SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

 Meet or Exceed Standards TIA/EIA-422-B and TIA/EIA-485-A 	SN75ALS1177 N OR NS PACKAGE (TOP VIEW)
 Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments 	1B 1 16 V _{CC} 1A 2 15 1D
 Low Supply-Current Requirement 50 mA Max 	1R [] 3 14]] 1Y RE [] 4 13]] 1Z
 Driver Positive- and Negative-Current Limiting 	2R 0 5 12 DE 2A 0 6 11 2Z
 Driver Common-Mode Output Voltage Range of -7 V to 12 V 	2B [] 7 10]] 2Y GND [] 8 9]] 2D
Thermal Shutdown Protection	
 Driver 3-State Outputs Active-High Enable 	SN75ALS1178 N OR NS PACKAGE
 Receiver Common-Mode Input Voltage Range of -12 V to 12 V 	(TOP VIEW) 1B [1 16] V _{CC}
Receiver Input Sensitivity ±200 mV	1A [2 15] 1D
Receiver Hysteresis 50 mV Typ	1R 🛛 3 14 🗍 1Y
Receiver High Input	1DE [] 4 13 [] 1Z
Impedance 12 k Ω Min	2R 5 12 2DE
 Receiver 3-State Outputs Active-Low 	
Enable for SN75ALS1177 Only	2B [] 7 10 [] 2Y GND [] 8 9 [] 2D
Operate From Single 5-V Supply	GND L ⁸ ⁹ L 2D

• Operate From Single 5-V Supply

description

The SN75ALS1177 and SN75ALS1178 dual differential drivers and receivers are integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet standards TIA/EIA-422-B and TIA/EIA-485-A.

The SN75ALS1177 combines dual 3-state differential line drivers and dual 3-state differential input line receivers, both of which operate from a single 5-V power supply. The drivers and receivers have active-high and active-low enables, respectively, which can be externally connected together to function as direction control. The SN75ALS1178 drivers each have an individual active-high enable. Fail-safe design ensures that when the receiver inputs are open, the receiver outputs are always high.

The SN75ALS1177 and SN75ALS1178 are characterized for operation from 0°C to 70°C.

AVAILABLE OF HONS							
	PACKAGED DEVICES						
TA	PLASTIC DIP (N)	PLASTIC SMALL OUTLINE (NS)					
0°C to 70°C	SN75ALS1177N	SN75ALS1177NSR					
0010700	SN75ALS1178N	SN75ALS1178NSR					

AVAILABLE OPTIONS

The NS package is only available taped and reeled. Add the suffix R to the device type (e.g., SN75ALS1177NSR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

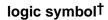
SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

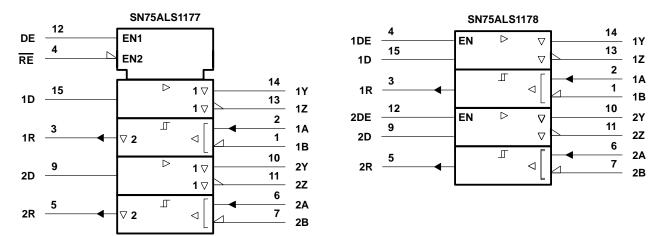
Function Tables

SN75ALS1177, SN75ALS1178 (each driver)

INPUT	ENABLE	OUTI	PUTS
D	DE	Y	Z
Н	Н	Н	L
L	Н	L	н
Х	L	Z	Z

SN75ALS1177 (each receiver)

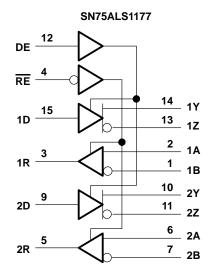

DIFFERENTIAL A–B	ENABLE RE	OUTPUT Y
$V_{ID} \ge 0.2 V$	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \leq -0.2 V$	L	L
Х	Н	Z
Open	L	н

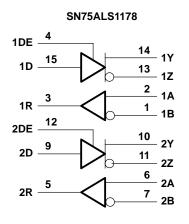

SN75ALS1178 (each receiver)

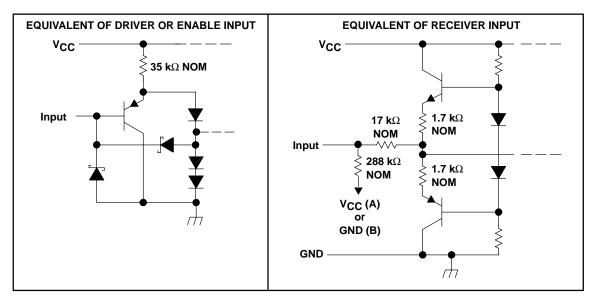
DIFFERENTIAL A–B	OUTPUT Y
$V_{ID} \ge 0.2 V$	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
$V_{ID} \le -0.2 V$	L
Open	Н

