Programmable Precision References The TL431A, B integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{ref} to 36 V with two external resistors. These devices exhibit a wide operating current range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 V reference makes it convenient to obtain a stable reference from 5.0 V logic supplies, and since the TL431A, B operates as a shunt regulator, it can be used as either a positive or negative voltage reference. #### **Features** - Programmable Output Voltage to 36 V - Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B) - Low Dynamic Output Impedance, 0.22 Ω Typical - Sink Current Capability of 1.0 mA to 100 mA - Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical - Temperature Compensated for Operation over Full Rated Operating Temperature Range - Low Output Noise Voltage - NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ### ON Semiconductor® #### www.onsemi.com This is an internally modified SOIC–8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification increases power dissipation capability when appropriately mounted on a printed circuit board. This modified package conforms to all external dimensions of the standard SOIC–8 package. #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 13 of this data sheet. #### DEVICE MARKING INFORMATION See general marking information in the device marking section on page 14 of this data sheet. Figure 3. Representative Schematic Diagram Component values are nominal #### MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.) | Rating | Symbol | Value | Unit | |--|------------------|-----------------------|------| | Cathode to Anode Voltage | V _{KA} | 37 | V | | Cathode Current Range, Continuous | Ι _Κ | -100 to +150 | mA | | Reference Input Current Range, Continuous | I _{ref} | -0.05 to +10 | mA | | Operating Junction Temperature | TJ | 150 | °C | | Operating Ambient Temperature Range | T _A | | °C | | TL431I, TL431AI, TL431BI | | -40 to +85 | | | TL431C, TL431AC, TL431BC | | 0 to +70 | | | NCV431AI, NCV431B, TL431BV, SCV431AI | | -40 to +125 | | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | Total Power Dissipation @ T _A = 25°C | P _D | | W | | Derate above 25°C Ambient Temperature | | | | | D, LP Suffix Plastic Package | | 0.70 | | | P Suffix Plastic Package | | 1.10 | | | DM Suffix Plastic Package | | 0.52 | | | Total Power Dissipation @ T _C = 25°C | P _D | | W | | Derate above 25°C Case Temperature | | | | | D, LP Suffix Plastic Package | | 1.5 | | | P Suffix Plastic Package | | 3.0 | | | ESD Rating (Note 1) Human Body Model per JEDEC JESD22–A114F Machine Model per JEDEC JESD22–A115C Charged Device Model per JEDEC JESD22–C101E | HBM
MM
CDM | >2000
>200
>500 | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### RECOMMENDED OPERATING CONDITIONS | Condition | Symbol | Min | Max | Unit | |--------------------------|----------------|------------------|-----|------| | Cathode to Anode Voltage | V_{KA} | V _{ref} | 36 | V | | Cathode Current | I _K | 1.0 | 100 | mA | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ^{1.} This device contains latch-up protection and exceeds ±100 mA per JEDEC standard JESD78. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | D, LP Suffix
Package | P Suffix
Package | DM Suffix
