
Getting Started with the nRF8001 Bluefruit LE Breakout
Created by Kevin Townsend

Last updated on 2019-11-15 07:10:51 PM UTC



Introduction

Our nRF8001 Breakout allows you to establish an easy to use wireless link between your Arduino and any compatible
iOS or Android (4.3+) device. It works by simulating a UART device beneath the surface, sending ASCII data back and
forth between the devices, letting you decide what data to send and what to do with it on either end of the connection.

Unlike classic Bluetooth, BLE has no big contracts to sign and no major hoops that you have to jump through to create
iOS peripherals that you can legally design and distribute in the App Store, which makes it a great choice compared to
classic Bluetooth which had (and still has) a lot of restrictions around it on the iOS platform. 

And now that Android also officially supports Bluetooth Low Energy (as of Android 4.3), it's also -- finally! -- a universal
communication channel covering the main mobile operating systems people are using today.

We can get you started super fast with this BLE module which can act like an 'every day' UART data link. Send and
receive data up to 10 meters away, from your Arduino to an iOS device. We've even made it easy to get started with
our very own BLE connect app that has a "serial console" for sending/receiving data and also an 'arduino pin i/o
control station" (https://adafru.it/ddu) to let you set pins on your Arduino to inputs or outputs, high or low logic or even
PWM output, as well as read button presses and analog inputs. You can start prototyping your accessory and then use
our open source Objective C code to base your new app on! (https://adafru.it/ddv)

Please note: At this time, we don't have an Android version of the Adafruit Bluefruit LE App available (our native BLE
application), but you can use Nordic's Android nRF UART application with the nRF8001 Breakout on BLE capable
Android devices (Nexus 4, Nexus 5, Nexus 7, etc.)

The nRF8001 library is not compatible with the Arduino Due at this time�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 3 of 39

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/understanding-the-nrf-uart#uint16-t-println-const-char-star-thestr


 

This guide will help you setup your nRF8001 Bluetooth Low Energy breakout, and start using some of the sample
sketches we provide with it to connect to an iOS or Android device. If you're new to Bluetooth Low Energy, be sure to
check out our Introduction to Bluetooth Low Energy (https://adafru.it/dd1) learning guide as well!

Requirements

Adafruit nRF8001 Breakout
A BLE enabled Android or iOS device to test with for nRF UART demos
An iOS device running iOS 7 with Bluefruit (https://adafru.it/dd2) installed for the BlueFruit LE Firmata demos

At this time, we don't have an Android version of the Adafruit Bluefruit LE App available (our native BLE 
application), but you can use Nordic's Android nRF UART application on BLE capable Android devices (Nexus 
4, Nexus 5, Nexus 7, etc.), or have a look at this Android project by Tony Dicola: 
https://github.com/tdicola/BTLETest

�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 4 of 39

http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://github.com/tdicola/BTLETest
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8


 

Pinouts

The nRF8001 is nice because it handles all the BLE radio and low level work, and does it all over SPI which makes it
easy to use with any kind of microcontroller. All pins you need are broken out on the bottom of the PCB and all are 5V
compliant so you can use with 3V or 5V micros!

Starting from the left:

SCK - this is the SPI data clock pin, connect to your SPI master clock out
MISO - this the SPI data out pin, data is sent from the module on this pin. Data level is 3V but that is fine for 5V
microcontrollers.
MOSI - this is the SPI data in pin, data is sent to the module on this pin.
REQ - this is basically what the nRF8001 considers the 'SPI Chip Select' pin, its an input
RDY (ready) - this is the data-ready pin, an interrupt output from the breakout to the microcontroller letting it
know that data is ready to read
ACT (active) - this is an output from the module, it lets the host know when the nRF8001 is busy
RST (reset) - this is the reset pin input.
3Vo - this is the output from the onboard 3.3V regulator, you can grab up to 100mA from this pin.
GND - common ground for data and power
VIN - 3-5 VDC input to power the breakout

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 5 of 39



Hooking Everything Up

The nRF8001 breakout has full level shifting to make it safe to use with 5V logic, and uses a custom SPI-type bus to
talk to the Arduino.

