on the PIO mode in use, the characteristics of the host PCI bus, as well as the speed of the host processor.

To use the controller's PIO read ahead capability, make the following changes to the "Read Operation" portion of the "PIO Mode Read/Write Operation" and "Watchdog Timer Operation" sections:

- Just prior to retrieving the read data, set the read ahead byte count by programming bits [15:00] in the Channel x Virtual DMA/PIO Read Ahead Byte Count register with the exact number of bytes to be read for the interrupt.
- Instead of reading the Channel x Task File Register 0 register to retrieve the data, read the Channel x Read Ahead Data register.

MDMA/UDMA Read/Write Operation

Once the SiI3114 is initialized via the initialization sequence described in the "Recommended Initialization Sequence for the SiI3114" section, and the SATA device has been initialized for MDMA/UDMA mode data transfer per the guidelines in the "Serial ATA Device Initialization" section, DMA read/write operations may be performed by following the programming sequence described below.

Issue a DMA read/write command to the device following the steps in the "Issue ATA Command" section on page 76.

Program Bus Master Registers

Clear bit 17 in the PCI Bus Master – Channel x register. This bit is set if an error occurred during the previous DMA access.

Clear bit 18 in the PCI Bus Master – Channel x register. This bit is set if an interrupt occurred during the previous DMA access.

Silicon Image, Inc.

Create a Physical Region Descriptor (PRD) Table.

A PRD table is an array where each entry describes the location and size of a physical memory buffer that will be used during the DMA operation. Each PRD table entry is 64-bits in length, formatted as follows; bits [31:0] contain the 32-bit starting address of the memory buffer, bits [47:32] contain the 16-bit size of the memory buffer, bits [62:48] are normally unused, bit 63 flags the end of the PRD table and therefore should only be set in the last entry of the PRD table. The PRD table itself must be constructed in a memory region that can be directly accessed by the SiI3114 controller. Once the PRD table is built, the controller must be informed of its location. This is accomplished by writing the 32-bit address of the PRD table to the PRD Table Address – Channel x register.

Enable DMA transfer.

DMA is enabled by writing bits [7:0] of the PCI Bus Master – Channel x register. Bit 3 of this register controls the direction of the DMA transfer; 1 = write to memory, 0 = read from memory. Setting bit 0 of the register enables the controller to perform DMA operations.

Note: Task file registers are inaccessible as long as bit 0 is set.

Wait for a PCI interrupt.

When a PCI interrupt occurs, read the PCI Master – Channel x status register and check the DMA status bits. The possible combinations of the status bits [18:16] are defined below.

 000_B = If the device does not report an error, then the PRD table specified a size that is smaller than the transfer size.

 $001_{B} = DMA$ transfer in progress.

 010_B = The controller had a problem transferring data to/from memory.

 100_{B} = Normal completion.

 101_{B} = If the device does not report an error, then the PRD specified a size that is larger than the transfer size.

Make sure PCI bus master operation of the SiI3114 is stopped by clearing bit 0 of the PCI Bus Master – Channel x register.

Note: The task file registers are not accessible as long as bit 0 is set. Clearing bit 0 causes bit 16 to be cleared as well.

Read the device status at bits [13:24] in the Channel x Task File Register 1 register to clear the device interrupt (and the PCI Interrupt) and determine if there was error.

Write '1' to bit 18 (DMA Comp) in the PCI Bus Master – Channel x register to clear the status.

Virtual DMA Read/Write Operation

In virtual DMA operation the controller uses a PIO data transfer mode to move data between an ATA/ATAPI device and the controller, and uses DMA to move that same data between the controller and the host memory. For ATA/ATAPI devices that cannot operate in a "true" DMA mode, virtual DMA provides two benefits; first, using DMA to move data reduces the demand on the host CPU, and second, systems that use virtual memory often require that data buffers that will be accessed directly by low level device drivers be "mapped" into the operating system's address space, in virtual DMA mode the CPU does not access the data buffer directly, so the overhead of obtaining the mapping to operating system address space is eliminated.

Using Virtual DMA with Non-DMA Capable Devices

Once the SiI3114 is initialized via the initialization sequence described in the "Recommended Initialization Sequence for the SiI3114" section, and the ATA device has been initialized for PIO mode data transfer per the guidelines in the "Serial ATA Device Initialization" section, virtual DMA read/write operations may be performed by following the programming sequence described below.

Note: The watchdog timer feature is compatible with virtual DMA operation. See section 0 for details about using the watchdog timer.

Issue a PIO read/write command to the device following the steps in the "Issue ATA Command" section on page 76.

Read Operation

Wait for a PCI interrupt.

Read the DMA status bits [18:16] of the PCI Bus Master – Channel x register, and check that bit 18 is set to make sure the interrupt was generated by the expected channel.

If expected channel interrupted, read bits [11:10] of the channel's Channel x Task File Timing + Configuration + Status register to determine the cause of the interrupt. Bit 11 is set if the ATA/ATAPI device has an interrupt pending, bit 10 is set if a virtual DMA operation completed.

If a virtual DMA operation completed,

Write 00_H to bits [7:0] of the PCI Bus Master – Channel x register to disable DMA operation.

Write 1 to bits [18:17] of the PCI Bus Master – Channel x register to reset the DMA status and virtual DMA interrupt bits, and the PCI interrupt.

Check the previously read DMA status bits to ensure the DMA completed successfully.

Because ATA/ATAPI commands that transfer data using PIO can generate several interrupts during the data transfer phase of the command, a race condition is created between the interrupt indicating the completion of a virtual DMA operation, and the interrupt from the ATA/ATAPI device indicating it is ready to perform the next part of the data transfer. To prevent missing an ATA/ATAPI device interrupt due to this race condition, it is necessary to re-read the channel's Channel x Task File Timing + Configuration + Status register after disabling DMA operation and examining bit 11. If bit 11 is set, the ATA/ATAPI device is interrupting and should be serviced by following the steps below (assuming that the virtual DMA operation completed successfully).

If the ATA/ATAPI device has interrupted,

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was an error.

Write 1 to bit 18 of the PCI Bus Master – Channel x register to clear the DMA Complete bit (NOTE: The DMA Complete bit acts as a latched copy of the ATA interrupt line when the channel is not performing a DMA operation).

If the ATA/ATAPI device is not reporting an error, and DRQ is asserted (bit 27 of Channel x Task File Register 1), then the device is interrupting to transfer data to the host. To transfer the data, the DMA registers are setup to only perform that part of the data transfer expected for this interrupt. The DMA is setup similarly to the way it is when performing a normal read DMA command, but with one additional step. Before the DMA is enabled, the Channel x Virtual DMA/PIO Read Ahead Byte Count register must be written with the 32-bit count of the number of bytes to be transferred for this interrupt.

Repeat the above steps until all data for the read command has been transferred or an error has been detected.

Write Operation

Poll the Channel x Task File Register 1 bits [31:24] until either bit 27 (DRQ) is set indicating the device is ready for write data transfer, or bit 24 (ERR) is set indicating the device has detected an error with the write command.

If no error, and DRQ is asserted (bit 27 of Channel x Task File Register 1), then the device is waiting for write data transfer. To transfer the data, the DMA registers are setup to only perform that part of the data transfer expected at this time. For example, a Write Sectors command would expect to transfer 1 sector (512 bytes), while a Write Multiple command would expect to transfer the lesser of the number of sectors set by the Set Multiple Mode command or the total number of sectors specified by the Write Multiple command, but is when performing a normal write DMA command, but

Silicon Image, Inc.

with one additional step. Before the DMA is enabled, the Channel x Virtual DMA/PIO Read Ahead Byte Count register must be written with the 32-bit count of the number of bytes to be transferred.

Wait for a PCI interrupt.

Read the DMA status bits [18:16] of the PCI Bus Master – Channel x register, and check that bit 18 is set to make sure the interrupt was generated by the expected channel.

If expected channel interrupted, read bits [11:10] of the Channel x Task File Timing + Configuration + Status register to determine the cause of the interrupt. Bit 11 is set if the ATA/ATAPI device has an interrupt pending, bit 10 is set if a virtual DMA operation completed.

If a virtual DMA operation completed,

Write 00_H to bits [7:0] of the PCI Bus Master – Channel x register to disable DMA operation.

Write 1 to bits [18:17] of the PCI Bus Master –Channel x register to reset the DMA status and virtual DMA interrupt bits, and PCI interrupt.

Check the previously read DMA status bits to ensure the DMA completed successfully.

Because ATA/ATAPI commands that transfer data using PIO can generate several interrupts during the data transfer phase of the command, a race condition is created between the interrupt indicating the completion of a virtual DMA operation, and the interrupt from the ATA/ATAPI device indicating it is ready to perform the next part of the data transfer. To prevent missing an ATA/ATAPI device interrupt due to this race condition, it is necessary to re-read the Channel x Task File Timing + Configuration + Status register after disabling DMA operation and examining bit 11. If bit 11 is set, the ATA/ATAPI device is interrupting and should be serviced by following the steps below (assuming that the virtual DMA operation completed successfully).

If the ATA/ATAPI device has interrupted,

Read the device status at bits [31:24] in the Channel x Task File Register 1 register to clear the device interrupt and determine if there was an error.

Write 1 to bit 18 of the PCI Bus Master – Channel x register to clear the DMA Complete bit (NOTE: The DMA Complete bit acts as a latched copy of the ATA interrupt line when the channel is not performing a DMA operation).

If the ATA/ATAPI device is not reporting an error, and DRQ is asserted (bit 27 of Channel x Task File Register 1), then the device is interrupting to transfer data to the device. To transfer the data, the DMA registers are setup to only perform that part of the data transfer expected for this interrupt. The DMA is setup similarly to the way it is when performing a normal write DMA command, but with one additional step. Before the DMA is enabled, the Channel x Virtual DMA/PIO Read Ahead Byte Count register must be written with the 32-bit count of the number of bytes to be transferred for this interrupt.

Repeat the above steps starting at "Wait for PCI interrupt" until all data for the write command has been transferred or an error has been detected.

Using Virtual DMA with DMA Capable Devices

Even though a device may be DMA capable, there are ATA/ATAPI commands that require that a PIO mode be used to transfer data. For these commands, virtual DMA can be used to perform the data transfer. Using virtual DMA with an ATA/ATAPI device that has already been configured to use DMA for normal read/write operation is performed very much like the sequence described above for PIO mode only devices, but with the following additional consideration: The Data Transfer Mode – Channel x register associated with the ATA/ATAPI device needs to be programmed for a PIO type transfer mode **before** DMA operation is enabled, and must be reprogrammed with the DMA/UDMA transfer type used during normal DMA operation once the virtual DMA operation is complete.