H = High level, L = Low level, ? = Indeterminate, X = Irrelevant,

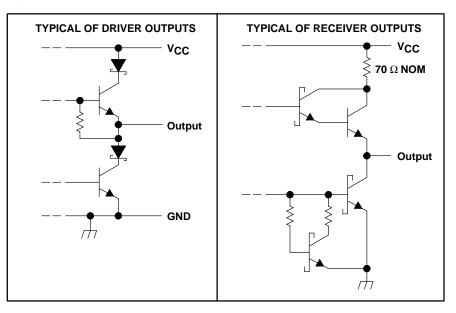
Z = High impedance (off)




[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

logic diagram (positive logic)


equivalent schematics

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

schematics of outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I (DE, RE, and D inputs)	
Output voltage range, V _O (driver)	
Input voltage range, receiver	\ldots –14 V to 14 V
Receiver differential-input voltage range (see Note 2)	\ldots –14 V to 14 V
Receiver low-level output current	50 mA
Package thermal impedance, θ_{JA} (see Note 3): N package	67°C/W
NS package	64°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	–65°C to 150°C
· · · · · · · · · · · · · · · · · · ·	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

2. Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	C Supply voltage				5.25	V
VID	Differential input voltage	Receiver			±12	V
Voc	Common-mode output voltage	Driver	_7†		12	V
VIC	Common-mode input voltage	Receiver			±12	V
VIH	High-level input voltage	DE, RE, D	2			V
VIL	Low-level input voltage	DE, RE, D			0.8	V
lau	High lovel output current	Driver			-60	mA
ЮН	High-level output current	Receiver			-400	μA
	Low-level output current	Driver			60	mA
IOL	Low-level output current	Receiver			8	ША
T _A Operating free-air temperature					70	°C

[†] The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage level only.

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
VIK	Input clamp voltage	lı = -18 mA					-1.5	V
VOH	High-level output voltage	V _{IH} = 2 V,	V _{IL} = 0.8 V,	I _{OH} = -33 mA		3.3		V
V _{OL}	Low-level output voltage	V _{IH} = 2 V,	V _{IL} = 0.8 V,	I _{OL} = 33 mA		1.1		V
VOD1	Differential output voltage	IO = 0			1.5		6	V
	Differential output voltage	V _{CC} = 5 V,	RL = 100 Ω,	See Figure 1	1/2 VOD1 or 2‡			V
		R _L = 54 Ω,	See Figure 1		1.5	2.5	5	
Vod3	Differential output voltage	See Note 4			1.5		5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage (see Note 5)	$R_L = 54 \Omega \text{ or } 2$	100 Ω,	See Figure 1			±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega$ or 2	100 Ω,	See Figure 1	–1§		3	V
∆ VOC	Change in magnitude of common-mode output voltage (see Note 5)	$R_L = 54 \Omega \text{ or } 2$	100 Ω,	See Figure 1			±0.2	V
lO(OFF)	Output current with power off	$V_{CC} = 0,$	$V_{O} = -7 V \text{ to } 1$	2 V			±100	μA
I _{OZ}	High-impedance-state output current	$V_{O} = -7 V$ to T	12 V				±100	μA
IIH	High-level input current	V _{IH} = 2.7 V					100	μA
۱ _{IL}	Low-level input current	V _{IL} = 0.4 V					-100	μA
		$V_{O} = -7 V$					-250	
	Short-circuit output current	V _O = V _{CC}					250	mA
los			V _O = 12 V			250		
		V _O = 0 V					150	
	Supply current (total package)	No load	Outputs enable	ed		35	50	mA
ICC	ouppy current (total package)		Outputs disabled			20	50	ШA

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. [‡] The minimum V_{OD2} with a 100-Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

§ The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.

NOTES: 4. See TIA/EIA-485-A Figure 3.5, test termination measurement 2.