The SPI bus means that this breakout and library will work on any Arduino as long as you're using the hardware SPI
pins.

We'll start by attaching headers. You can also solder wires directly but header makes it breadboard friendly!

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins

down.

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 6 of 39

https://learn.adafruit.com/assets/15716
https://learn.adafruit.com/assets/15717


And Solder!
Be sure to solder all 10 pins for reliable electrical

contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 7 of 39

https://learn.adafruit.com/assets/15718
https://learn.adafruit.com/assets/15719
http://learn.adafruit.com/adafruit-guide-excellent-soldering


That's it! you are now ready to wire and test

Wiring

Now that we have headers attached we can easily wire it up to our Arduino

VIN connects to the Arduino 5V pin
GND connects to Arduino ground
SCK connects to SPI clock. 
On Arduino Uno/Duemilanove/328-based, thats Digital 13. 
On Mega's, its Digital 52 and on 
Leonardo/Micro its ICSP-3 (See SPI Connections for more details (https://adafru.it/d5h))
MISO connects to SPI MISO. 
On Arduino Uno/Duemilanove/328-based, thats Digital 12. 
On Mega's, its Digital 50 and on 
Leonardo/Micro its ICSP-1 (See SPI Connections for more details (https://adafru.it/d5h))
MOSI connects to SPI MOSI. 
On Arduino Uno/Duemilanove/328-based, thats Digital 11. 
On Mega's, its Digital 51 and on 
Leonardo/Micro its ICSP-4 (See SPI Connections for more details (https://adafru.it/d5h))
REQ connects to our SPI Chip Select pin. We'll be using Digital 10 but you can later change this to any pin
RST connects to Digital 9 - this is for resetting the board when we start up, you can later change this to any pin
RDY is the interrupt out from the nRF8001, we'll connect to Digital 2 but be aware that if you want to change it, it
must connect to an interrupt capable pin (see this Arduino page for which pins are interrupt-
capable (https://adafru.it/dd4). Digital 2 is OK on Uno/Leonardo/Micro/Mega/etc.)

Our code does not currently use the ACT pin so you can leave it disconnected

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 8 of 39

https://learn.adafruit.com/assets/15721
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/attachInterrupt


© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 9 of 39



 

By connecting 5.0V on the VIN pin, all of the signals will be level shifted between 5V for the Arduino and 3.3V for the
nRF8001, meaning you don't need to worry about damaging the IC by providing logic levels that it can't safely handle.

ACT is an optional pin that is not currently used in our sample sketches or low level drivers, but is broken out for future
use if required. 

3Vo is the output of the on board 3.3V voltage regulator, and can be used if you need an additional 3.3V supply rail,
but generally won't be required on an Uno.

The nRF8001 differs from a classic SPI bus since CS is replaced by two pins, REQ and RDY, but you can still 
use HW SPI since CS is normally controlled purely in SW anyway.�

If you are using 3.3V logic, simply connect 3.3V from your development board to the VIN pin on the nRF8001 
breakout.�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 10 of 39



Software: UART Service

Most people understand the basic concept behind UART (one channel to transmit data and one to receive it), so this
felt like the easiest way to provide flexible, bi-directional communication between an Arduino and any BLE-enabled
mobile platform, without painting people into the corner. BLE does have the capability to handle more complicated
structured data, but for the vast majority of people doing projects, UART will get you very very far.

To save everyone the headache of defining and working with custom services, we've wrapped up all of the low level
BLE code into a single, easy to use class called Adafruit_BLE_UART, available in the nRF8001 / Adafruit_BLE_UART
repository on Github (https://adafru.it/dd8)

To install this library, first, open up the Arduino library manager:

Search for the Adafruit NRF8001 library and install it

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 11 of 39

https://github.com/adafruit/Adafruit_nRF8001
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use


 

Open the 'uart' example via the 'File > Examples > Adafruit_BLE_UART> echoDemo ' menu item. (The library was
renamed from Adafruit_nRF8001 to avoid confusion with the underlying library so the screenshot above is
mismatched)

If you upload the demo to your wired-up Arduino and open the serial monitor you should see that it starts advertising
BLE signal

Next up we will use our iOS or Android device to make the other side of the connection!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 12 of 39



nRF UART In Detail

To better understand the BLE UART interface, lets take a look at the basic echo demo. This version is designed to
make the BLE breakout be as effortless to use as Serial. 