Second PCI Bus Master Registers Usage

In order to provide backward compatibility with existing drivers, the Physical Region Descriptor (PRD) tables used by the SiI3114 controller when performing DMA transfers suffer the following limitations; a PRD table entry cannot represent a memory area greater than 64k, nor can a PRD table entry represent a memory area that spans a 64k address boundary. Whenever DMA is initiated via the PCI Bus Master – Channel x registers, the foregoing limitations are enforced by the SiI3114 controller.

A feature known as Large Block Transfer in the SiI3114 controller allows drivers to get around the 64k size and address limits of PRD table entries expected by existing drivers. Large Block Transfer simplifies the creation of PRD tables by reducing the number of table entries that need to be created and eliminating the need to make sure a memory region does not cross a 64k boundary. Large Block Transfer mode is enabled whenever DMA is initiated by writing to the PCI Bus Master 2 – Channel x registers (base address 5, offset 10_H, 18_H, 210_H, or 218_H). When performing DMA in Large Block Transfer mode, the SiI3114 controller interprets the fields of a PRD table entry differently. In all other respects, DMA interrupt generation, DMA status bit interpretation, etc., Large Block Transfer mode behaves identically to a non-Large Block Transfer mode DMA operation. Table 27 describes the format of a PRD table entry.

Bits	Function
31:0	32-bit starting address of the memory region.
47:32	When not operating in Large Block Transfer mode, this field specifies the size of the memory region. If the size of the memory region is greater than 64k, or crosses a 64k address boundary, then two or more PRD table entries will need to be created to describe it.
	If operating in Large Block Transfer mode, this field contains the least significant 16-bits of the size of the memory region.
62:48	If not operating in Large Block Transfer mode, this field is unused.
	If operating in Large Block Transfer mode, this field contains the most significant 15-bits of the size of the memory region.
63	When set, this bit indicates that this is the last entry in the PRD table.

Table 27. Physical Region Descriptor (PRD) Format

Power Management

Power Management in the SiI3114 is controlled by the register bits described in Table 28.

Register	Bits	Description
SMisc	PMCHG Bit 6	This bit reports a change in the Power Management mode. It corresponds to the interrupt enabled by bit 26 of SIEN.
SMisc	PMMODE Bits 5,4	These bits report the power management mode status: bit 5 corresponds to Slumber mode; bit 4 to Partial mode. A transition on either of these bits causes a Power Management mode change interrupt.
SError	W	ComWake received from the Serial ATA bus
	Bit 18	
SMisc	ComWake	Generates a ComWake condition on the Serial ATA bus
	Bit 11	
SMisc	PMREQ	Generates a request from the Host for the Device to go to a Power Management state; bit 1
	Bits 1,0	corresponds to Slumber mode; bit 0 corresponds to Partial mode. These bits are effective regardless of the state of the HPMDS bit.
SControl	IPM	This bit field disables transitions to Partial or Slumber power management states; bit 9
	Bits 11-8	corresponds to Slumber mode; bit 8 corresponds to Partial mode.
SStatus	IPM	This bit field reports the power management state; '0110' corresponds to Slumber mode;
	Bits 11-8	'0010' corresponds to Partial mode.

Power Management Summary

There are two power management modes: Partial and Slumber. These power management modes may be software initiated through the SMisc register or device initiated from the Serial ATA device.

Transitions to and from either power management mode generate an interrupt, the Power Management Mode Change Interrupt, which may be masked in the SMisc register (bit 26).

Partial Power Management Mode

Partial mode may be initiated by software through the SMisc register (bit 0). By setting the bit, the software causes PMREQ_P primitives (Power Management REQuest – Partial) to be sent to the Serial ATA device, which will respond with either a PMACK or PMNAK. If a PMACK is received the Partial mode is entered; A PMNAK is ignored; the request remains asserted.

The Serial ATA device may initiate partial mode. This is indicated by the reception of PMREQ_P primitives from the device. Software enables the acknowledgement of this request by setting the IPM value in the SControl register to '00x1' If enabled, a PMACK will be sent to the device; if not enabled, a PMNAK will be sent. When the request is received and its acknowledgement is enabled, Partial mode is entered.

Partial mode status is reported in both the SStatus register ('0010' in the IPM field) and the SMisc register (bit 4).

Partial mode is cleared by setting the ComWake bit in the Smisc register. This will send a COMWAKE signal to the device through the Serial ATA link to initiate a Partial to On sequence. Partial mode can also be cleared through receipt of OOB signals from the device.

Slumber Power Management Mode

Slumber mode may be initiated by software through the SMisc register (bit 1). By setting the bit, software causes PMREQ_S primitives to be sent to the Serial ATA device, which will respond with either a PMACK or PMNAK. If a PMACK is received the Slumber mode is entered. A PMNAK is ignored; the request remains asserted.

The Serial ATA device may initiate slumber mode. This is indicated by the reception of PMREQ_S primitives. Software enables the acknowledgement of this request by setting the IPM value in the SControl register to '001x'.

If enabled, a PMACK will be sent to the device; if not enabled, a PMNAK will be sent. When the request is received and its acknowledgement is enabled, Slumber mode is entered.

Slumber mode status is reported in both the SStatus register ('0110' in the IPM field) and the SMisc register (bit 5).

Slumber mode is cleared by setting the ComWake bit in the Smisc register. This will send a COMWAKE signal to the device through the Serial ATA link to initiate a Slumber to On sequence. Slumber mode can also be cleared through receipt of OOB signals from the device.

Hot Plug Support

The state diagram below illustrates the logic to support Hot Plugging.

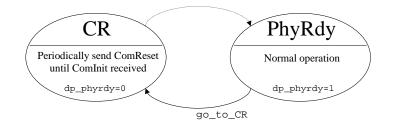


Figure 10. Hot Plug Logic State Diagram

The go_to_CR signal is generated by a timer if the internal logic fails to detect valid signals from the Serial ATA wire for 200 ns. Logic behavior is as follows:

- Initial power-up A ComReset is generated during initial power up. If a device is present and operational, the PhyRdy state will be entered. If a device is not present or not responding, the CR state will be entered and ComReset will be generated every 100 ms.
- Device is unplugged The internal logic detects that no more signal is present on the Serial ATA wire. The timer will expire after 200 ns and go_to_CR will be asserted; the CR state will be entered and ComReset will be generated every 100 ms. The internal PHYRDY signal will go false causing an interrupt to the host driver (PHYRDY change interrupt, bit 16 of SError register; enabled by bit 16 of SIEN register).
- Device is plugged in The device will respond to the ComReset with a ComInit. Normal operation will commence and the internal logic will detect a PHYRDY signal going true causing an interrupt to the host driver (PHYRDY change interrupt, bit 16 of SError register; enabled by bit 16 of SIEN register).

FIS Support

FIS Summary

Table 29 summarizes the implementation of FIS Support. Note that 14 FIS codes meet the criteria of FIS code selection in Serial ATA, and 8 out of the 14 are already defined.

		T		
FIS Code	FIS Name	Host to Device	Device to Host	Comment
27h	Register (Host to Device)	N	-	Support Expanded Registers HOB not sent to device (device dongle ignores HOB received) Can be individually controlled via PCI registers - default to reject
34h	Register (Device to Host)	-	\checkmark	Support Expanded Registers Host to Device transmission is possible as Transparent. Can be individually controlled via PCI registers - default to accept
39h	DMA Activate	-	V	Supported per Serial ATA specification. Host to Device transmission is possible as Transparent. Can be individually controlled via PCI registers - default to accept
41h	DMA Setup	N	\checkmark	On reception, the first 7 dwords of any FIS can be read directly by the PCI. Transmission: As transparent FIS Can be individually controlled via PCI registers - default to reject
46h	Data	V	\checkmark	Supported per Serial ATA specification. Can be individually controlled via PCI registers - default to accept
58h	BIST Activate	N	\checkmark	Support for reception of Far-End Retimed Loopback. No transmission supported. Can be individually controlled via PCI registers - default to accept for Far-End Retimed Loopback; default to reject for all other BIST types
5Fh	PIO Setup	-	\checkmark	Supported per Serial ATA specification. Host to Device transmission is possible as Transparent. Can be individually controlled via PCI registers - default to accept
A1h	Set Device Bits	-	V	Supported per Serial ATA specification Host to Device transmission is possible as Transparent Can be individually controlled via PCI registers - default to accept
A6h	Reserved	TBD	TBD	Supported as one group of unrecognized FIS, together with
B8h	Reserved	TBD	TBD	other unsupported FISes, such as "Others" below, and FIS
BFh	Reserved	TBD	TBD	Code 27h in the reception direction.
C7h	Reserved	TBD	TBD	Can be individually controlled via PCI registers - default to reject
D4h	Reserved	TBD	TBD	
D9h	Reserved	TBD	TBD	
Others	Reserved	TBD	TBD	Supported as one group of unrecognized FIS, together with other unsupported FISes (FIS Code 27h, A6h, B8h, BFh, C7h, D4h, D9h) in the reception direction. All "Others" are controlled as a group via PCI registers - default to reject

Table 29. FIS Summary

FIS Transmission

There are two ways in which a FIS transmission is initiated:

- Protocol-initiated FIS transmission, e.g., when an ATA command is written to the SiI3114 it will send a Command Register FIS and expects some FIS(es) (e.g., PIO Setup, Register, DMA Activate, Data, Set Device Bits).
- 2. Transparent FIS transmission. The sequence is as follows:
 - Host sets the Transmit_FIS bit in the Smisc register (bit 30). This tells the Transport/Link logic that a transparent FIS needs to be transmitted.
 - The Transport/Link logic responds by setting itself up to transfer data from the host through UMDA cycles.
 - The host writes the data through the PCI interface. Note that the FIS header (Dword 0 that contains the FIS type) must also be written. The Transport/Link logic sends the FIS to the device. Note that:
 - There is no size limit on a transparent FIS. Data written to the SiI3114 from setting of Transmit_FIS to setting of FIS_Done (see below) will be transmitted in a FIS.
 - There must be an even number of words.
 - As in Data FIS, upon a transmission error, no retries can be supported. The PCI block must restart the transparent FIS transmission from the beginning.
 - Serial ATA CRC is calculated by the Transport/Link logic. The host will NOT append the CRC at the end.
 - After the last write, the host sets the FIS_Done bit in the Smisc register (bit 31). This indicates to the link that all data for this transaction has been transferred. The Transport/Link logic will then close out the FIS by appending CRC and EOF and wait for termination. If R_OK is received from the downstream device, the Transmit_OK bit will be set to indicate to the host that the FIS has been successfully transferred to the device. If there is an error in the transmission process (e.g., the FIS not recognized by the downstream device) resulting in the device acknowledging the FIS with an R_ERR, the F bit of the Serror Register will be set (Bit 25).
 - The values of the status registers are latched and will not be cleared automatically. Before the next Transparent FIS is being sent, the host must clear the status bits by performing a write to the particular status registers.

