AH3582 # HIGH VOLTAGE HIGH SENSITIVITY HALL EFFECT OMNIPOLAR WITH INTERNAL PULL_UP RESISTOR ## **Description** The AH3582 is a high voltage high sensitivity Hall Effect Omnipolar switch IC designed for proximity, position and level sensing in industrial and consumer home appliances and personal care applications. To support wide range of demanding applications, the design has been optimized to operate over the supply range of 3.0V to 28V. With chopper stabilized architecture and an internal bandgap regulator to provide temperature compensated supply for internal circuits, the AH3582 provides a reliable solution over the whole operating range. For robustness and protection, the device has a reverse blocking diode with a Zener clamp on the supply. The output has an over current limit and a Zener clamp. The internally pulled-up output can be switched on with either South or North pole of sufficient strength. When the magnetic flux density (B) perpendicular to the package is larger than the operate point (B_{OP}) the output is switched on (pulled low) and is held on until magnetic flux density B is lower than the release point (B_{RP}). #### **Features** - · Omnipolar Operation - High Sensitivity: B_{OP} and B_{RP} of ±40G and ±25G Typical - Internally Pull-up Resistor on the Output with Over Current Limit - 3.0V to 28V Operating Voltage Range - Chopper Stabilized Design Provides - Superior Temperature Stability - o Minimal Switch Point Drift - Enhanced Immunity to Stress - · Good RF Noise Immunity - Reverse Blocking Diode - Zener Clamp on Supply and Output Pins - -40°C to +125°C Operating Temperature - ESD: HBM > 6kV - Industry Standard SOT23 and SIP-3 (Ammo Pack), SIP-3 (Bulk Pack) Packages - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) #### **Pin Assignments** #### **Applications** - · Position and Proximity Sensing in Industrial Applications - Applications - · Open and Close Detect - Position Detect - · Level Detect - Flow Meters - · Contact-less Switches Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. - 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. ## **Typical Applications Circuit** Note: 4. C_{IN} is for power stabilization and to strengthen the noise immunity, the recommended capacitance is 10nF \sim 100nF. ## **Pin Descriptions** Package: SOT23 and SIP-3 (Ammo Pack), SIP-3 (Bulk Pack) | Pin Number | Pin Name | Function | |------------|----------|--------------------| | 1 | V_{DD} | Power Supply Input | | 2 | GND | Ground | | 3 | OUTPUT | Output Pin | ## **Functional Block Diagram** #### Absolute Maximum Ratings (Notes 5 & 6) (@T_A = +25°C, unless otherwise specified.) | Symbol | Characteristic | | Value | Unit | | |----------------------|---|---|-------------|------|--| | V_{DD} | Supply Voltage (Note 6) | | 32 | V | | | I _{DDR} | Reverse Current; V _{DD} = -28V | | 5 | mA | | | V _{OUT_MAX} | Output Off Voltage (Note 6) | | 32 | V | | | I _{OUT} | Continuous Output Current | 60 | mA | | | | I _{OUT_R} | Reverse Output Current | -50 | mA | | | | В | Magnetic Flux Density | | Unlimited | | | | P _D | Package Power Dissipation | SIP-3 (Ammo Pack),
