HLMP-Y801-JPPxx

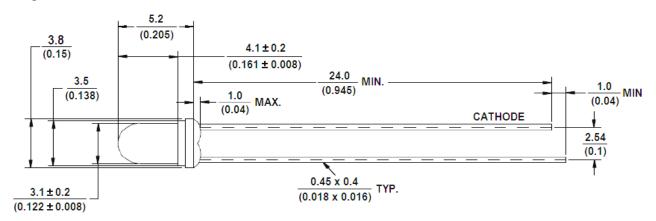
T-1 (3 mm) AllnGaP LED Lamps

Datasheet

Description

This family of T-1 lamps is widely used in general purpose indicator and back lighting applications. The optical design is balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

- Popular T-1 diameter package
- Reliable and rugged
- RoHS compliant

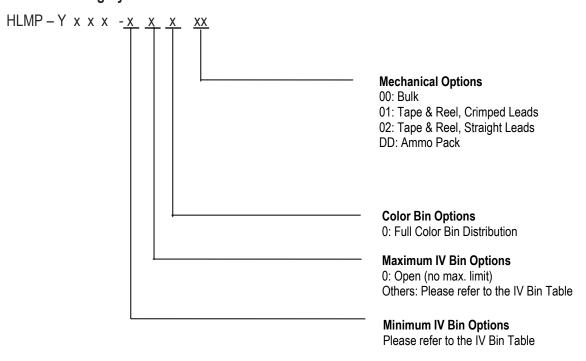

Features

- High luminous intensity output
- Low power consumption
- High efficiency
- Versatile mounting on PCB or panel
- I.C. Compatible/low current requirement

Applications

- Status indicator
- Backlighting front panels
- Light pipe sources
- Lighted switches

Package Dimension


Notes:

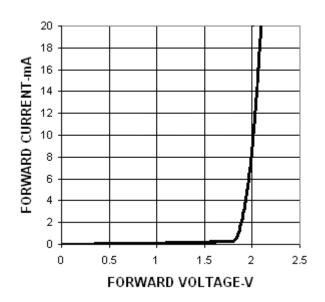
- 1. All dimensions are in millimeter (inches).
- 2. Tolerance is ±0.25mm (.010) unless otherwise stated.
- 3. Lead spacing is measured where the leads emerge from the package.

Selection Guide

Color	Part Number	Package Description	Luminou	Luminous Intensity, Iv (mcd) @ 20 mA Viewing angle,		
			Min.	Тур.	Max.	2θ½(°)
Green	HLMP-Y801-JPPxx	Untinted, Non-diffused	240	310	1150	30

Part Numbering System

Absolute Maximum Ratings at T_A = 25°C


Parameter	HLMP-Y801-JPPxx	Units	
DC Forward Current	20	mA	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	60	mA	
Reverse Voltage (I _R = 100μA)	5	V	_
Junction Temperature	110	°C	
Power Dissipation	48	mW	
Storage Temperature Range	-40 to +100	°C	
Operating Temperature Range	-40 to +100	°C	
Solder Temperature	260°C 5 sec		

Electrical /Optical Characteristic at T_A = 25°C

Description	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Peak Wavelength	λρεακ		575		nm	Measurement at peak
Dominant Wavelength	λ_{d}	564.5		572.0	nm	Note 1
Spectrum Half Width	Δλ		11		nm	
Forward Voltage	V _F		2.1	2.4	V	I _F = 20mA
•						(Figure 1)

Notes:

^{1.} The dominant wavelength, λd , is derived from the Chromaticity Diagram and represents the color of the lamp.

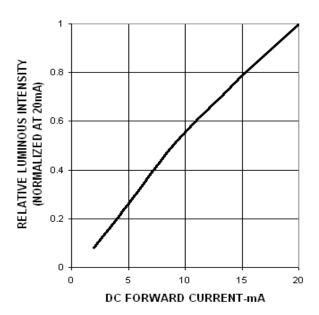
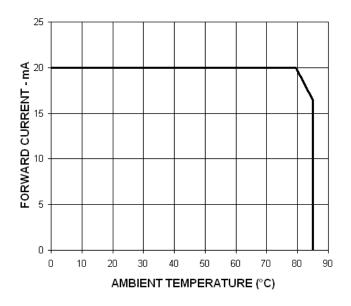



Figure 1: Forward Current vs. Forward Voltage.

