

SPREAD SPECTRUM MULTIPLIER CLOCK

MK1714-01

DATASHEET

Description

The MK1714-01 is a low cost, high performance clock synthesizer with selectable multipliers and percentages of spread spectrum designed to generate high frequency clocks with low EMI. Using analog/digital Phase Locked Loop (PLL) techniques, the device accepts an inexpensive, fundamental mode, parallel resonant crystal or clock input to produce a spread or dithered output. This reduces the EMI amplitude peaks at the odd harmonics by several dB. The OE pin places both outputs into a high impedance state for board level testing. The PD pin powers down the entire chip and the outputs are held low.

See the MK1714-02 for other selections on input ranges and spreads.

Features

- Packaged in 20 pin tiny SSOP
- Operating voltage of 3.3V or 5V
- Multiplier modes of x1, x2, x3, x4, x5, and x6
- · Inexpensive 10 25 MHz crystal or clock input
- · OE pin tri-states the outputs for board testing
- · Power down pin stops the outputs low
- Selectable frequency spread
- Spread can be turned on or off
- Advanced, low power CMOS process
- Duty cycle of 40/60
- Industrial temperature range available
- Available in Pb (lead) free package
- Input frequency of 5 140 MHz (depending on mode)
- Output frequency of 20 150 MHz (depending on mode)

Block Diagram

Pin Descriptions

Pin	Pin	Pin	Pin Description
Number	Name	Туре	
1	X2	XO	Crystal connection. Connect to parallel mode crystal. Leave open for clock.
2	X1	XI	Crystal connection. Connect to parallel mode crystal or clock.
3	VDD	Power	Connect to VDD. Must be same value as other VDD.
4	VDD	Power	Connect to VDD. Must be same value as other VDD.
5	S4	Input	Select pin 4. Determines multiplier and spread amount per table on following page. Internal pull-down.
6	S3	Input	Select pin 3. Determines multiplier and spread amount per table on following page. Internal pull-up.
7	GND	Power	Connect to ground.
8	GND	Power	Connect to ground.
9	S2	Input	Select pin 2. Determines multiplier and spread amount per table on following page. Internal pull-up.
10	CLK	Output	Clock output dependent on input, multiplier, and spread amount per table on following page.
11	XSEL	Input	Connect to VDD for crystal input, or GND for CLK input. Internal pull-down.
12	LEE	Input	Low EMI Enable. Turns on spread spectrum on CLK when high. Internal pull-up.
13	GND	Power	Connect to ground.
14	S1	Input	Select pin 1. Determines multiplier and spread amount per table on following page. Internal pull-up.
15	NC	-	No connect. Do not connect anything to this pin.
16	S0	Input	Select pin 0. Determines multiplier and spread amount per table on following page. Internal pull-up.
17	GND	Power	Connect to ground.
18	PD	Input	Power down. Turns off chip when low. Outputs stop low. Leave open or connected to VDD if power down is not required.
19	OE	Input	Output enable. Tri-states all outputs when low. Internal pull-up.
20	REF	Output	Reference clock output from crystal oscillator. This clock is not spread.

Note: When changing the input frequency, the LEE pin must be set low for minimum of 10µs to allow the PLL to lock to the new frequency. Alternatively, the PD pin may be set low while changing frequencies.

Clock Output Select Table (MHz)