FIS Reception

The SiI3114 is capable of receiving Unrecognized FIS types through an Interlocked FIS scheme. This capability is over and above the regular protocol related FISes as defined in the Serial ATA specifications.

In general, an internal table determines the behavior when receiving all possible FIS types. This table is defined in the register SFISCfg. The configuration codes in the SFISCfg register is defined in Table 30.

FISxxCFG[1:0]	Comments
00b	Accept FIS without interlock. If there is no error detected for the entire FIS, R_OK will be sent after EOF is received. If any error is received, R_ERR will be sent after EOF
01b	Reject FIS without interlock. R_ERR will be sent
10b	Interlock. This allows the host to examine the first dwords of the FIS to determine whether to accept or reject the FIS
11b	Reserved.

Table 30. Configuration Bits for FIS Reception

Silicon Image, Inc.

FIS	FIS Name	Configurat	ion Bits	Comments
Code		Register Bits	Default Value	
27h	Register (Host to Device)	FIS27cfg[1:0]	01b	Default to reject FIS without interlock.
34h	Register (Device to Host)	FIS34cfg[1:0]	00b	Default to accept FIS without interlock.
39h	DMA Activate	FIS39cfg[1:0]	00b	Default to accept FIS without interlock.
41h	DMA Setup	FIS41cfg[1:0]	01b	Default to reject.
46h	Data	FIS46cfg[1:0]	00b	Default to accept FIS without interlock.
58h	BIST Activate	FIS58cfg[1:0]	00b	Default to accept for far-end retimed loopback, reject for any other.
5Fh	PIO Setup	FIS5Fcfg[1:0]	00b	Default to accept FIS without interlock.
A1h	Set Device Bits	FISa1cfg[1:0]	00b	Default to accept FIS without interlock.
A6h	reserved	FISa6cfg[1:0]	01b	Default to reject FIS without interlock.
B8h	reserved	FISb8cfg[1:0]	01b	Default to reject FIS without interlock.
BFh	reserved	FISbFcfg[1:0]	01b	Default to reject FIS without interlock.
C7h	reserved	FISc7cfg[1:0]	01b	Default to reject FIS without interlock.
D4h	reserved	FISd4cfg[1:0]	01b	Default to reject FIS without interlock.
D9h	reserved	FISd9cfg[1:0]	01b	Default to reject FIS without interlock.
Others	reserved	FISocfg[1:0]	01b	Default to reject FIS without interlock.

Table 31. Default FIS Configurations

Table 31 shows the default configurations of all Serial ATA FIS types.

RxFIS[0-6]- First seven dwords received from device. RxFIS[0] is the first dword that contains the FIS header. RxFIS[6] is the last of the seven dwords received. It is enough to support DMA Setup FIS.

Note that:

- FIS data can also be read out directly from RxFIS (first seven dwords).
- All data to be transferred must be sent within one UDMA burst. Burst termination will not be allowed and may produce unpredictable result.
- There is no limit on received frame size.
- In a Data FIS, the receive FIFO will automatically advance one dword to skip the header. Upon an interlocked FIS, the FIFO read pointer will rewind to the beginning so that the first dword read is the header.

The following summarizes the behavior:

On power up, the default configurations are as follows:

- All defined FISes, except BIST Activate and DMA Setup, default to be supported (FISxxcfg[1:0] = '00').
- BIST Activate is default to be accepted ONLY for Far-end Retimed Loopback and to be rejected for any other BIST types.
- DMA Setup defaults to be rejected.
- All undefined FISes default to be rejected (FISxxcfg[1:0] = '01').

Sequences:

- Upon reception of an unsupported FIS (FISxxcfg[1:0] = '01'), the Link/Transport Logic responds with R_ERR to the downstream device. The host will not be notified.
- Upon reception of a supported FIS (FISxxcfg[1:0] = '00'), the Link/Transport Logic responds with R_OK at WTRM (if no error is detected) or R_ERR (if an error is detected) to the downstream device. The host will be notified only as required by the protocol.

- Upon reception of an interlocked FIS (FISxxcfg[1:0] = '10'), the Link/Transport Logic sets the IntrlckFIS bit in the Smisc register. The following describes the possible sequence of events:
 - Sequence 1:

The Link Logic will continue to receive data while its buffer is being filled up. IntrlckFIS will cause an interrupt to the host.

- The first 7 Dwords of the FIS are available to the host in the RxFIS0 to RxFIS6 registers. The driver will check the FIS type, clean up the PCI section, arm the DMA controller, and then assert the Rx_IFIS bit in the Smisc register.
- The Link/Transport Logic transfers the received FIS, including the header, through the PCI interface to the host.
- When all the data is received with no errors, the Link/Transport Logic will assert the IFIS_OK bit in the Smisc register. Otherwise one of the error bits will be set in the Serror register.

The host will set the Accept_IFIS bit to accept or Reject_IFIS to reject the FIS. If no error is detected inside the frame and the Accept IFIS bit is asserted, the

- Link/Transport Logic will send R_OK to the downstream device. If Reject_IFIS is asserted or any error is detected, the Link/Transport Logic will respond with R_ERR. Note that there is an interlock if the frame is good, it will always wait for the Accept_IFIS or Reject_IFIS (if not asserted already) before responding.
- Sequence 2:

Link/Transport Logic will continue to receive data while its buffer is being filled up. IntrlckFIS will cause an interrupt to the host.

Host reads the header; the driver will check the FIS type in RxFIS register and knows that the entire FIS is not larger than the size of RxFIS0 to 6 register. Host waits for IFIS OK (if any error detected – the error signals).

If IFIS_OK is received, host reads all data directly via PCI registers and then issues an Accept_IFIS (Link/Transport Logic to send R_OK) or a Reject_IFIS (Link/Transport Logic to send R_ERR).

If any error is detected, host can ignore, the Link will respond with R_ERR anyway.

FIS Types Not Affiliated with Current ATA/ATAPI Operations BIST Support

Far-End Retimed Loopback is supported in reception mode only. All other BIST codes will be rejected via R_ERR. It defaults to be interlocked supported (for Far-End Retimed Loopback only).

The SiI3114 does not support any BIST in transmission mode. There is no provision to send the test patterns and compare against loopback data.

BIST Signals

When SiI3114 enters the BIST operation, the "PHY offline" mode will be set in the DET bits of the Sstatus register. This condition will remain asserted until the host generates an ATA reset (hreset_b asserted) or a COMINIT is received from the device.

DMA Setup

DMA Setup FIS can only be sent as a transparent FIS. On Power up, DMA Setup FIS defaults to be rejected.

First Party DMA Read of Host Memory by Device

Sequence (FIS41cfg[1:0] = '10', i.e. interlocked):

Device sends DMA Setup FIS to host. The "D" field in the FIS is '0'. The IntrlckFIS bit is set and causes an interrupt to the host. The host driver checks the FIS type (RxFIS), sets up, and arms the DMA controller. The host sets the DMAOutEn in the Serial ATA SMisc register. The host sets the FPDMAWr in the Serial ATA SMisc register. The host sets the Accept_FIS bit to accept the FIS. The host sends one or more Data FISes. Note that no DMA Activate FIS is required for first party DMA. There is no need to report transfer status. The host clears the DMAOutEn when the transfer count is exhausted.

First Party DMA Write of Host Memory by Device

Sequence (FIS41cfg[1:0] = '10', i.e. interlocked):

Device sends DMA Setup FIS to host. The "D" field in the FIS is '1'. The IntrlckFIS bit is set and causes an interrupt to the host. The host driver checks the FIS type (RxFIS), sets up, and arms the DMA controller. The host sets the DMAInEn in the Serial ATA SMisc register. The host sets the Accept_FIS bit to accept the FIS. The device sends one or more Data FISes. There is no need to report transfer status. The host clears the DMAInEn when the transfer count is exhausted

ATA Command Decoding

Data Modes

The SiI3114 PCI to Serial ATA Controller has an internal ATA interface. The data modes (Register mode, PIO mode and DMA mode) are of no significance.

ATA Commands

The SiI3114 decodes ATA commands in hardware. The commands supported include ATA/ATAPI-5 and ATA/ATAPI-6 commands, including the 48-bit LBA extended commands. Certain obsolesced commands are also supported. The supported commands are listed in Table 32.

Command	Command/ Features Codes	Comment
CFA Erase Sectors	C0h	-
CFA Request Extended Error Code	03h	-
CFA Translate Sector	87h	-
CFA Write Multiple without Erase	CDh	-
CFA Write Sectors without Erase	38h	-
Check Media Card Type	D1h	-
Check Power Mode	E5h	-
Configure Stream	51h	-
Device Configuration Freeze Lock	B1h/C1h	-
Device Configuration Identify	B1h/C2h	-
Device Configuration Restore	B1h/C0h	-
Device Configuration Set	B1h/C3h	-
Device Reset	08h	-
Download Microcode	92h	-
Execute Device Diagnostics	90h	The two Serial ATA ports for SiI3114 are both "single masters".
Flush Cache	E7h	
Flush Cache Ext	EAh	48-bit LBA Command
Format Track	50h	Obsolesced vendor specific command, needs to be programmed as vendor specific commands
Get Media Status	DAh	-
Identify Device	ECh	-
Identify Packet Device	A1h	-
Idle	A3h	-
Idle Immediate	E1h	-
Initialize Device Parameters	91h	Obsolesced in ATA/ATAPI-6.
Media Eject	EDh	-
Media Lock	DEh	-
Media Unlock	DFh	-
Nop	00h	-
Packet	A0h	-
Read Buffer	E4h	-
Read DMA	C8h	-
	C9h	Obsolesced Command code supported, decoded as Command Code C8h
Read DMA Ext	25h	48-bit LBA Command
Read DMA Queued	C7h	-