Package | Unit | |---|-----------------|-------------------------|---------------------|----------------------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 178 | 114 | 240 | °C/W | | Thermal Resistance, Junction-to-Case | $R_{ heta JC}$ | 83 | 41 | _ | °C/W | #### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C, unless otherwise noted.) | | | TL431I | | | TL431C | | | | |--|---|--------|--------------|--------------|--------|--------------|--------------|------| | Characteristic | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | | Reference Input Voltage (Figure 1) V _{KA} = V _{ref} , I _K = 10 mA T _A = 25°C | V _{ref} | 2.44 | 2.495 | 2.55 | 2.44 | 2.495 | 2.55 | V | | $T_A = T_{low}$ to T_{high} (Note 2) | | 2.41 | - | 2.58 | 2.423 | - | 2.567 | | | Reference Input Voltage Deviation Over Temperature Range (Figure 1, Notes 3, 4) V_{KA} = V_{ref} , I_{K} = 10 mA | ΔV_{ref} | ı | 7.0 | 30 | - | 3.0 | 17 | mV | | Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage $I_K = 10$ mA (Figure 2), | $ rac{\Delta V_{ m ref}}{\Delta V_{ m KA}}$ | | | | | | | mV/V | | $\Delta V_{KA} = 10 \text{ V to V}_{ref}$
$\Delta V_{KA} = 36 \text{ V to } 10 \text{ V}$ | | _ | -1.4
-1.0 | -2.7
-2.0 | _ | -1.4
-1.0 | -2.7
-2.0 | | | Reference Input Current (Figure 2)
$I_K = 10 \text{ mA}, R1 = 10 \text{ k}, R2 = \infty$ | I _{ref} | | | | | | | μΑ | | $T_A = 25^{\circ}$ C
$T_A = T_{low}$ to T_{high} (Note 2) | | - | 1.8
- | 4.0
6.5 | - | 1.8
- | 4.0
5.2 | | | Reference Input Current Deviation Over Temperature Range (Figure 2, Note 3) I _K = 10 mA, R1 = 10 k, R2 = ∞ | ΔI_{ref} | ı | 0.8 | 2.5 | - | 0.4 | 1.2 | μΑ | | Minimum Cathode Current For Regulation $V_{KA} = V_{ref}$ (Figure 1) | I _{min} | - | 0.5 | 1.0 | _ | 0.5 | 1.0 | mA | | Off-State Cathode Current (Figure 3)
V _{KA} = 36 V, V _{ref} = 0 V | I _{off} | _ | 20 | 1000 | _ | 20 | 1000 | nA | | Dynamic Impedance (Figure 1, Note 5) $V_{KA} = V_{ref}$, $\Delta I_K = 1.0$ mA to 100 mA, f \leq 1.0 kHz | Z _{KA} | - | 0.22 | 0.5 | _ | 0.22 | 0.5 | Ω | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 2. T_{low} = -40°C for TL431AIP TL431AILP, TL431IP, TL431IP, TL431BID, TL431BIP, TL431BIP, TL431AIDM, TL431AIDM, TL431BIDM; = 0°C for TL431ACP, TL431ACP, TL431CP, TL431CP, TL431CP, TL431ACD, TL431BCP, TL431BCP, TL431BCDM, TL431BCDM - T_{high} = +85°C for TL431AIP, TL431BIP, TL431BID, TL431BID, TL431BIP, TL431BIDM, TL431BIDM, TL431AIDM, TL431ACDM, TL431BCDM, TL431BCDM, TL431BCDM, TL431BCDM - 3. Guaranteed by design. - The deviation parameter ΔV_{ref} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. The average temperature coefficient of the reference input voltage, $\alpha \text{V}_{\text{ref}}$ is defined as: αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6.) $$\begin{aligned} \text{Example}: \Delta \text{V}_{ref} = 8.0 \text{ mV and slope is positive,} \\ \text{V}_{ref} @ 25^{\circ}\text{C} = 2.495 \text{ V}, \Delta \text{T}_{A} = 70^{\circ}\text{C} \\ & \alpha \text{ V}_{ref} = \frac{0.008 \times 10^{6}}{70 \text{ (2.495)}} = 45.8 \text{ ppm/}^{\circ}\text{C} \end{aligned}$$ 5. The dynamic impedance Z_{KA} is defined as: $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$. When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as: $|Z_{KA}'| \approx |Z_{KA}| \left(1 + \frac{R1}{R2}\right)$ #### ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted.) | | | TL431AI /
NCV431AI/
SCV431AI | | 7 | TL431AC | | TL431BC / TL431BI /