SIP-3 (Bulk Pack) | 550 | mW | | | _ | , | SOT23 | 230 | | | | Ts | Storage Temperature Range | | -65 to +165 | °C | | | TJ | Maximum Junction Temperature | +150 | °C | | | | ESD HBM | Electros Static Discharge Withstand - Human Body Model (HBN | 1) | 6 | kV | | Notes: - 5. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time. - The absolute maximum V_{DD} of 32V is a transient stress rating and is not meant as a functional operating condition. It is not recommended to operate the device at the absolute maximum rated conditions for any period of time. ## Recommended Operating Conditions (@T_A = -40°C to +125°C, unless otherwise specified.) | Symbol | Parameter | Condition | Rating | Unit | |----------------|-----------------------------|-----------|-------------|------| | V_{DD} | Supply Voltage | Operating | 3.0 to 28 | V | | T _A | Operating Temperature Range | Operating | -40 to +125 | °C | ## Electrical Characteristics (Notes 7 & 8) (@T_A = -40°C to +125°C, V_{DD} = 3V to 28V, unless otherwise specified.) | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |---------------------|---|--|-----|------|-----|------| | V _{OUT_ON} | Output ON Voltage | I _{OUT} = 20mA, B > B _{OP} | - | 0.2 | 0.4 | V | | I _{LKG} | Output Leakage Current (When output is off) | V _{OUT} = 28V, B < B _{RP} , Output off | - | <0.1 | 10 | μΑ | | la- | Supply Current | Output open, T _A = +25°C | - | 3 | 3.5 | mA | | I _{DD} | Supply Culterit | Output open, T _A = -40°C to +125°C | - | - | 4 | mA | | R _{PU} | Internal Pull-up Resistance | $T_A = -40$ °C to +125°C, | 10 | 14 | 18 | kΩ | | t _{ST} | Device Start-up Time | $V_{DD} >= 3V, B > B_{OP} $ (Note 7) | - | 10 | - | μs | | f _C | Chopping Frequency | - | - | 800 | - | kHz | | t _D | Response Time Delay
(Time from Magnetic Threshold
Reached to the Start of the Output
Rise or Fall) | (Note 9) | - | 3.75 | - | μs | | t _R | Output Rising Time
(External Pull-Up Resistor R∟ and Load
Capacitance Dependent) | $R_L = 1k\Omega$, $C_L = 20pF$ | - | 0.2 | 1 | μs | | t _F | Output Falling Time
(Internal Switch Resistance and Load
Capacitance Dependent) | $R_L = 1k\Omega$, $C_L = 20pF$ | - | 0.1 | 1 | μs | | I _{OCL} | Output Current Limit | B > B _{OP} , (Note 10) | 30 | - | 55 | mA | | Vz | Zener Clamp Voltage | $I_{DD} = 5mA$ | 28 | - | - | V | Notes: - 7. When power is initially turned on, Vpp must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is valid after the start-up time of 10µs typical from the operating voltage reaching 3V. - 8. Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range is not tested in production but guaranteed by design, process control and characterization. - 9. Guaranteed by design, process control and characterization. Not tested in production. - 10. The device will limit the output current I_{OUT} to current limit of I_{OCL} ## $\textbf{Magnetic Characteristics} \text{ (Notes 11 \& 12) (T}_{A} = -40^{\circ}\text{C to } \underline{+125^{\circ}\text{C}}, \text{ V}_{DD} = 3.0 \text{V to 28V, unless otherwise specified.)}$ | | | | | (| 1mT=10 C | Gauss) | |---|----------------------|--|-----|-----|----------|--------| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | B _{OPS} (South pole to the part marking side) | | $V_{DD} = 12V, T_A = +25^{\circ}C$ | - | 40 | - | | | | - Operation Point | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 20 | 40 | 60 | | | D (North pole to the part morting side) | Operation Folia | $V_{DD} = 12V, T_A = +25^{\circ}C$ | - | -40 | - | | | B _{OPN} (North pole to the part marking side) | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | -60 | -40 | -20 | | | D (Couth pole to the part marking side) | | $V_{DD} = 12V, T_A = +25^{\circ}C$ | - | -40 | - | Gauss | | B _{RPS} (South pole to the part marking side) | Release Point | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | 10 | 25 | 45 | Gauss | | D (North pole to the part morting side) | Release Follit | $V_{DD} = 12V, T_A = +25^{\circ}C$ | - | -25 | - | | | B _{RPN} (North pole to the part marking side) | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | -45 | -25 | -10 | | | D (ID LID I) | Hysteresis (Note 13) | V _{DD} = 12V, T _A = +25°C | - | 15 | - | | | B _{HY} (B _{OPX} - B _{RPX}) | Hysteresis (Note 13) | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | 9 | 15 | 23 | | Notes: - 11. When power is initially turned on, V_{DD} must be within its correct operating range (3.0V to 28V) to guarantee the output sampling. The output state is - valid after the start-up timed off, V_{DD} into the witning softeet operating range (5.0% to 28%) to guarantee the output sampling. The output state is valid after the start-up time of 10us typical from the operating voltage reaching 3V. 12. Typical values are defined at T_A = +25°C, V_{DD} = 12V. Maximum and minimum values over the operating temperature range is not tested in production but guaranteed by design, process control and characterization. 13. Maximum and minimum hysteresis is guaranteed by design, process control and characterization. ## **Typical Operating Characteristics** ## Output Switch Operate and Release Points (Magnetic Thresholds) - Bops and Bres Switch Points \mathbf{B}_{OPS} and \mathbf{B}_{RPS} vs Supply Voltage Switch Points \mathbf{B}_{OPS} and \mathbf{B}_{RPS} vs Temperature Switch Points B_{OPS} and B_{RPS} vs Temperature Switch Points \mathbf{B}_{OPS} and \mathbf{B}_{RPS} vs Temperature #### **Supply Current** Supply Current vs Temperature ## **Typical Operating Characteristics** (Cont.) ## **Output Switch On Voltage** **Output ON Voltage vs Supply Voltage** **Output ON Voltage vs Temperature** #### **Output Pull-Up Resistor (Internal)** Internal Output Pull-up Resistor vs Supply Voltage Internal Output Pull-up Resistor vs Temperature #### **Output Current Limit** Output CurrentLimit vs Temperature ## **Thermal Performance Characteristics** #### (1) Package Type: SOT23 | T _A (°C) | 25 | 50 | 60 | 70 | 80 | 85 | 90 | 100 | 105 | 110 | 120 | 125 | 130 | 140 | 150 | |---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | P _D (mW) | 230 | 184 | 166 | 147 | 129 | 120 | 110 | 92 | 83 | 74 | 55 | 46 | 37 | 18 | 0 | #### (2) Package Type: SIP-3 (Ammo Pack), SIP-3 (Bulk Pack) | T _A (°C) | 25 | 50 | 60 | 70 | 80 | 85 | 90 | 100 | 105 | 110 | 120 | 125 | 130 | 140 | 150 | |---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | P _D (mW) | 550 | 440 | 396 | 362 | 308 | 286 | 264 | 220 | 198 | 176 | 132 | 110 | 88 | 44 | 0 | ## Power Dissipation Curve ### **Ordering Information** P: SIP-3(Bulk Pack) A: Ammo Box (Note 14) SA: SOT23 B: Bulk (Note 15) | | Bookogo | | Bulk | | 7" Tape an | d Reel | Ammo Box | | | |-------------|-----------------|-------------------|----------|-----------------------|------------------|-----------------------|----------|-----------------------|--| | Part Number | Package
Code | Packaging | Quantity | Part Number
Suffix | Quantity | Part Number
Suffix | Quantity | Part Number