Table 32.	ATA Commands	Supported
-----------	--------------	-----------

_

Command	Command/ Features Codes	Comment
Read DMA Queued Ext	26h	48-bit LBA Command
Read Log Ext	2Fh	-
Read Long	22h	Obsolesced command supported (see "Read/Write Long"
Ŭ	23h	section)
Read Multiple	C4h	-
Read Multiple Ext	29h	48-bit LBA Command
Read Native Max Address	F8h	-
Read Native Max Address Ext	27h	48-bit LBA Command
Read Sector(s)	20h	-
	21h	Obsolesced Command code supported, decoded as Command Code 20h
Read Sector(s) Ext	24h	48-bit LBA Command
Read Stream DMA	2A	-
Read Verify Sector(s)	40h	-
	41h	Obsolesced Command code supported, decoded as Command Code 40h
Read Verify Sector(s) Ext	42h	48-bit LBA Command
ReadFPDMAQueued	2Ch	-
Recalibrate	10h	Obsolesced command supported.
Security Disable Password	F6h	-
Security Erase Prepare	F3h	-
Security Erase Unit	F4h	-
Security Freeze Lock	F5h	-
Security Set Password	F1h	-
Security Unlock	F2h	-
Seek	70h	-
Service	A2h	-
Set Features	EFh	-
Set Max Address	F9h/00h	-
Set Max Address Ext	37h	48-bit LBA Command
Set Max Freeze Lock	F9h/04h	-
Set Max Lock	F9h/02h	-
Set Max Unlock	F9h/03h	Obsolesced command supported.
Set Max Set Password	F9h/01h	
Set Multiple Mode	C6h	The SiI3114 intercepts the command to set up the number of sectors for a DRQ block upon this command.
Sleep	E6h	-
Smart Disable Operations	B0h/D9h	-
Smart Enable Operations	B0h/D8h	-
Smart Enable/Disable Attributes Autosave	B0h/D2h	-
Smart Execute Off-Line Immediate	B0h/D4h	-
Smart Read Attribute Thresholds	B0h/D1h	Obsolesced command supported.
Smart Read Data	B0h/D0h	-
Smart Read Log	B0h/D5h	-
Smart Return Status	B0h/DAh	-
Smart Save Attribute Values	B0h/D3h	Obsolesced command supported.
Smart Write Log	B0h/D6h	-

Table 32. ATA Commands Supported (continued)

Command	Command/ Features Codes	Comment
Standby	E2h	-
Standby Immediate	E0h	-
Write Buffer	E8h	-
Write DMA	CAh	-
	CBh	Obsolesced Command code supported, decoded as Command Code CAh
Write DMA Ext	35h	48-bit LBA Command
Write DMA Queued	CCh	-
Write DMA Queued Ext	36h	48-bit LBA Command
Write Log Ext	3Fh	-
Write Long	32h	Obsolesced command supported (see "Read/Write Long"
	33h	section)
Write Multiple	C5h	-
Write Multiple Ext	39h	48-bit LBA Command
Write Sector(s)	30h	-
	31h	Obsolesced Command code supported, decoded as Command Code 30h
Write Sector(s) Ext	34h	48-bit LBA Command
Write Stream DMA	3Ah	-
Write Stream PIO	3Bh	-
WriteFPDMAQueued	3Ch	-

Table 32. ATA Commands Supported (continued)

Obsolesced Commands

Certain obsolesced commands are supported. Commands Read Long and Write Long are to be treated differently (see "Read/Write Long" section immediately following).

Read/Write Long

Read Long and Write Long commands are implemented in accordance with the ATA/ATAPI-3. The PIO Mode used (Mode 0) is of no significance in the SiI3114, as the ATA interface is internal. The number of vendor specific bytes is provided by the Serial ATA PIO Setup FIS from the downstream device as follows:

 $n = ((XC - 512) + 1) \div 2$ (i.e., XC - 512 divided by 2 with round up)

where:

n is the number of vendor specific bytes.

XC is the transfer count.

The total number of data dwords in the Data FIS is given by:

 $m = (XC + 3) \div 4$ (i.e., XC divided by 4 with round up)

where:

m is the number of data dwords in the Data FIS, excluding the FIS header (and CRC). XC is the transfer count.

In this command, the Data FIS must use the format described in Table 33.

Silicon Image, Inc.

Byte 3 ctor Data Byte 3 ctor Data Byte 7	Byte 2 Data FIS Sector Data Byte 2 Sector Data Byte 6	Byte 1 6 Header Sector Data Byte 1 Sector Data Byte 5	Byte 0 Sector Data Byte 0 Sector Data Byte 4
,	Sector Data Byte 2	Sector Data Byte 1	
,		,	
ctor Data Byte 7 -	Sector Data Byte 6 -	Sector Data Byte 5	Sector Data Byte 4
-	-	_	
		-	-
tor Data Byte 507	Sector Data Byte 506	Sector Data Byte 505	Sector Data Byte 504
tor Data Byte 511	Sector Data Byte 510	Sector Data Byte 509	Sector Data Byte 508
Don't care	Vendor Specific Byte 1	Don't care	Vendor Specific Byte 0
Don't care	Vendor Specific Byte 3	Don't care	Vendor Specific Byte 2
-	-	-	-
Don't care	Vendor Specific Byte n-1	Don't care	Vendor Specific Byte n-2
Don't care	Don't care	Don't care	Vendor Specific Byte n-1
	Don't care Don't care Don't care Don't care Don't care Don't care	or Data Byte 511 Sector Data Byte 510 Don't care Vendor Specific Byte 1 Don't care Vendor Specific Byte 3 - - Don't care Vendor Specific Byte 1	or Data Byte 511 Sector Data Byte 510 Sector Data Byte 509 Don't care Vendor Specific Byte 1 Don't care Don't care Vendor Specific Byte 3 Don't care - - - - Don't care Vendor Specific Byte 3 Don't care Don't care Vendor Specific Byte 7 Don't care Don't care Vendor Specific Byte n-1 Don't care Don't care Don't care Don't care

Table 33. Data FIS

Note: (The Number of Vendor Specific Bytes is "n" as determined by the Transfer Count in the PIO Setup FIS)

Vendor Specific Command Support

The SiI3114 supports most vendor specific commands that utilize existing protocols.

Silicon Image's Vendor Specific Commands

Silicon Image defines several vendor specific commands (all of which use Expanded Features in 48-bit LBA addressing) to support vendor specific and reserved commands:

- VS Unlock Vendor Specific: Unlock the host or device to support vendor specific commands.
- VS Unlock Reserved: Unlock the host or device to support reserved commands.
- VS Unlock Individual: Unlock the host or device to support individual vendor specific and reserved commands.
- VS Lock: Lock the host or device to abort all vendor specific and reserved commands.
- VS Set General Protocol: Determine the General Protocol Code to be used for all subsequent vendor specific commands (if unlocked via a VS Unlock Vendor Specific command) and reserved commands (if unlocked via a VS Unlock Reserved command).
- VS Set Command Protocol: Select protocols for individual vendor specific and reserved commands (if unlocked via a VS Unlock Individual command). A Command Protocol Table shall be maintained.

Potential Conflicts with other Vendor Specific Commands

The commands chosen use Subcommand (Features) code F1h under the SMART command (B0h). While this code is not expected to be used by device manufacturers, there is always the possibility that it is used. If such conflict happens, the device manufacturers shall reassign a new code to the conflicting command in order to use this scheme.

Other Expanded Features Codes

The commands above do not use all Expanded Features Codes. However, all other Expanded Features Codes under Command Code B0h and Subcommand (Features) Code F1h are reserved as Silicon Image Vendor Specific commands.

Vendor Specific, Reserved, Retired and Obsolesced Commands

These types of commands are treated differently:

- Vendor specific commands: Expect for those commands whose protocols are individually set (via the VS Unlock Individual and VS Set Command Protocol commands), the host or device must be unlocked via the VS Unlock Vendor Specific command before such commands can be issued. Otherwise, vendor specific commands are aborted.
- Reserved commands: Expect for those commands whose protocols are individually set (via the VS Set Unlock Individual and VS Set Command Protocol commands), the host or device must be unlocked via the VS Unlock Reserved command before such commands can be issued. Otherwise, reserved commands are aborted.
- Obsolesced and Retired commands: Implementation of such commands is optional.

Definitions

- Command Unless otherwise stated, this is the value written to the ATA Command Register.
- Command Code This is the code corresponding to the ATA command. It is also a field in the Command Protocol Table.
- Command Protocol Table The table that contains the individual vendor specific and reserved commands supported (see on page 108).
- Features Unless otherwise stated, this is the value written to the ATA Features Register.
- Features Code This is the code corresponding to the ATA Features register. It is also a field in the Command Protocol Table.
- Features Mask This is a field in the Command Protocol Table that allows several Features Codes to be used for the same command.
- General Protocol Code On a VS Set General Protocol command after a VS Unlock Vendor Specific or VS Unlock Reserved command, the General Protocol Code shall be set as the protocol for all undefined vendor specific (if unlocked) and/or undefined reserved (if unlocked) commands. An undefined vendor specific/reserved command is one that does not have an entry in the Command Protocol Table.
- Protocol Code This code determines the protocol associate with a command. It is also a field in the Command Protocol Table.
- Subcommand Code Same as Features Code.
- VS Features Set The commands needed to support this scheme (See "Bridge Device Vendor Specific Commands" section on page 96 for more details.).
- VS State Machine The state machine that determines what vendor specific and reserved commands are to be supported (See "State Transitions" section on page 109 for more details.).

Scheme

Reset

Upon any hardware reset or the Serial ATA COMRESET, or COMINIT, the VS State Machine shall be initialized to the locked state (the "default" state), which shall abort all vendor specific and reserved commands.

Soft Reset (via Device Control register bit 2) shall NOT affect the VS State Machine.

Silicon Image, Inc.

Operation

The following summarizes how the vendor specific/reserved commands are supported. Detailed operations are described in later sections.

The default state is locked. All vendor specific commands shall be aborted. Unlock:

- To unlock the Serial ATA host or device to support vendor specific commands: Issue a VS Unlock Vendor Specific command. A Serial ATA host supporting the VS scheme will also send this command to the Serial ATA device. If the downstream Serial ATA device is a bridge, the device bridge may optionally issue this command to the attached parallel ATA device. Note that the unlock will take effect in the Serial ATA host and the Serial ATA device even if an ABORT status is reported.
- To unlock the Serial ATA host or device to support reserved commands: Issue a VS Unlock Reserved command. A Serial ATA host supporting the VS scheme will also send this command to the Serial ATA device. If the downstream Serial ATA device is a bridge, the device bridge may optionally issue this command to the attached parallel ATA device. Note that the unlock will take effect in the Serial ATA host and the Serial ATA device even if an ABORT status is reported.
- To support individual vendor specific or reserved command: Issue a VS Unlock Individual command.