TL431BV /
NCV431BV | | | | | |---|--|------------------------------------|--------------|--------------|---------------|--------------|--|----------------|----------------|----------------|------| | Characteristic | Symbol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | Reference Input Voltage (Figure 1) $V_{KA} = V_{ref}, \ I_K = 10 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 6)}$ | V _{ref} | 2.47
2.44 | 2.495
– | 2.52
2.55 | 2.47
2.453 | 2.495
– | 2.52
2.537 | 2.485
2.475 | 2.495
2.495 | 2.505
2.515 | V | | Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 7, 8)
V _{KA} = V _{ref} , I _K = 10 mA | ΔV_{ref} | _ | 7.0 | 30 | _ | 3.0 | 17 | I | 3.0 | 17 | mV | | Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage $I_K = 10$ mA (Figure 2), $\Delta V_{KA} = 10$ V to V_{ref} $\Delta V_{KA} = 36$ V to 10 V | $\frac{\Delta V_{ref}}{\Delta V_{KA}}$ | | -1.4
-1.0 | -2.7
-2.0 | | -1.4
-1.0 | -2.7
-2.0 | - 1 | -1.4
-1.0 | -2.7
-2.0 | mV/V | | Reference Input Current (Figure 2) $I_K = 10 \text{ mA, R1} = 10 \text{ k, R2} = \infty$ $T_A = 25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 6)}$ | I _{ref} | -
- | 1.8
- | 4.0
6.5 | -
- | 1.8
- | 4.0
5.2 | -
- | 1.1 | 2.0
4.0 | μΑ | | Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 7)
I _K = 10 mA, R1 = 10 k, R2 = ∞ | ΔI_{ref} | _ | 0.8 | 2.5 | _ | 0.4 | 1.2 | ı | 0.8 | 2.5 | μΑ | | | I _{min} | - | 0.5 | 1.0 | _ | 0.5 | 1.0 | ı | 0.5 | 1.0 | mA | | Off–State Cathode Current (Figure 3)
V _{KA} = 36 V, V _{ref} = 0 V | I _{off} | - | 20 | 1000 | _ | 20 | 1000 | ı | 0.23 | 500 | nA | | Dynamic Impedance (Figure 1, Note 9) $V_{KA} = V_{ref}, \Delta I_K = 1.0 \text{mA to } 100 \text{mA} \\ f \leq 1.0 \text{kHz}$ | Z _{KA} | - | 0.22 | 0.5 | - | 0.22 | 0.5 | - | 0.14 | 0.3 | Ω | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 6. T_{low} = -40°C for TL431AIP TĹ431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BV, TL431AIDM, TL431AIDM, TL431BIDM, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDR2G, SCV431AIDMR2G - 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM, SCV431AIDMR2G - T_{high} = +85°C for TL431AIP, TL431AILP, TL431IP, TL431BID, TL431BID, TL431BIDP, TL431BIDM, TL431BIDM, TL431AIDM, TL431AIDM, TL431BIDM = +70°C for TL431ACP, TL431ACP, TL431ACD, TL431BCD, TL431BCD, TL431BCDM, TL431BCDM - = +125°C TL431BV, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G, SCV431AIDMR2G - 7. Guaranteed by design. - The deviation parameter ΔV_{ref} is defined as the difference between the maximum and minimum values obtained over the full operating ambient temperature range that applies. αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6.) Example : $$\Delta V_{ref} = 8.0 \text{ mV}$$ and slope is positive, $V_{ref} @ 25^{\circ}C = 2.495 \text{ V}, \Delta T_{A} = 70^{\circ}C$ $\alpha V_{ref} = \frac{0.008 \times 10^{6}}{70 \ (2.495)} = 45.8 \text{ ppm/}^{\circ}C$ - 9. The dynamic impedance Z_{KA} is defined as $|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ When the device is programmed with two external resistors, R1 and R2, (refer - to Figure 2) the total dynamic impedance of the circuit is defined as: $|Z_{KA}| \approx |Z_{KA}| \left(1 + \frac{R1}{R2}\right)$ - 10. NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G, SCV431AIDMR2G T_{low} = -40°C, T_{high} = +125°C. NCV prefix is for automotive and other