Figure 2: Relative Luminous Intensity vs. Forward Current.

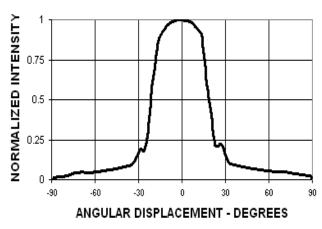


Figure 3: Ambient Temperature vs. Maximum DC Forward Current.

Figure 4: Relative Luminous Intensity vs. Angular Displacement.

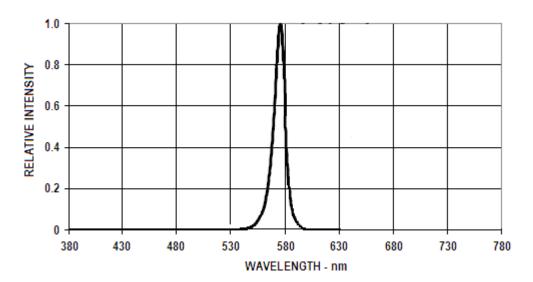


Figure 5: Wavelength vs. Relative Luminous Intensity.

Intensity Bin Limits

	Intensity Rar	nge (mcd)	
Bin	Min.	Max.	
J	240.0	310.0	
K	310.0	400.0	
L	400.0	520.0	
M	520.0	680.0	
N	680.0	880.0	
P	880.0	1150.0	

Tolerance for each bin limit is 15%.

Color Bin Limits Table

		Lambda (nm)		
Color	Category #	Min.	Max.	
Green	1	564.5	567.0	
	2	567.0	569.5	
	3	569.5	572.0	

Tolerance for each bin limit is ±1.0 nm.

Precautions:

Assembly method: This product is not meant for auto-insertion.

Lead Forming:

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- During lead forming, the leads should be bent at a point at least 3mm from the base of the lens. Do not use the base of the lead frame as a fulcrum during forming. Lead forming must be done before soldering at normal temperature.
- It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Conditions:

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering conditions:

	Wave Soldering	Manual Solder Dipping
Pre-heat Temperature	105°C Max.	-
Pre-heat Time	60 sec Max.	-
Peak Temperature	250°C Max.	260°C Max.
Dwell Time	3 sec Max.	5 sec Max.

- Wave soldering parameter must be set and maintained according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition.
- If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated.
- Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C, before handling.
- Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability.
- Recommended PC board plated through-hole sizes for LED component leads:

LED Component	Diagonal	Plated Through	
Lead Size		Hole Diameter	
0.457 x 0.457 mm	0.646 mm	0.976 to 1.078 mm	
(0.018 x 0.018 inch)	(0.025 inch)	(0.038 to 0.042 inch)	
0.508 x 0.508 mm	0.718 mm	1.049 to 1.150 mm	
(0.020 x 0.020 inch)	(0.028 inch)	(0.041 to 0.045 inch)	

Note: Refer to application note AN1027 for more information on soldering LED component.

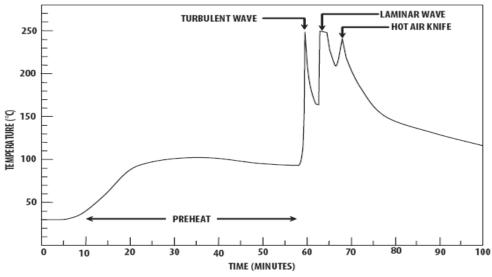


Figure 5: Recommended Wave Soldering Profile.

Recommended solder: Sn63 (Leaded solder alloy) SAC305 (Lead free solder alloy)

Flux: Rosin flux

Solder bath temperature: 245°C± 5°C (maximum peak temperature = 250°C)

Dwell time: 1.5 sec - 3.0 sec (maximum = 3sec)

Note: Allow for board to be sufficiently cooled to room temperature before exerting mechanical force.

DISCLAIMER

AVAGO'S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENENACE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FO ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.