Combinations of the above can be supported by simply issuing the appropriate combinations of VS Unlock Vendor Specific, VS Unlock Reserved and VS Unlock Individual commands.

Set protocol. There are two ways to set up protocol(s):

- Issue a VS Set Command Protocol command to set up a protocol for a specific command. The information is logged in a Command Protocol Table. This protocol shall remain valid until overwritten by a VS Set Command Protocol command that overwrites the Command Protocol Table entry, the VS Lock command, hardware reset, COMRESET, or COMINIT. A Serial ATA host supporting the VS scheme will also send this command to the Serial ATA device. If the downstream Serial ATA device is a bridge, the device bridge may optionally issue this command to the attached parallel ATA device. Note that the protocol shall be set in the Serial ATA host and the Serial ATA device even if an ABORT status is reported. If more than one command protocol has to be set up, a VS Set Command protocol shall be issued for each command.
- Issue a VS Set General Protocol command to set the General Protocol Code for the next vendor specific command. This protocol shall remain valid until the next VS Set General Protocol command, VS Lock command, hardware reset, COMRESET, or COMINIT. A Serial ATA host supporting the VS scheme will also send this command to the Serial ATA device. If the downstream Serial ATA device is a bridge, the device bridge may optionally issue this command to the attached parallel ATA device. Note that the protocol shall be set in the Serial ATA host and the Serial ATA device even if an ABORT status is reported. Commands already set up via the VS Set Command Protocol shall follow the protocol set in the VS Set Command Protocol command.

Issue any commands:

- Any vendor specific commands (if unlocked for vendor specific commands) or reserved commands (if unlocked for reserved commands) that has an associated protocol set via the VS Set Command Protocol command shall be executed using that protocol.
- Any vendor specific commands (if unlocked for vendor specific commands) or reserved commands (if unlocked for reserved commands) that does not have an associated protocol, i.e. not set up by the VS Set Command Protocol command, shall be executed using the protocol loaded from the latest VS Set General Protocol command.
- Other supported commands shall follow the predefined protocols.
- Other unsupported commands shall be aborted.

To change the protocol for vendor specific commands, simply reissue the VS Set General Protocol or the VS Set Command Protocol command with the new protocol.

When done, issue the VS Lock command to return to the default VS state. A Serial ATA host supporting the VS scheme will also send the VS Lock command to the Serial ATA device. If the downstream Serial ATA device is a bridge, the device bridge may optionally issue this command to the attached parallel ATA device. Note that the lock will take effect in the Serial ATA host and the Serial ATA device even if an ABORT status is reported.

Bridge Device Vendor Specific Commands

Feature Set/Command Summary

Table 34. Vendor Specific Command Summary

Command	Command Code	Features Code	Expanded Features Code	Description
VS Lock	B0h	F1h	D5h	Return VS state machine to VS_LOCKED (See "State Transitions" section on page 109.).
VS Unlock Vendor Specific	B0h	F1h	12h	Unlock VS state machine to support vendor specific commands.
VS Unlock Reserved	B0h	F1h	22h	Unlock VS state machine to support reserved commands.
VS Unlock Individual	B0h	F1h	32h	Unlock VS state machine to support reserved commands.
VS Set General Protocol	B0h	F1h	F0h	Set the General Protocol Code for all vendor specific commands and reserved commands, if the corresponding command types are unlocked. The vendor specific and reserved commands that are individually set via VS Set Command Protocol commands will not follow the protocol set by this command.
VS Set Command Protocol	B0h	F1h	87h	Set protocol for an individual vendor specific or reserved command. The information is logged in a Command Protocol Table entry.
	B0h	F1h	Other than above	Reserved.

Compared with other features sets, The VS Features Set ignores the bit 0 (ERR) in the Status register together with the Error register. All commands are considered completed once BSY = 0 and DRDY = 1 in the Status register.

VS Lock

Command/Subcommand/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:D5h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0
Features	Current				F	lh			
realures	Previous (Expanded)				D	5h			
Sector Count	Current				n	а			
Sector Count	Previous (Expanded)				n	а		na	
	Current				n	а			
LBA Low	Previous (Expanded)				n	а		na	
LBA Mid	Current	na							
	Previous (Expanded)				n	а		na	
LBA High	Current				n	а			
	Previous (Expanded)				n	а		na n	
Device		obs	na	obs	DEV ¹	na	na	na	na
Command		B0h							
1. The DI	EV bit usage in the Serial AT	A specifica	tion must	be followe	d.				

Outputs

	Register	7	6	5	4	3	2	1	0	
Error		na	na	na	na	na	na	na	na	
Sector Count	Current				n	а				
	Previous (Expanded)				n	а				
LBA Low	Current				n	а				
	Previous (Expanded)				n	а				
LBA Mid	Current				n	а				
	Previous (Expanded)				n	а				
LBA High	Current	na								
	Previous (Expanded)	na					na na na			
Device		obs	na	obs	DEV ¹	na	na	na	na	
Status		BSY	DRDY	na	na	na	na	na	na ²	
1. The DI	EV bit usage in the Serial AT	A specifica	tion must	be followe	d.					
2. Error b	it shall be ignored. Completic	n is deteri	mined by b	by BSY = 0) and DRD	Y = 1 only				

Feature Set

Mandatory for all Serial ATA components supporting the VS feature set.

Description

This command locks the host and device bridges from supporting vendor specific commands. All vendor specific and reserved commands issued afterwards will be aborted.

A Serial ATA host, native or bridge, supporting the VS Lock command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the VS block locked.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the VS block locked.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall be locked.

VS Unlock Vendor Specific

Command/Subcommand/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:12h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0	
Features	Current				Fí	lh				
	Previous (Expanded)				12	2h				
Sector Count	Current				n	а				
	Previous (Expanded)				n	а				
LBA Low	Current				n	а				
	Previous (Expanded)	na								
LBA Mid	Current				n	а				
	Previous (Expanded)				n	а				
LBA High	Current				n	а				
	Previous (Expanded)				n	а		na na		
Device	•	obs	na	obs	DEV ¹	na	na	na	na	
Command		B0h								
1. The DI	EV bit usage in the Serial AT	A specifica	tion must	be followe	d.					

Outputs

	Register	7	6	5	4	3	2	1	0	
Error		na	na	na	na	na	na	na	na	
Sector Count	Current				n	а				
	Previous (Expanded)				n	а				
LBA Low	Current				n	а				
	Previous (Expanded)				n	а				
LBA Mid	Current				n	а				
	Previous (Expanded)				n	а				
LBA High	Current	na								
	Previous (Expanded)	na					na na na			
Device		obs	na	obs	DEV ¹	na	na	na	na	
Status		BSY	DRDY	na	na	na	na	na	na ²	
1. The DI	EV bit usage in the Serial AT	A specifica	tion must	be followe	d.					
2. Error b	it shall be ignored. Completic	n is deteri	mined by b	by BSY = 0) and DRD	Y = 1 only				

Feature Set

Mandatory for all Serial ATA components supporting the VS feature set.

Description

This command unlocks the host and device bridges to support vendor specific commands. Once this command is executed, the bridge(s) shall remain unlocked until:

- A VS Lock command that returns the VS state to the default locked state, or;
- A hardware reset, or COMINIT or COMRESET.

Note that the VS Unlock Individual command, the VS Unlock Reserved command and Soft Reset have no effect on the VS state.

If a VS Unlock Individual command is issued afterwards, the bridge(s) shall be unlocked for both individual vendor specific/reserved commands and other vendor specific commands.

If a VS Unlock Reserved command is issued afterwards, the bridge(s) shall be unlocked for both vendor specific and reserved commands.

If both VS Unlock Individual and VS Unlock Reserved are issued afterwards, the bridge(s) shall be unlocked for individual vendor specific/reserved commands, as well as other vendor specific and reserved commands.

A Serial ATA host, native or bridge, supporting the VS Unlock Vendor Specific command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the unlock event successful.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the unlock event successful.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall be unlocked to support vendor specific commands.

VS Unlock Reserved

Command/Subcommand/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:22h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0
Features	Current	F1h							
	Previous (Expanded)				22	2h			
Sector Count	Current				n	а			
	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device	•	obs	na	obs	DEV ¹	na	na	na	na
Command		F0h							
1. The D	EV bit usage in the Serial AT	TA specification must be followed.							

	Register	7	6	5	4	3	2	1	0
Error		na na na na na na na							
Sector Count	Current				n	а			
	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device		obs	na	obs	DEV ¹	na	na	na	na
Status		BSY	DRDY	na	na	na	na	na	na ²
1. The DI	EV bit usage in the Serial AT	ATA specification must be followed.							
2. Error b	it shall be ignored. Completic	n is deteri	n is determined by by BSY = 0 and DRDY = 1 only.						

Optional for all Serial ATA components supporting the VS feature set.

Description

This command unlocks the host and device bridges to support reserved commands. Once this command is executed, the bridge(s) shall remain unlocked until:

- A VS Lock command that returns the VS state to the default locked state, or;
- A hardware reset, or COMINIT or COMRESET.

Note that the VS Unlock Vendor Specific command, the VS Unlock Individual command and Soft Reset have no effect on the VS state.

If a VS Unlock Vendor Specific command is issued afterwards, the bridge(s) shall be unlocked for both reserved and vendor specific commands.

If a VS Unlock Individual command is issued afterwards, the bridge(s) shall be unlocked for both individual vendor specific/reserved command protocols and other reserved commands.

If both VS Unlock Vendor Specific and VS Unlock Individual are issued afterwards, the bridge(s) shall be unlocked for individual vendor specific/reserved command protocols, as well as other vendor specific and reserved commands.

A Serial ATA host, native or bridge, supporting the VS Unlock Reserved command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the unlock event successful.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the unlock event successful.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall be unlocked to support reserved commands.

VS Unlock Individual

Command/Subcommand/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:32h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0
Features	Current	F1h							
realures	Previous (Expanded)		32h						
Sector Count	Current				n	а			
Sector Count	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
LDA LOW	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device		obs na obs DEV ¹ na na na na							
Command		F0h							
1. The DE	EV bit usage in the Serial AT	A specification must be followed.							