applications requiring unique site and control change requirements. Figure 1. Test Circuit for $V_{KA} = V_{ref}$ Figure 2. Test Circuit for $V_{KA} > V_{ref}$ Figure 3. Test Circuit for Ioff Figure 4. Cathode Current versus Cathode Voltage Figure 5. Cathode Current versus Cathode Voltage Figure 6. Reference Input Voltage versus Ambient Temperature Figure 7. Reference Input Current versus Ambient Temperature Figure 8. Change in Reference Input Voltage versus Cathode Voltage Figure 9. Off-State Cathode Current versus Ambient Temperature Figure 10. Dynamic Impedance versus Frequency Figure 11. Dynamic Impedance versus Ambient Temperature Figure 12. Open-Loop Voltage Gain versus Frequency Figure 13. Spectral Noise Density Figure 14. Pulse Response Figure 15. Stability Boundary Conditions Figure 16. Test Circuit For Curve A of Stability Boundary Conditions Figure 17. Test Circuit For Curves B, C, And D of Stability Boundary Conditions #### **TYPICAL APPLICATIONS** Figure 18. Shunt Regulator Figure 19. High Current Shunt Regulator Figure 22. Constant Current Source Figure 24. TRIAC Crowbar Figure 21. Series Pass Regulator Figure 23. Constant Current Sink Figure 25. SRC Crowbar L.E.D. indicator is 'on' when V+ is between the upper and lower limits. $$\begin{aligned} \text{Lower Limit} &= \left(1 + \frac{R1}{R2}\right) V_{ref} \\ \text{Upper Limit} &= \left(1 + \frac{R3}{R4}\right) V_{ref} \end{aligned}$$ Figure 26. Voltage Monitor Figure 27. Single–Supply Comparator with Temperature–Compensated Threshold Figure 28. Linear Ohmmeter Figure 29. Simple 400 mW Phono Amplifier Figure 30. High Efficiency Step-Down Switching Converter | Test | Conditions | Results | |-----------------|--|-------------------| | Line Regulation | $V_{in} = 10 \text{ V to } 20 \text{ V}, I_0 = 1.0 \text{ A}$ | 53 mV (1.1%) | | Load Regulation | $V_{in} = 15 \text{ V}, I_{o} = 0 \text{ A to } 1.0 \text{ A}$ | 25 mV (0.5%) | | Output Ripple | $V_{in} = 10 \text{ V}, I_0 = 1.0 \text{ A}$ | 50 mVpp P.A.R.D. | | Output Ripple | $V_{in} = 20 \text{ V}, I_0 = 1.0 \text{ A}$ | 100 mVpp P.A.R.D. | | Efficiency | $V_{in} = 15 \text{ V}, I_0 = 1.0 \text{ A}$ | 82% | #### APPLICATIONS INFORMATION The TL431 is a programmable precision reference which is used in a variety of ways. It serves as a reference voltage in circuits where a non-standard reference voltage is needed. Other uses include feedback control for driving an optocoupler in power supplies, voltage monitor, constant current source, constant current sink and series pass regulator. In each of these applications, it is critical to maintain stability of the device at various operating currents and load capacitances. In some cases the circuit designer can estimate the stabilization capacitance from the stability boundary conditions curve provided in Figure 15. However, these typical curves only provide stability information at specific cathode voltages and at a specific load condition. Additional information is needed to determine the capacitance needed to optimize phase margin or allow for process variation. A simplified model of the TL431 is shown in Figure 31. When tested for stability boundaries, the load resistance is 150 Ω . The model reference input consists of an input transistor and a dc emitter resistance connected to the device anode. A dependent current source, Gm, develops a current whose