S 4	S 3	S2	S1	S0	Input Range	Multiplier	Output Range	Direction	Amount (%)
0	0	0	0	0	40 - 140	x1	40 - 140	С	±1.25
0	0	0	0	1	60 - 140	x1	60 -140	С	±0.5
0	0	0	1	0	-	test	-	-	-
0	0	0	1	1	40 - 100	x1	40 - 80	С	±1
0	0	1	0	0	10 - 25	x2	20 - 50	С	±1
0	0	1	0	1	20 - 50	x2	40 - 80	С	±0.5
0	0	1	1	0	10 - 30	x2	20 - 60	DC	+0.25, -1.25
0	0	1	1	1	30 - 40	x2	60 - 80	DC	+0.5, -1
0	1	0	0	0	10 - 50	x3	30 - 150	С	±1
0	1	0	0	1	15 - 35	x4	60 - 140	С	±0.5
0	1	0	1	0	40 - 60	x1	40 - 60	DC	+0.5, -1.5
0	1	0	1	1	60 - 120	x1	60 - 120	D	-1
0	1	1	0	0	60 - 140	x1	60 - 140	DC	+0.5, -1.5
0	1	1	0	1	60 - 120	x1	60 - 120	DC	+0.5, -1.5
0	1	1	1	0	30 - 60	x1	30 - 60	D	-2.5
0	1	1	1	1	40 - 100	x1	40 - 100	DC	+0.5, -1.5
1	0	0	0	0	15 -25	x4	60 - 100	D	-1
1	0	0	0	1	10 - 13.33	x3	30 - 40	D	-1.5
1	0	0	1	0	30 - 100	x1	30 - 100	С	±0.5
1	0	0	1	1	30 - 80	x1	30 - 80	DC	+0.25, -1.25
1	0	1	0	0	-	test	-	-	-
1	0	1	0	1	5 - 20	x4	20 - 80	DC	+0.5, -3
1	0	1	1	0	-	test	-	-	-
1	0	1	1	1	10 - 17	x8	80 - 136	DC	+0.5, -1
1	1	0	0	0	10 - 25	x4	40 - 100	С	±1
1	1	0	0	1	8 - 20	x5	40 - 100	С	±1
1	1	0	1	0	10 - 20	x6	60 - 120	С	±1
1	1	0	1	1	10 - 15	x8	80 - 120	С	±1
1	1	1	0	0	10 - 20	x4	40 - 80	DC	+0.25, -1.25
1	1	1	0	1	8 - 16	x5	40 - 80	DC	+0.5, -1.5
1	1	1	1	0	8 - 23	x6	48 - 138	DC	+0.5, -2
1	1	1	1	1	8 - 16	x8	64 - 128	DC	+0.5, -1.5

For S4:S0, 0 = connect to GND, 1 = connect to VDD.

Direction: C = center spread, D = down spread, DC = down + center spread. Amount = spread amount. For example, for a 40 MHz output clock spread down 1%, the lowest frequency is 39.60 MHz.

Contact IDT (www.idt.com/go/clockhelp) with your exact output frequency for details on spread direction and amount.

External Components

The MK1714-01 requires a minimum number of external components for proper operation.

Decoupling Capacitor

A decoupling capacitor of 0.01μ F must be connected between VDD and GND, as close to these pins as possible. For optimum device performance, the decoupling capacitor should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB trace between the clock outputs and the loads are over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω

Crystal Tuning Load Capacitors

Crystal Load Capacitors

The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors must be connected from each of the pins X1 and X2 to ground.

The value (in pF) of these crystal caps should equal $(C_L-6)^*2$. In this equation, $C_L=$ crystal load capacitance in pF. Example: For a crystal with a 16 pF load capacitance, each crystal capacitor would be

[16 - 6]*2 = 20pF.

If the output frequency is not critical, external load capacitors are not necessary.

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

1) The 0.01μ F decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.

2) The external crystal should be mounted just next to the device with short traces. The X1 and X2 traces should not be routed next to each other with minimum spaces, instead they should be separated and away from other traces.

3) To minimize EMI the 33Ω series termination resistor, if needed, should be placed close to the clock output.

4) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (the ferrite bead and bulk decoupling capacitor can be mounted on the back). Other signal traces should be routed away from the MK1714-01. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Powerup Considerations

To insure proper operation of the spread spectrum generation circuit, some precautions must be taken in the implementation of the MK1714-01.

1) An input signal should not be applied to X1 until VDD is stable (within 10% of its final value). This requirement can be easily met by operating the MK1714-01 and the X1 source from the same power supply. This requirement is not applicable if a crystal is used.