	Register	7	6	5	4	3	2	1	0
Error		na na na na na na na							
Sector Count	Current				n	а			
	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device		obs	na	obs	DEV ¹	na	na	na	na
Status		BSY	DRDY	na	na	na	na	na	na ²
1. The DI	EV bit usage in the Serial AT	ATA specification must be followed.							
2. Error b	it shall be ignored. Completic	n is deteri	n is determined by by BSY = 0 and DRDY = 1 only.						

Optional for all Serial ATA components supporting the VS feature set.

Description

This command unlocks the host and device bridges to support individual vendor specific and reserved commands. Once this command is executed, the bridge(s) shall remain unlocked until:

- A VS Lock command that returns the VS state to the default locked state, or;
- A hardware reset, or COMINIT or COMRESET.

Note that the VS Unlock Vendor Specific command, the VS Unlock Reserved command and Soft Reset have no effect on the VS state.

If a VS Unlock Vendor Specific command is issued afterwards, the bridge(s) shall be unlocked for both individual command protocols and other vendor specific commands.

If a VS Unlock Reserved command is issued afterwards, the bridge(s) shall be unlocked for both individual vendor specific/reserved command and other reserved commands.

If both VS Unlock Vendor Specific and VS Unlock Reserved are issued afterwards, the bridge(s) shall be unlocked for individual vendor specific/reserved command, as well as other vendor specific and reserved commands.

A Serial ATA host, native or bridge, supporting the VS Unlock Individual command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the unlock event successful.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the unlock event successful.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall be unlocked to support individual vendor specific/reserved commands.

VS Set General Protocol

Command/Subcommand Code/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:F0h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0
Features	Current	F1h							
	Previous (Expanded)				F	Dh			
Sector Count	Current				n	а			
	Previous (Expanded)		Prote	ocol Code	(See "Prot	ocols Sun	nmary" seo	ction)	
LBA Low	Current				n	а			
	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device	•	obs na obs DEV1 na na na na							
Command		B0h							
1. The DI	EV bit usage in the Serial AT	A specification must be followed.							

	Register	7	6	5	4	3	2	1	0
Error		na na na na na na na							
Sector Count	Current				n	а			
Seciol Count	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
LDA LOW	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
I DA High	Current				n	а			
LBA High	Previous (Expanded)				n	а			
Device		obs	na	obs	DEV ¹	na	na	na	na
Status		BSY	DRDY	na	na	na	na	na	na ²
1. The DI	EV bit usage in the Serial AT	ATA specification must be followed.							
2. Error b	it shall be ignored. Completic	n is determined by by $BSY = 0$ and $DRDY = 1$ only.							

Mandatory for all Serial ATA components supporting the VS feature set.

Description

If the VS state is unlocked for vendor specific or for reserved, this command will set the General Protocol Code for the next vendor specific/reserved command(s), except for those individually set via the VS Set Command Protocol commands. The protocol shall be, or return to, Abort (Protocol Code = 00h) upon a lock event, i.e.:

- A VS Lock command to return the VS state to the default locked state, or;
- A hardware reset, or COMINIT or COMRESET.

The General Protocol shall be passed to the Serial ATA host and device via the Expanded Sector Count register. The protocols and codes are described in Table 45 through Table 48.

A Serial ATA host, native or bridge, supporting the VS Set General Protocol command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the protocol set.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the protocol set.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall accept the protocol as valid.

VS Set Command Protocol

Command/Subcommand/Expanded Features Code

Command Code:B0hSubcommand (Features) Code:F1hExpanded Features Code:87h

Protocol

Non-data (Ext)

Inputs

	Register	7	6	5	4	3	2	1	0
Features	Current				F1	lh			
realures	Previous (Expanded)				87	'n			
Sector Count	Current	0	0	0	0		Code	e Tag	
Sector Count	Previous (Expanded)		Prot	ocol Code	(See "Prot	ocols Sun	nmary" sec	tion)	
	Current				Commai	nd Code			
LBA Low	Previous (Expanded)				n	а			
LBA Mid	Current				Feature	s Code			
	Previous (Expanded)				Feature	s Mask			
	Current				00)h			
LBA High	Previous (Expanded)				00)h			
Device	•	obs na obs DEV ¹ na na na na							
Command		B0h							
1. The DI	EV bit usage in the Serial AT	A specification must be followed.							

	Register	7	6	5	4	3	2	1	0
Error		na na na na na na na							na
Sector Count	Current				n	а			
	Previous (Expanded)				n	а			
LBA Low	Current				n	а			
	Previous (Expanded)				n	а			
LBA Mid	Current				n	а			
	Previous (Expanded)				n	а			
LBA High	Current				n	а			
	Previous (Expanded)				n	а			
Device		obs	na	obs	DEV ¹	na	na	na	na
Status		BSY	DRDY	na	na	na	na	na	na²
1. The DI	EV bit usage in the Serial AT	A specifica	tion must	be followe	d.			•	
2. Error b	it shall be ignored. Completic	on is determined by by BSY = 0 and DRDY = 1 only.							

Optional for all Serial ATA components supporting the VS feature set.

Description

If the VS state is unlocked for individual vendor specific/reserved commands, this command will set the protocol for the specific commands. Up to 16 individual vendor specific/reserved commands are supported via a Command Protocol Table. The 16 entries are organized as shown in Table 35.

Code Tag (Entry #)	Command Code	Features Code	Features Mask	Protocol Code
0h	-	-	-	-
1h	-	-	-	-
	-	-	-	-
Eh	-	-	-	-
Fh	-	-	-	-

Table 35. 16-Entry Command Protocol Table

When a vendor specific or reserved command is issued, its Command and Features registers will be compared against all of the above entries. If the following conditions are all met, the protocol for that entry will be used:

- Command = Command Code, and;
- (Features ⊕ Features Code) & Features Mask = 00h.

Note that:

Only reserved and vendor specific commands shall be mapped to protocol as above.

If a vendor specific or reserved command is mapped to more than one entry, the result is indeterminate.

Upon a lock event, all Command Codes shall be initialized to NOP (00h) and all Protocol Codes shall be initialized to Abort (00h). The following conditions are considered lock events:

- A VS Lock command to return the VS state to the default locked state, or;
- A hardware reset, or COMINIT or COMRESET.

The registers shown in Table 36 are used when issuing the command (but have no meaning for outputs)

 Table 36. Registers Used When Issuing VS Set Command

R	egister	Bit(s)	Field	Description
Sector Count	Current	7-4	0h	Must be 0h. Reserved for expansion if more than 16 individual vendor specific/reserved commands are supported.
		3-0	Code Tag	Up to 16 individual vendor specific/reserved commands are supported. This code tag is to select which of the 16 entries the code is to be written to. Earlier content in that entry shall be replaced with the new information.
	Previous (Expanded)	7-0	Protocol Code	See "Protocols Summary" section.
LBA Low	Current	7-0	Command Code	The Command register value for the individual vendor specific/reserved command.
	Previous (Expanded)	7-0	na	Not used.
LBA Mid	Current	7-0	Features Code	The Features register value for the individual vendor specific/reserved command.
	Previous (Expanded)	7-0	Features Mask	One single protocol can be assigned to a group of commands with the same Command Code but different Features Codes. If a Features Mask bit is '0', the corresponding Features Code bit will be ignored for comparison.
LBA High	Current	7-0	00h	Reserved for Expanded Features Code.
	Previous (Expanded)	7-0	00h	Reserved for Expanded Features Mask.

Silicon Image, Inc.

A Serial ATA host, native or bridge, supporting the VS Set Command Protocol command shall use the non-data (ext) protocol with this command. The Serial ATA host shall send this command to the Serial ATA device. The following situations may happen:

Case 1: The Serial ATA device (native or bridge) responds with a completed status. Both sides are set up to support this scheme.

Case 2: The Serial ATA device bridge supports this scheme. It may optionally pass this command to a parallel ATA device:

- If passed to a parallel ATA device, the parallel ATA device responds with an abort status, which may be reported back to the Serial ATA host.
- If not passed to a parallel ATA device, the device bridge shall still respond with a device-to-host Register FIS to terminate BSY in the Serial ATA host.

However, both the Serial ATA host and the Serial ATA device bridge shall ignore the abort status and shall consider the protocol set.

The Serial ATA device is a native device and responds with an abort. The Serial ATA host will ignore the abort status and shall consider the protocol set.

In other words, regardless of the status reported (aborted or complete), the Serial ATA host and device that support this scheme shall accept the protocol as valid.

State Transitions

Table 37 through Table 44 describe the state transitions of the SiI3114.

Table 37.	Default	State - V	VS_	LOCKED
-----------	---------	-----------	-----	--------

		—					
VS_LOCKED		Vendor specific/Reserved commands not supported. All vendor specific and reserved commands shall result in an ABORT status. General Protocol Code shall be 00h. Command Protocol Table initialized with all Command Codes = 00h and					
		all Protocol Codes = 00h.					
1	Received VS Unlock	Vendor Specific command	\rightarrow	VS_VS			
2	Received VS Unlock	Reserved command	\rightarrow	VS_RSV			
3 Received VS Unlock Individual command				VS_IND			
4	Otherwise	\rightarrow	VS_LOCKED				

Table 38. VS_VS

		On VS Set General Protocol command, set General Protocol Code.		
		Commands other than vendor specific or reserved commands shall be executed according to the predefined protocol.		
		All vendor specific commands shall be exe General Protocol Code.	ecuted	according to the
		All reserved commands shall result in an A	ABORT	status.
1	Received VS Unlock Reserved command			VS_VS_RSV
2	Received VS Unlock Individual command			VS_VS_IND
3	Received VS Lock command			VS_LOCKED
4	Otherwise		\rightarrow	VS_VS

VS_RSV		On VS Set General Protocol command, set General Protocol Code.			
		Commands other than vendor specific or reserved commands shall be executed according to the predefined protocol.			
		All reserved commands shall be executed according to the General Protocol Code.			
		All vendor specific commands shall result in an ABORT status.			
1	Received VS Unlock Vendor Specific command		\rightarrow	VS_VS_RSV	
2	2 Received VS Unlock Individual command		\rightarrow	VS_RSV_IND	
3	3 Received VS Lock command		\rightarrow	VS_LOCKED	
4	Otherwise		\rightarrow	VS_RSV	

Table 39. VS_RSV

Table 40. VS_IND

VS_IND		On VS Set Command Protocol command, update the corresponding Command Protocol Table entry.		
		Commands other than vendor specific or reserved commands shall be executed according to the predefined protocol.		
		All vendor specific/reserved commands w Protocol Table shall be executed accordin corresponding Command Protocol entry.		
		All other commands shall result in an ABC	ORT sta	atus.
1	Received VS Unlock Reserved command		\rightarrow	VS_VS_RSV
2	Received VS Unlock Individual command		\rightarrow	VS_VS_IND
3	Received VS Lock command		\rightarrow	VS_LOCKED
4	Otherwise		\rightarrow	VS_IND