Suffix | | | AH3582-P-A | Р | SIP-3 (Ammo Pack) | NA | NA | NA | NA | 4000/Box | -A | | | AH3582-P-B | Р | SIP-3 (Bulk Pack) | 1000 | -B | NA | NA | NA | NA | | | AH3582-SA-7 | SA | SOT23 | NA | NA | 3000/Tape & Reel | -7 | NA | NA | | Ammo Box is for SIP-3 (Ammo Pack) Spread Lead. Bulk is for SIP-3 (Bulk Pack) Straight Lead. Notes: ## **Marking Information** (1) Package Type: SOT23 XX Y W XX: Internal code XX: Identification code Y: Year 0 to 9 \underline{W} : Week: A to Z: 1 to 26 week; a to z : 27 to 52 week; z represents 52 and 53 week | I | Part Number | Package | Identification Code | |---|-------------|---------|---------------------| | I | AH3582-SA-7 | SOT23 | ZB | #### (2) Package Type: SIP-3 (Ammo Pack), SIP-3 (Bulk Pack) | Part Number | Package | Identification Code | |-------------|-------------------|---------------------| | AH3582-P-A | SIP-3 (Ammo Pack) | 3582 | | AH3582-P-B | SIP-3 (Bulk Pack) | 3582 | ## **Package Outline Dimensions** Please see http://www.diodes.com/package-outlines.html for the latest version. #### (1) Package Type: SOT23 | | SO | Г23 | | |-------|---------|---------|-------| | Dim | Min | Max | Тур | | Α | 0.37 | 0.51 | 0.40 | | В | 1.20 | 1.40 | 1.30 | | С | 2.30 | 2.50 | 2.40 | | D | 0.89 | 1.03 | 0.915 | | F | 0.45 | 0.60 | 0.535 | | G | 1.78 | 2.05 | 1.83 | | Н | 2.80 | 3.00 | 2.90 | | J | 0.013 | 0.10 | 0.05 | | K | 0.890 | 1.00 | 0.975 | | K1 | 0.903 | 1.10 | 1.025 | | L | 0.45 | 0.61 | 0.55 | | L1 | 0.25 | 0.55 | 0.40 | | M | 0.085 | 0.150 | 0.110 | | а | 0° | 8° | | | All [| Dimensi | ions in | mm | #### Min/Max Sensor Location ### Package Outline Dimensions (Cont.) Please see http://www.diodes.com/package-outlines.html for the latest version. #### (2) Package Type: SIP-3 (Bulk Pack) | S | SIP-3 (Bulk Pack) | | | | | | | | | |-------|-------------------|---------|-------|--|--|--|--|--|--| | Dim | Min | Max | Тур | | | | | | | | Α | 1.40 | 1.60 | 1.50 | | | | | | | | b | 0.33 | 0.43 | 0.38 | | | | | | | | b2 | 0.40 | 0.508 | 0.46 | | | | | | | | С | 0.35 | 0.41 | 0.38 | | | | | | | | D | 3.90 | 4.30 | 4.10 | | | | | | | | Е | 2.80 | 3.20 | 3.00 | | | | | | | | e1 | 1.24 | 1.30 | 1.27 | | | | | | | | F | 0.00 | 0.20 | | | | | | | | | J | 2 | .62 REF | | | | | | | | | L | 14.00 | 15.00 | 14.50 | | | | | | | | L1 | 1.55 | 1.75 | 1.65 | | | | | | | | S | 0.63 | 0.84 | 0.74 | | | | | | | | a1 | | | 5° | | | | | | | | a2 | | | 5° | | | | | | | | a3 | | | 45° | | | | | | | | a4 | | | 3° | | | | | | | | All [| Dimensi | ons in | mm | | | | | | | **Sensor Location** ### Package Outline Dimensions (Cont.) Please see http://www.diodes.com/package-outlines.html for the latest version. #### (3) Package Type: SIP-3 (Ammo Pack) | SIP-3 (Ammo Pack) | | | | |----------------------|----------|-------|-------| | Dim | Min | Max | Тур | | Α | 1.40 | 1.60 | 1.50 | | b | 0.33 | 0.43 | 0.38 | | b2a | 0.40 | 0.52 | 0.46 | | С | 0.35 | 0.41 | 0.38 | | D | 3.90 | 4.30 | 4.10 | | Ш | 2.80 | 3.20 | 3.00 | | e1 | 1.24 | 1.30 | 1.27 | | e2 | 2.40 | 2.90 | 2.65 | | F | 0.00 | 0.20 | - | | 7 | 2.62 REF | | | | L | 14.00 | 15.00 | 14.50 | | La | 12.90 | 14.90 | 13.90 | | L1 | 1.55 | 1.75 | 1.65 | | L3 | 2.00 | 3.00 | 2.50 | | S | 0.63 | 0.84 | 0.74 | | a1 | | | 5° | | a2 | | | 5° | | а3 | | | 45° | | a4 | | | 3° | | All Dimensions in mm | | | | **Sensor Location** ## Suggested Pad Layout $\label{prop:lease} Please see \ http://www.diodes.com/package-outlines.html \ for \ the \ latest \ version.$ #### (1) Package Type: SOT23 | Dimensions | Value (in mm) | | |------------|---------------|--| | С | 2.0 | | | Х | 0.8 | | | X1 | 1.35 | | | Y | 0.9 | | | Y1 | 2.9 | | #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. #### LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2018, Diodes Incorporated www.diodes.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.