2) LEE should not be enabled (taken high) until after the power supplies and input clock are stable. This requirement can be met by direct control of LEE by system logic; for example, a "power good" signal. Another solution is to leave LEE unconnected but place a 0.01μ F capacitor to ground. The pull-up resistor on LEE will charge the capacitor and provide approximately a 700 μ s delay until spread spectrum is enabled.

3) If the input frequency is changed during operation, disable spread spectrum until the input clock stabilizes at the new frequency.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK1714-01. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	-0.5 to 7V
All Inputs and Outputs	-0.5V to VDD+0.5V
Ambient Operating Temperature	-40 to +85° C
Storage Temperature	-65 to +150° C
Junction Temperature	175° C
Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.0		+5.5	V

DC Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.0		5.5	V
Supply Current	IDD	No load, at 3.3V		26		mA
	IDD	No load, at 5V		40		mA
Input High Voltage	V _{IH}	Select inputs, OE, PD	2			V
Input Low Voltage	V _{IL}	Select inputs, OE, PD			0.8	V
Output High Voltage	V _{OH}	I _{OH} = -8 mA	VDD-0.4			V
Output Low Voltage	V _{OL}	I _{OL} = 8mA			0.4	V
Short Circuit Current	I _{OS}	Each output		±50		mA
On Chip Pull-up Resistor, inputs	R _{PU}	Except X1, S4		500		kΩ
On-Chip Pull-down Resistor, input	R _{PD}	S4 pin only		500		kΩ
Input Capacitance		Except X1, X2		7		pF

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Crystal Frequency			10		25	MHz
Input Clock Frequency			10		150	MHz
Output Rise Time	t _{OR}	0.8 to 2.0V			1.5	ns
Output Fall Time	t _{OF}	2.0 to 0.8V			1.5	ns
One Sigma Jitter		CLK		40		ps
Absolute Jitter		CLK		±150		
Output Clock Duty Cycle		at VDD/2	40	50	60	%
Output Frequency			2		200	MHz
Output Frequency Synthesis Error				1		ppm

Unless stated otherwise, VDD = 3.3V or 5V, Ambient Temperature -40 to +85°C

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		135		° C/W
Ambient	θ_{JA}	1 m/s air flow		93		° C/W
	θ_{JA}	3 m/s air flow		78		° C/W
Thermal Resistance Junction to Case	θ _{JC}			60		° C/W

Marking Diagram (MK1714-01RLF)

Marking Diagram (MK1714-01RILF)

Notes:

1. ####### is the lot code.

- 2. YYWW is the last two digits of the year, and the week number that the part was assembled.
- 3. "I" designates industrial temperaure range.
- 4. "L" designates Pb (lead) free package.

5. Bottom marking: (origin). Origin = country of origin of not USA.

Package Outline and Package Dimensions (20-pin SSOP, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

	Millin	neters	Inches*		
Symbol	Min	Max	Min	Max	
A	1.35	1.75	.053	.069	
A1	0.10	0.25	.0040	.010	
A2		1.50		.059	
b	0.20	0.30	0.008	0.012	
С	0.18	0.25	.007	.010	
D	8.55	8.75	.337	.344	
E	5.80	6.20	.228	.244	
E1	3.80	4.00	.150	.157	
е	0.635 Basic		0.025	Basic	
L	0.40	1.27	.016	.050	
α	0 °	8 °	0 °	8 °	

*For reference only. Controlling dimensions in mm.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
MK1714-01RLF		Tubes	20-pin SSOP	0 to +70° C
MK1714-01RLFTR		Tape and Reel	20-pin SSOP	0 to +70° C
MK1714-01RILF	see page 7	Tubes	20-pin SSOP	-40 to 85 ° C
MK1714-01RILFTR		Tape and Reel	20-pin SSOP	-40 to 85 ° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

8

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters Integrated Device Technology, Inc.

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.