amplitude is determined by the difference between the 1.78 V internal reference voltage source and the input transistor emitter voltage. A portion of Gm flows through compensation capacitance, C_{P2} . The voltage across C_{P2} drives the output dependent current source, Go, which is connected across the device cathode and anode. Model component values are: $V_{ref} = 1.78 \text{ V}$ $Gm = 0.3 + 2.7 \exp(-I_C/26 \text{ mA})$ where I_C is the device cathode current and Gm is in mhos Go = $$1.25 (V_{cp}2) \mu mhos$$. Resistor and capacitor typical values are shown on the model. Process tolerances are $\pm 20\%$ for resistors, $\pm 10\%$ for capacitors, and $\pm 40\%$ for transconductances. An examination of the device model reveals the location of circuit poles and zeroes: P1 = $$\frac{1}{2\pi R_{GM} C_{P1}} = \frac{1}{2\pi * 1.0 M * 20 pF} = 7.96 \text{ kHz}$$ $$P2 = \frac{1}{2\pi R_{P2}C_{P2}} = \frac{1}{2\pi*10 M*0.265 pF} = 60 \text{ kHz}$$ Z1 = $$\frac{1}{2\pi R_{71}C_{P1}}$$ = $\frac{1}{2\pi * 15.9 k * 20 pF}$ = 500 kHz In addition, there is an external circuit pole defined by the load: $$\mathsf{P}_L = \frac{1}{2\pi \; \mathsf{R}_L \mathsf{C}_L}$$ Also, the transfer dc voltage gain of the TL431 is: $$G = G_M R_{GM} GoR_I$$ Example 1: $\rm I_{\mbox{\scriptsize C}} = 10\,m\mbox{\scriptsize mA}, R_{\mbox{\scriptsize L}} = \,230~\Omega, C_{\mbox{\scriptsize L}} = \,0.$ Define the transfer gain . The DC gain is: $$G = G_M R_{GM} GoR_L =$$ $(2.138)(1.0 M)(1.25 \mu)(230) = 615 = 56 dB$ Loop gain = $$G = \frac{8.25 \text{ k}}{8.25 \text{ k} + 15 \text{ k}} = 218 = 47 \text{ dB}$$ The resulting transfer function Bode plot is shown in Figure 32. The asymptotic plot may be expressed as the following equation: $$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\left(1 + \frac{jf}{60 \text{ kHz}}\right)}$$ The Bode plot shows a unity gain crossover frequency of approximately 600 kHz. The phase margin, calculated from the equation, would be 55.9 degrees. This model matches the Open–Loop Bode Plot of Figure 12. The total loop would have a unity gain frequency of about 300 kHz with a phase margin of about 44 degrees. Figure 31. Simplified TL431 Device Model Figure 32. Example 1 Circuit Open Loop Gain Plot Example 2. $I_C=7.5$ mA, $R_L=2.2$ k Ω , $C_L=0.01$ μF . Cathode tied to reference input pin. An examination of the data sheet stability boundary curve (Figure 15) shows that this value of load capacitance and cathode current is on the boundary. Define the transfer gain. The DC gain is: $$G = G_M R_{GM} GoR_L =$$ $(2.323)(1.0 \text{ M})(1.25 \mu)(2200) = 6389 = 76 \text{ dB}$ The resulting open loop Bode plot is shown in Figure 33. The asymptotic plot may be expressed as the following equation: $$Av = 615 \frac{\left(1 + \frac{jf}{500 \text{ kHz}}\right)}{\left(1 + \frac{jf}{8.0 \text{ kHz}}\right)\!\left(1 + \frac{jf}{60 \text{ kHz}}\right)\!\left(1 + \frac{jf}{7.2 \text{ kHz}}\right)}$$ Note that the transfer function now has an extra pole formed by the load capacitance and load resistance. Note that the crossover frequency in this case is about 250 kHz, having a phase margin of about -46 degrees. Therefore, instability of this circuit is likely. Figure 33. Example 2 Circuit Open Loop Gain Plot With three poles, this system is unstable. The only hope for stabilizing this circuit is to add a zero. However, that can only be done by adding a series resistance to the output capacitance, which will reduce its effectiveness as a noise filter. Therefore, practically, in reference voltage applications, the best solution appears to be to use a smaller value of capacitance in low noise applications or a very large value to provide noise filtering and a dominant pole rolloff of the system. #### **ORDERING INFORMATION** | Device | Marking