5. $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, high- to low-level output	$R_L = 60 \Omega$, $C_{L1} = 0$ See Figure 3	$R_L = 60 \Omega$, $C_{L1} = C_{L2} = 100 \text{ pF}$, See Figure 3			22	ns
^t PHL	Propagation delay time, low- to high-level output	$R_L = 60 \Omega$, $C_{L1} = 0$ See Figure 3	9	15	22	ns	
^t sk	Output-to-output skew	$R_L = 60 \Omega$, $C_{L1} = 0$ See Figure 3	$R_L = 60 \Omega$, $C_{L1} = C_{L2} = 100 \text{ pF}$, See Figure 3		2	8	ns
^t PZH	Output enable time to high level	C _L = 100 pF,	See Figure 4	30	35	50	ns
^t PZL	Output enable time to low level	C _L = 100 pF,	See Figure 5	5	15	25	ns
^t PHZ	Output disable time from high level	C _L = 15 pF, See Figure 4		7	15	30	ns
^t PLZ	Output disable time from low level	C _L = 15 pF,	See Figure 5	7	15	30	ns

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS			MAX	UNIT	
VIT+	Positive-going input threshold voltage		V _O = 2.7 V,	I _O = -0.4 mA			0.2	V
V _{IT} _	Negative-going input threshold voltage		V _O = 0.5 V,	I _O = 8 mA	-0.2‡			V
V _{hys}	Input hysteresis voltage ($V_{IT+} - V_{IT-}$)					50		mV
VIK	Enable input clamp voltage	SN75ALS1177	lj = -18 mA				-1.5	V
		V _{ID} = 200 mV, I _{OH} = -400 μA, See Figure 2		2.7			V	
VOL	Low-level output voltage		V _{ID} = 200 mV, I _{OL} = 8 mA, See Figure 2				0.45	V
IOZ	High-impedance-state output current	SN75ALS1177	$V_{O} = 0.4 \text{ V to } 2.4 \text{ V}$	/			±20	μA
1.	Line input ourrent (and Note 6)		Other input at 0 V	V _I = 12 V			1	~ ^
łı	Line input current (see Note 6)	Other input at 0		V _I = -7 V			-0.8	mA
IIН	High-level input current, RE	SN75ALS1177	V _{IH} = 2.7 V				20	μA
Ι _{ΙL}	Low-level input current, RE	SN75ALS1177	V _{IL} = 0.4 V				-100	μA
r _i Input resistance				12			kΩ	
los	IOS Short-circuit output current		V _O = 0 V,	See Note 7	-15		-85	mA
ICC	Supply current (total package)		No load,	Outputs enabled		35	50	mA

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. [‡] The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.

NOTES: 6. Refer to TIA/EIA-422-B, TIA/EIA-423-A, and TIA/EIA-485-A for exact conditions.

7. Not more than one output should be shorted at a time.

switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

PARAMETER			TEST C	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-lev	el output	C _L = 15 pF,	See Figure 6	15	25	37	ns
^t PHL	Propagation delay time, high- to low-level output		C _L = 15 pF,	See Figure 6	15	25	37	ns
^t PZH	Output enable time to high level	SN75ALS1177	C _L = 100 pF,	See Figure 7	10	20	30	ns
^t PZL	Output enable time to low level	SN75ALS1177	C _L = 100 pF,	See Figure 7	10	20	30	ns
^t PHZ	Output disable time from high level	SN75ALS1177	C _L = 15 pF,	See Figure 7	3.5	12	16	ns
^t PLZ	Output disable time from low level	SN75ALS1177	C _L = 15 pF,	See Figure 7	5	12	16	ns

SLLS154B – MARCH 1993 – REVISED FEBRUARY 2001

PARAMETER MEASUREMENT INFORMATION

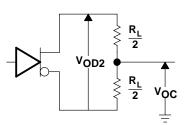
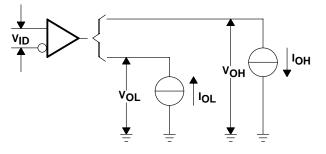
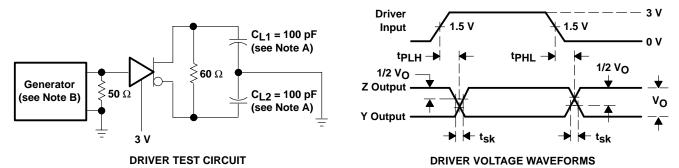
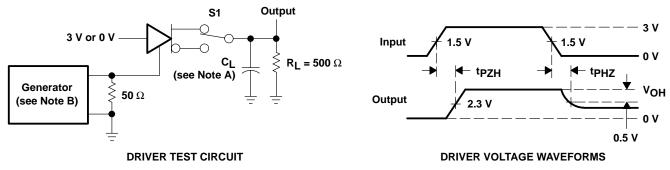


Figure 1. Driver Test Circuit, V_{OD} and V_{OC}


Figure 2. Receiver Test Circuit, VOH and VOL

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns.