Table 41. VS_VS_RSV

VS_VS_RSV		On VS Set General Protocol command, set General Protocol Code.		
		Commands other than vendor specific or r executed according to the predefined proto		d commands shall be
		All vendor specific/reserved commands sh the General Protocol Code.	all be e	executed according to
1	Received VS Unlock Individual command		\rightarrow	VS_VS_RSV_IND
2 Received VS Lock command		\rightarrow	VS_LOCKED	
3	3 Otherwise		\rightarrow	VS_VS_RSV

Table 42. VS_VS_IND

VS_VS_IND		On VS Set General Protocol command, set General Protocol Code.		
		On VS Set Command Protocol command, Command Protocol Table entry.	update	e the corresponding
		Commands other than vendor specific or executed according to the predefined prot		ed commands shall be
		All vendor specific/reserved commands w Protocol Table shall be executed accordin corresponding Command Protocol entry.		
		All other vendor specific commands shall General Protocol Code.	be exe	cuted according to the
		All other commands shall result in an ABORT status.		atus.
1 Received VS Unlock F		Reserved command	\rightarrow	VS_VS_RSV_IND
2 Received VS Lock command		mmand	\rightarrow	VS_LOCKED
3 Otherwise			\rightarrow	VS_VS_IND

Table 43. VS_RSV_IND

VS_RSV_IND		On VS Set General Protocol command, set General Protocol Code.		
		On VS Set Command Protocol command, Command Protocol Table entry.	update	e the corresponding
		Commands other than vendor specific or a executed according to the predefined prot		d commands shall be
		All vendor specific/reserved commands with Protocol Table shall be executed according corresponding Command Protocol entry.		
		All reserved commands shall be executed Protocol Code.	accord	ding to the General
		All other commands shall result in an ABC	ORT sta	atus.
1 Received VS Unlock Vendor Specific command		Vendor Specific command	\rightarrow	VS_VS_RSV_IND
2 Received VS Lock command		\rightarrow	VS_LOCKED	
3 Otherwise			\rightarrow	VS_RSV_IND

Table 44. VS_VS_RSV_IND

VS_VS_RSV_	IND	On VS Set General Protocol command, se On VS Set Command Protocol command, Command Protocol Table entry.		
		Commands other than vendor specific or i executed according to the predefined prot		ed commands shall be
		All vendor specific/reserved commands wi Protocol Table shall be executed accordin corresponding Command Protocol entry.		
		All other vendor specific/reserved comman according to the General Protocol Code.	nds sha	all be executed
1 Received VS Lock cor		mmand	\rightarrow	VS_LOCKED
2	Otherwise		\rightarrow	VS_VS_RSV_IND

Protocols Summary

The protocol encoding scheme is described in Table 45.

Protocol Code	Protocol	Codes Defined	Bit Assignment		
00h	Abort	00h	-		
01h-3Fh A2h-AFh B3h-BFh E0h-EFh F1h-FFh	-	-	Reserved		
40h-4Fh	-	-	Vendor Specific		
80h-8Fh C0h-CFh (1x00xxxxb)	PIO Data in/Out	80h, 81h, 82h, 87h, 88h, 89h, 8Ah, 8Bh, 8Fh, C0h, C2h, C8h, CAh	Bit 6: 0 - legacy addressing 1 - 48-bit LBA addressing Bit 3: 0 - data in (read) 1 - data out (write) Bits 2-0: 000b - sector count is given by the Sector Count register. 001b - only one sector, Sector Count is ignored. 010b - blocks of multiple sectors, e.g., Read/Write Multiple. 011b - sector count is given by Sector Number and Sector Count registers, e.g. Download Microcode. 100b-110b - reserved 111b - 512 plus vendor specific bytes, e.g. Read/Write Long.		
90h-9Fh D0h-DFh (1x01xxxxb)	DMA	90h, 91h, 98h, 99h, D0h, D1h, D8h, D9h	Bit 6: 0 - legacy addressing 1 - 48-bit LBA addressing Bit 3: 0 - data in (read) 1 - data out (write) Bits 2-1: 00b - currently defined 01b-11b - reserved. Bit 0: 0 - not queued. 1 - queued.		
A0h	Packet	A0h	-		
A1h	Service	A1h	-		
B0h,F0h (1x110000b)	Non-Data	B0h, F0h	Bit 6: 0 - legacy addressing 1 - 48-bit LBA addressing		
B1h	Execute Device Diagnostic	B1h	-		
B2h	Device Reset	B2h	-		

Table 45. Protocol Code Encoding Scheme

Descriptions of vendor specific protocol codes are described in Table 46 and Table 47.

Silicon Image, Inc. —

Table 46. Vendor Specific Protocol Code (in Alpha	habetical Order)
---	------------------

Protocol	Protocol Code	Description
Abort	00h	Abort command. Status =51h and Error = 04h. Command shall not be passed to downstream device(s).
Device Reset	B2h	Device Reset protocol.
Execute Device Diagnostic	B1h	Execute Device protocol (for host bridges arranged in master-slave configuration, both shall respond regardless of the DEV bit in the Device register.
Non-Data	B0h	Non-Data protocol.
Non-Data (Ext)	F0h	Non-Data (Ext) protocol.
Packet	A0h	Packet protocol.
PIO Data In (Read Multiple)	82h	PIO Data In protocol for reading blocks of multiple sectors, e.g., Read Multiple.
PIO Data In (Read Multiple, Ext)	C2h	PIO Data In protocol for reading blocks of multiple sectors for 48-bit LBA commands, e.g., Read Multiple Ext.
PIO Data In (Sectors)	80h	PIO Data In protocol, sector count is given by the Sector Count register.
PIO Data In (Sectors, Ext)	C0h	PIO Data In protocol for 48-bit LBA commands, sector count is given by the Sector Count register.
PIO Data In (Single Sector)	81h	PIO Data In protocol, only one sector, Sector Count is ignored.
PIO Data Out (Download Microcode)	8Bh	PIO Data Out protocol, sector count is given by Sector Number and Sector Count registers.
PIO Data Out (Sectors)	88h	PIO Data Out protocol, sector count is given by the Sector Count register.
PIO Data Out (Sectors, Ext)	C8h	PIO Data Out protocol for 48-bit LBA commands, sector count is given by the Sector Count register.
PIO Data Out (Single Sector)	89h	PIO Data Out protocol, only one sector, Sector Count is ignored.
PIO Data Out (Write Multiple)	8Ah	PIO Data Out protocol for writing blocks of multiple sectors, e.g., Write Multiple.
PIO Data Out (Write Multiple, Ext)	CAh	PIO Data Out protocol for writing blocks of multiple sectors for 48-bit LBA commands, e.g., Write Multiple Ext
Read DMA	90h	Read DMA protocol.
Read DMA (Ext)	D0h	Read DMA protocol for 48-bit LBA commands.
Read DMA Queued	91h	Read DMA Queued protocol.
Read DMA Queued (Ext)	D1h	Read DMA Queued for 48-bit LBA commands.
Read Long	87h	PIO Data In protocol, 512 plus vendor specific bytes, e.g. Read Long.
Service	A1h	Service protocol.
Write DMA	98h	Write DMA protocol.
Write DMA (Ext)	D8h	Write DMA protocol for 48-bit LBA commands.
Write DMA gueued	99h	Write DMA queued protocol.
Write DMA queued (Ext)	D9h	Write DMA queued for 48-bit LBA commands.
Write Long	8Fh	PIO Data Out protocol, 512 plus vendor specific bytes, e.g. Write Long

Protocol Code	Protocol	Description
00h	Abort	Abort command. Status =51h and Error = 04h. Command shall not be passed to downstream device(s).
80h	PIO Data In (Sectors)	PIO Data In protocol, sector count is given by the Sector Count register.
81h	PIO Data In (Single Sector)	PIO Data In protocol, only one sector, Sector Count is ignored.
82h	PIO Data In (Read Multiple)	PIO Data In protocol for reading blocks of multiple sectors, e.g., Read Multiple.
87h	Read Long	PIO Data In protocol, 512 plus vendor specific bytes, e.g. Read Long.
88h	PIO Data Out (Sectors)	PIO Data Out protocol, sector count is given by the Sector Count register.
89h	PIO Data Out (Single Sector)	PIO Data Out protocol, only one sector, Sector Count is ignored.
8Ah	PIO Data Out (Write Multiple)	PIO Data Out protocol for writing blocks of multiple sectors, e.g., Write Multiple.
8Bh	PIO Data Out (Download Microcode)	PIO Data Out protocol, sector count is given by Sector Number and Sector Count registers.
8Fh	Write Long	PIO Data Out protocol, 512 plus vendor specific bytes, e.g. Write Long
90h	Read DMA	Read DMA protocol.
91h	Read DMA Queued	Read DMA Queued protocol.
98h	Write DMA	Write DMA protocol.
99h	Write DMA queued	Write DMA queued protocol.
A0h	Packet	Packet protocol.
A1h	Service	Service protocol.
B0h	Non-Data	Non-Data protocol.
B1h	Execute Device Diagnostic	Execute Device protocol (for host bridges arranged in master-slave configuration, both shall respond regardless of the DEV bit in the Device register.
B2h	Device Reset	Device Reset protocol.
C0h	PIO Data In (Sectors, Ext)	PIO Data In protocol for 48-bit LBA commands, sector count is given by the Sector Count register.
C2h	PIO Data In (Read Multiple, Ext)	PIO Data In protocol for reading blocks of multiple sectors for 48-bit LBA commands, e.g., Read Multiple Ext.
C8h	PIO Data Out (Sectors, Ext)	PIO Data Out protocol for 48-bit LBA commands, sector count is given by the Sector Count register.
CAh	PIO Data Out (Write Multiple, Ext)	PIO Data Out protocol for writing blocks of multiple sectors for 48-bit LBA commands, e.g., Write Multiple Ext
D0h	Read DMA (Ext)	Read DMA protocol for 48-bit LBA commands.
D1h	Read DMA Queued (Ext)	Read DMA Queued for 48-bit LBA commands.
D8h	Write DMA (Ext)	Write DMA protocol for 48-bit LBA commands.
D9h	Write DMA queued (Ext)	Write DMA queued for 48-bit LBA commands.
F0h	Non-Data (Ext)	Non-Data (Ext) protocol.