Code | Operating Temperature Range | Package Code | Shipping Information [†] | Tolerance | |--------------|-----------------|-----------------------------|---------------------|-----------------------------------|-----------| | TL431ACDG | AC | | | | 1.0% | | TL431BCDG | BC | | | 98 Units / Rail | 0.4% | | TL431CDG | С | | SOIC-8 | | 2.2% | | TL431ACDR2G | AC | | (Pb-Free) | | 1.0% | | TL431BCDR2G | BC | | | 2500 / Tape & Reel | 0.4% | | TL431CDR2G | С | | | | 2.2% | | TL431ACDMR2G | TAC | | | | 1.0% | | TL431BCDMR2G | TBC | | Micro8
(Pb-Free) | 4000 / Tape & Reel | 0.4% | | TL431CDMR2G | T-C | | (1 5-1 100) | | 2.2% | | TL431ACPG | ACP | | | | 1.0% | | TL431BCPG | BCP | | PDIP-8
(Pb-Free) | 50 Units / Rail | 0.4% | | TL431CPG | CP | | (1 D-1 166) | | 2.2% | | TL431ACLPG | ACLP | 0°C to 70°C | | | 1.0% | | TL431BCLPG | BCLP | | | 2000 Units / Bag | 0.4% | | TL431CLPG | CLP | | | | 2.2% | | TL431ACLPRAG | ACLP | | | | 1.0% | | TL431BCLPRAG | BCLP | | | | 0.4% | | TL431CLPRAG | CLP | | | 0000 / Table 0 Dead | 2.2% | | TL431ACLPREG | ACLP | | TO-92
(Pb-Free) | 2000 / Tape & Reel | 1.0% | | TL431BCLPREG | BCLP | | (FD-FIEE) | | 0.4% | | TL431CLPREG | CLP | | | | 2.2% | | TL431ACLPRPG | ACLP | | | 2000 / Tape & Ammo Box | 1.0% | | TL431BCLPRMG | BCLP | | | | 0.4% | | TL431CLPRMG | CLP | | | 2000 / Fan-Fold | | | TL431CLPRPG | CLP | | | | 2.2% | | TL431AIDG | Al | | | | 1.0% | | TL431BIDG | BI | | | 98 Units / Rail | 0.4% | | TL431IDG | I | | SOIC-8 | | 2.2% | | TL431AIDR2G | Al | | (Pb-Free) | | 1.0% | | TL431BIDR2G | BI | | | 2500s / Tape & Reel | 0.4% | | TL431IDR2G | I | | | · | 2.2% | | TL431AIDMR2G | TAI | | | | 1.0% | | TL431BIDMR2G | TBI | | Micro8
(Pb-Free) | 4000 / Tape & Reel | 0.4% | | TL431IDMR2G | T-I | | (FD-FIEE) | · | 2.2% | | TL431AIPG | AIP | | | | 1.0% | | TL431BIPG | BIP | 4000 : 0500 | PDIP-8 | 50 Units / Rail | 0.4% | | TL431IPG | IP | −40°C to 85°C | (Pb-Free) | , | 2.2% | | TL431AILPG | AILP | | | | 1.0% | | TL431BILPG | BILP | | | 2000 Units / Bag | 0.4% | | TL431ILPG | ILP | | | | 2.2% | | TL431AILPRAG | AILP | | | | 1.0% | | TL431BILPRAG | BILP | | TO-92 | 0000 /T- 0 D / | 0.4% | | SC431ILPRAG | ILP | | (Pb-Free) | 2000 / Tape & Reel | 0.557 | | TL431ILPRAG | ILP | | | | 2.2% | | TL431AILPRMG | A.:: = | | | | | | TL431AILPRPG | AILP | | | 2000 / Tape & Ammo Box | 1.0% | | TL431ILPRPG | ILP | | | | 2.2% | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. #### **ORDERING INFORMATION** | Device | Marking
Code | Operating Temperature Range | Package Code | Shipping Information [†] | Tolerance | |----------------|-----------------|-----------------------------|---------------------|-----------------------------------|-----------| | TL431BVDG | BV | | SOIC-8 | 98 Units / Rail | | | TL431BVDR2G | DV | | (Pb-Free) | 2500 / Tape & Reel | 1 | | TL431BVDMR2G | TBV | | Micro8
(Pb-Free) | 4000 / Tape & Reel | 0.4% | | TL431BVLPG | BVLP | | TO-92 | 2000 Units / Bag | 1 | | TL431BVLPRAG | DVLF | | (Pb-Free) | 2000 / Tape & Reel | 1 | | TL431BVPG | BVP | -40°C to 125°C | PDIP-8