Figure 3. Driver Propagation Delay Times

NOTES: A. C_I includes probe and jig capacitance.

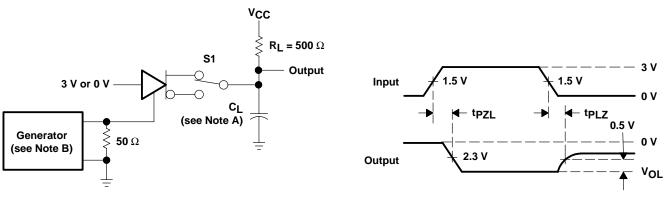
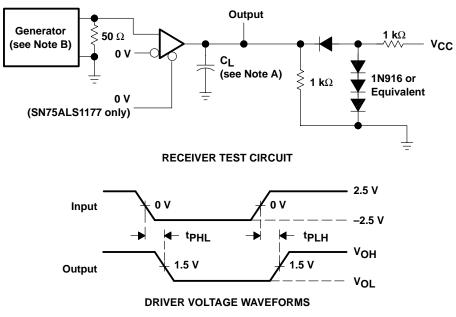

B. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns.

Figure 4. Driver Enable and Disable Times

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

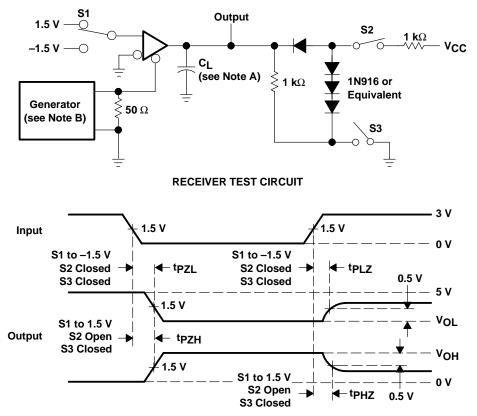
PARAMETER MEASUREMENT INFORMATION


DRIVER TEST CIRCUIT

DRIVER VOLTAGE WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns.


NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns.

Figure 6. Receiver Propagation Delay Times

SLLS154B - MARCH 1993 - REVISED FEBRUARY 2001

PARAMETER MEASUREMENT INFORMATION

RECEIVER VOLTAGE WAVEFORMS

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns.

Figure 7. Receiver Output Enable and Disable Times

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75ALS1177N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS1177NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS1177NSLE	OBSOLETE	SO	NS	16		TBD	Call TI	Call TI
SN75ALS1177NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS1177NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS1177NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS1178N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS1178NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS1178NSLE	OBSOLETE	SO	NS	16		TBD	Call TI	Call TI
SN75ALS1178NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS1178NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

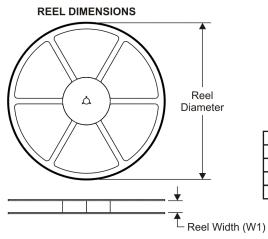
OBSOLETE: TI has discontinued the production of the device.

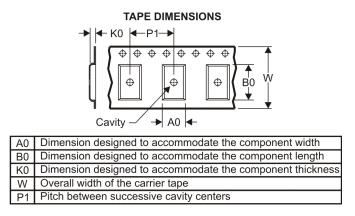
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

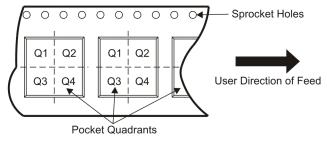
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

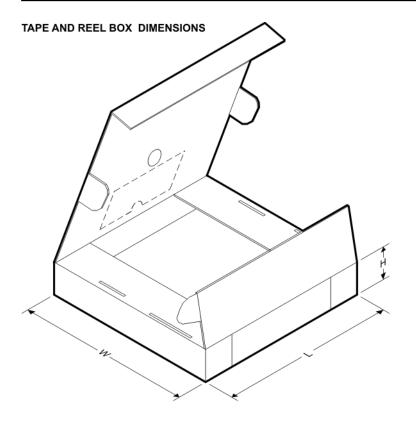

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nor	minal											
Device	Packag Type	e Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75ALS1177NS	SR SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN75ALS1178NS	SR SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75ALS1177NSR	SO	NS	16	2000	346.0	346.0	33.0
SN75ALS1178NSR	SO	NS	16	2000	346.0	346.0	33.0

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.