Table 47. Vendor Specific Protocol Code (by Protocol Code)

Table 48. Vendor Specific Protocol Code (in Alphabetical Order)	
---	--

Protocol	Protocol Code	Command Examples
Abort	00h	Any unsupported commands
Device Reset	B2h	Device Reset
Execute Device Diagnostic	B1h	Execute Device Diagnostics
Non-Data	B0h	CFA Erase Sectors, CFA Request Extended Error Code, Check Media Card Type, Check Power Mode, Device Configuration Restore, Device Configuration Freeze Lock, Flush Cache, Get Media Status, Idle, Idle Immediate, Initialize Device Parameters, Media Eject, Media Lock, Media Unlock, Nop, Read Native Max Address, Read Verify Sector(s), ReadFPDMAQueued, Recalibrate, Security Erase Prepare, Security Freeze Lock, Seek, Set Features, Set Max Address, Set Max Lock, Set Max Freeze Lock, Set Multiple Mode, Sleep, Smart Disable Operations,Smart Enable/Disable Attributes Autosave, Smart Enable Operations, Smart Execute Off-Line Immediate, Smart Return Status, Smart Save Attribute Values, Standby, Standby Immediate, WriteFPDMAQueued
Non-Data (Ext)	F0h	Configure Stream, Flush Cache Extended, Read Native Max Address Ext, Read Verify Sector(s) Ext, Set Max Address Ext
Packet	A0h	Packet
PIO Data In (Read Multiple)	82h	Read Multiple
PIO Data In (Read Multiple, Ext)	C2h	Read Multiple Ext
PIO Data In (Sectors)	80h	Read Sector(s), Smart Read Log
PIO Data In (Sectors, Ext)	C0h	Read Log Ext, Read Sector(s) Ext, Read Stream PIO
PIO Data In (Single Sector)	81h	CFA Translate Sector, CleanupAndRequestSense, Device Configuration Identify, Identify Device, Identify Packet Device, Read Buffer, Security Set Password, Security Unlock, Set Max Set Password, Smart Read Attribute Thresholds, Smart Read Data
PIO Data Out (Download Microcode)	8Bh	Download Microcode
PIO Data Out (Sectors)	88h	CFA Write Sectors without Erase, Smart Write Log, Write Sector(s)
PIO Data Out (Sectors, Ext)	C8h	Write Sector(s) Ext
PIO Data Out (Single Sector)	89h	Device Configuration Set, Security Disable Password, Security Erase Unit, Write Buffer
PIO Data Out (Write Multiple)	8Ah	CFA Write Multiple without Erase, Write Multiple
PIO Data Out (Write Multiple, Ext)	CAh	Write Log Ext, Write Multiple Ext, Write Stream PIO
Read DMA	90h	Read DMA
Read DMA (Ext)	D0h	Read DMA Ext, Read Stream DMA
Read DMA Queued	91h	Read DMA Queued
Read DMA Queued (Ext)	D1h	Read DMA Queued Ext
Read Long	87h	Read Long
Service	A1h	Service
Write DMA	98h	Write DMA
Write DMA (Ext)	D8h	Write DMA Ext, Write Stream DMA
Write DMA queued	99h	Write DMA Queued
Write DMA queued (Ext)	D9h	Write DMA Queued Ext
Write Long	8Fh	Write Long

Reading and Writing of Task File and Device Control Registers

48-Bit LBA Addressing

The SiI3114 supports 48-bit LBA. The SiI3114 does not differentiate a non-extended command (one that does not use 48-bit LBA address) from an extended command (one that uses the 48-bit LBA address). The "expanded" registers can be read with the HOB bit of the Device Control register se to '1'.

Device Control Register and Soft Reset

When the Device Control register is written, a Register FIS for Control will be sent downstream upon one of the following conditions:

- There is a change in the SRST bit, or;
- With SRST bit being '0', there is a change in the NIEN bit.

Note that:

- When the SRST is '1', the NIEN bit in the Register FIS sent is insignificant.
- Any change in the HOB bit will not initiate any Register FIS to be sent. In fact, HOB bit is always '0' in the Register FIS sent.
- If the Serial ATA channel is in PARTIAL or SLUMBER state, a COMWAKE will be automatically initiated to wake up the channel before the Register FIS is sent. However, the channel will stay at the ON state at the end of the operation, even if no soft reset occurs.

A soft reset will do the following:

• Wake up the downstream Serial ATA device from ATA IDLE, STANDBY or SLEEP.

LED Support

The SiI3114 supports four activity LEDs via four 12mA open-drain drivers LED[0..3]. LED0 is to indicate activity in channel 0; LED1 in channel 1; LED2 in channel 2; and LED3 in channel3.

When there is activity for a non-ATAPI device, as indicated by:

- BSY in the ATA Status being set, or;
- Any bit in the Serial ATA SActive register being set
- ... the corresponding LED driver outputs will be driven low.

There is no activity LED support for ATAPI device. If the downstream device is an ATAPI device, the corresponding LED output will not be driven low.

Flash and EEPROM Programming Sequences

Flash Memory Access

The SiI3114 supports an external flash memory device up to 4 Mbit in capacity. Access to the Flash memory is available through two means: PCI Direct Access and Register Access.

PCI Direct Access

Access to the Expansion Rom is enabled by setting bit 0 in the Expansion Rom Base Address register at Offset 30h of the PCI Configuration Space. When this bit is set, bits [31:19] of the same register are programmable by the system to set the base address for all Flash memory accesses. Read and write operations with the flash memory are initiated by Memory Read and Memory Write commands on the PCI bus. Accesses may be as bytes, words, or dwords.

Register Access

This type of flash memory access is carried out through a sequence of internal register read and write operations. The proper programming sequences are detailed below.

Flash Write Operation

Verify that bit 25 is cleared in the register at Offset 50H of Base Address 5. The bit reads one when a memory access is currently in progress.

It reads zero when the memory access is complete and ready for another operation.

Program the write address for the Flash memory access. The address field is defined by bits [18:00] in the Flash Memory Address – Command + Status register.

Program the write data for the Flash memory access. The data field is defined by bits [07:00] in the Flash Memory Data register at Offset 54 of Base Address 5.

Program the memory access type. The memory access type is defined by bit 24 in the Flash Memory Address – Command + Status register. The bit must be cleared for a memory write access.

Initiate the Flash memory access by setting bit 25 in the Flash Memory Address – Command + Status register.

Flash Read Operation

Verify that bit 25 is cleared in the Flash Memory Address – Command + Status register at Offset 50_H of Base Address 5. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete and ready for another operation.

Program the read address for the Flash memory access. The address field is defined by bits [18:00] in the Flash Memory Address – Command + Status register.

Program the memory access type. The memory access type is defined by bit 24 in the Flash Memory Address – Command + Status register. The bit must be set for a memory read access.

Initiate the Flash memory access by setting bit 25 in the Flash Memory Address – Command + Status register.

Verify that bit 25 is cleared in the Flash Memory Address – Command + Status register. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete.

Read the data from the Flash memory access. The data field is defined by bits [07:00] in the Flash Memory Data register at Offset $54_{\rm H}$ of Base Address 5.

EEPROM Memory Access

The SiI3114 supports an external 256-byte EEPROM memory device. Access to the EEPROM memory is available through internal register operations in the SiI3114.

EEPROM Write Operation

Verify that bit 25 is cleared in the EEPROM Memory Address – Command + Status register at Offset 58_H of Base Address 5. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete and ready for another operation.

Write '1' to clear bit 28 in the EEPROM Memory Address – Command + Status register. The bit is set if an error occurred during a previous memory access.

Program the write address for the EEPROM memory access. The address field is defined by bits [07:00] in the EEPROM Memory Address – Command + Status register. Program bits [15:08] to zero.

Program the write data for the EEPROM memory access. The data field is defined by bits [07:00] in the EEPROM Memory Data register at Offset $5C_H$ of Base Address 5.

Program the memory access type. The memory access type is defined by bit 24 in the EEPROM Memory Address – Command + Status register. The bit must be cleared for a memory write access.

Initiate the EEPROM memory access by setting bit 25 in the EEPROM Memory Address – Command + Status register.

Poll bit 25 in the EEPROM Memory Address – Command + Status register. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete.

Check bit 28 in the EEPROM Memory Address – Command + Status register. The bit is set if an error occurred during a previous memory access.

EEPROM Read Operation

Verify that bit 25 is cleared in the EEPROM Memory Address – Command + Status register at Offset 58_H of Base Address 5. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete and ready for another operation.

Write '1' to clear bit 28 in the EEPROM Memory Address – Command + Status register. The bit is set if an error occurred during a previous memory access.

Program the read address for the EEPROM memory access. The address field is defined by bits [07:00] in the EEPROM Memory Address – Command + Status register. Program bits [15:08] to zero.

Program the memory access type. The memory access type is defined by bit 24 in the EEPROM Memory Address – Command + Status register. The bit must be set for a memory read access.

Initiate the EEPROM memory access by setting bit 25 in the EEPROM Memory Address – Command + Status register.

Poll bit 25 in the EEPROM Memory Address – Command + Status register. The bit reads one when a memory access is currently in progress. It reads zero when the memory access is complete.

Check bit 28 in the EEPROM Memory Address – Command + Status register. The bit is set if an error occurred during a previous memory access.

Read the data from the EEPROM memory access. The data field is defined by bits [07:00] in the EEPROM Memory Data register at Offset $5C_H$ of Base Address 5.

Silicon Image, Inc.

Disclaimers

These materials are provided on an "AS IS" basis. Silicon Image, Inc. and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Silicon Image, Inc. and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials.

Silicon Image, Inc. and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

Notwithstanding the foregoing, these materials shall not, in the absence of authorization under U.S. and local law and regulations, as required, be used by or exported or re-exported to (i) any U.S. sanctioned or embargoed country, or to nationals or residents of such countries; or (ii) any person, entity, organization or other party identified on the U.S. Department of Commerce's Denied Persons or Entity List, the U.S. Department of Treasury's Specially Designated Nationals or Blocked Persons List, or the Department of State's Debarred Parties List, as published and revised from time to time; (iii) any party engaged in nuclear, chemical/biological weapons or missile proliferation activities; or (iv) any party for use in the design, development, or production of rocket systems or unmanned air vehicles.

Products and Services

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Silicon Image, Inc. and/or its affiliates are provided on as "AS IS" basis, except to the extent that Silicon Image, Inc. and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, SILICON IMAGE, INC. AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY SILICON IMAGE, INC. AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW. DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.