(Pb-Free) | 50 Units / Rail | 0.4% | | NCV431AIDMR2G* | RAN | -40 0 10 123 0 | Micro8 | 4000 / Tape & Reel | | | SCV431AIDMR2G* | RAP | | (Pb-Free) | 4000 / Tape & neer | 1% | | NCV431AIDR2G* | AV | | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | 1/6 | | NCV431BVDMR2G* | NVB | | Micro8
(Pb-Free) | 4000 / Tape & Reel | 0.4% | | NCV431BVDR2G* | BV | | SOIC-8
(Pb-Free) | 2500 / Tape & Reel | 0.4% | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **MARKING DIAGRAMS** ^{*}NCV/SCV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. #### **PACKAGE DIMENSIONS** TO-92 (TO-226) CASE 29-11 **ISSUE AN** STRAIGHT LEAD **BULK PACK** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | C | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | V | 0 135 | | 3 43 | | **BENT LEAD** TAPE & REEL AMMO PACK - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | 4.45 | 5.20 | | | | | | В | 4.32 | 5.33 | | | | | | С | 3.18 | 4.19 | | | | | | D | 0.40 | 0.54 | | | | | | G | 2.40 | 2.80 | | | | | | ſ | 0.39 | 0.50 | | | | | | K | 12.70 | | | | | | | N | 2.04 | 2.66 | | | | | | Р | 1.50 | 4.00 | | | | | | R | 2.93 | | | | | | | V | 3 //3 | | | | | | #### **PACKAGE DIMENSIONS** PDIP-8 CASE 626-05 **ISSUE P** NOTE 3 C 0.010 M C A M B M 8X b e/2 → е SIDE VIEW D1 → NOTE 5 SEATING PLANE eВ **END VIEW** NOTE 6 - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, MOLD FLASH OR PROTRUSIONS ARE - NOT TO EXCEED 0.10 INCH. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. - TO DATUM C. DIMENSION & B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE - CORNERS). | | INC | HES | MILLIM | ETERS | |-----|-------|-------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 | TYP | 1.52 | TYP | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.355 | 0.400 | 9.02 | 10.16 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 | BSC | 2.54 | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | M | | 10° | | 10° | #### **PACKAGE DIMENSIONS** #### Micro8™ CASE 846A-02 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED A 15 (1) ONES DEED SIDE. - DOTING MODEL TO STATE TO THOSE OF THE STATE TO ST | | MILLIMETERS | | | | | | |-----|-------------|----------|------|-------|-----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | | 1.10 | | | 0.043 | | A1 | 0.05 | 0.08 | 0.15 | 0.002 | 0.003 | 0.006 | | b | 0.25 | 0.33 | 0.40 | 0.010 | 0.013 | 0.016 | | С | 0.13 | 0.18 | 0.23 | 0.005 | 0.007 | 0.009 | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | E | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | е | | 0.65 BSC | | | 0.026 BSC | ; | | L | 0.40 | 0.55 | 0.70 | 0.016 | 0.021 | 0.028 | | HE | 4.75 | 4.90 | 5.05 | 0.187 | 0.193 | 0.199 | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSION: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### NOTES: - NOTE: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE - MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT - MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Η | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | Ν | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | #### **SOLDERING FOOTPRINT*** $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Micro8 is a trademark of International Rectifier. ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.