Behind the scenes, the library does much of the heavy lifting of managing the connection, sending and receiving data
as well as buffering incoming data so you can grab it when the Arduino has time.

The following sketch should allow you to start bi-directional communication on BLE-enabled Android devices (4.3 or
higher) or recent iOS devices. It waits for incoming data, and then echoes it back to the transmitting device. 

// This version uses the internal data queing so you can treat it like Serial (kinda)!

#include <SPI.h>
#include "Adafruit_BLE_UART.h"

// Connect CLK/MISO/MOSI to hardware SPI
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2     // This should be an interrupt pin, on Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);
/**************************************************************************/
/*!
    Configure the Arduino and start advertising with the radio
*/
/**************************************************************************/
void setup(void)
{ 
  Serial.begin(9600);
  Serial.println(F("Adafruit Bluefruit Low Energy nRF8001 Print echo demo"));

  BTLEserial.begin();
}

/**************************************************************************/
/*!
    Constantly checks for new events on the nRF8001
*/
/**************************************************************************/
aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

void loop()
{
  // Tell the nRF8001 to do whatever it should be working on.
  BTLEserial.pollACI();
  
  // Ask what is our current status
  aci_evt_opcode_t status = BTLEserial.getState();
  // If the status changed....
  if (status != laststatus) {
    // print it out!
    if (status == ACI_EVT_DEVICE_STARTED) {
        Serial.println(F("* Advertising started"));
    }
    if (status == ACI_EVT_CONNECTED) {

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 13 of 39



    if (status == ACI_EVT_CONNECTED) {
        Serial.println(F("* Connected!"));
    }
    if (status == ACI_EVT_DISCONNECTED) {
        Serial.println(F("* Disconnected or advertising timed out"));
    }
    // OK set the last status change to this one
    laststatus = status;
  }
  
  if (status == ACI_EVT_CONNECTED) {
    // Lets see if there's any data for us!
    if (BTLEserial.available()) {
      Serial.print("* "); Serial.print(BTLEserial.available()); Serial.println(F(" bytes available from 
BTLE"));
    }
    // OK while we still have something to read, get a character and print it out
    while (BTLEserial.available()) {
      char c = BTLEserial.read();
      Serial.print(c);
    }
    
    // Next up, see if we have any data to get from the Serial console

    if (Serial.available()) {
      // Read a line from Serial
      Serial.setTimeout(100); // 100 millisecond timeout
      String s = Serial.readString();

      // We need to convert the line to bytes, no more than 20 at this time
      uint8_t sendbuffer[20];
      s.getBytes(sendbuffer, 20);
      char sendbuffersize = min(20, s.length());
      
      Serial.print(F("\n* Sending -> \"")); Serial.print((char *)sendbuffer); Serial.println("\"");
      
      // write the data
      BTLEserial.write(sendbuffer, sendbuffersize);
    }
  }
}

Initialization

Lets look at it section by section. Starting with initialization. You'll need to include the header files and define the pins
used. Since we're using hardware SPI, the CLK/MOSI and MISO pins are fixed (see the hookup guide)

the RDY pin is the only pin that must be an interrupt pin. We'll use 2, most Arduino's can use 2 or 3.

Then create the Adafruit_BLE_UART object at the top.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 14 of 39



#include <SPI.h>
#include "Adafruit_BLE_UART.h"

// Connect CLK/MISO/MOSI to hardware SPI
// e.g. On UNO & compatible: CLK = 13, MISO = 12, MOSI = 11
#define ADAFRUITBLE_REQ 10
#define ADAFRUITBLE_RDY 2     // This should be an interrupt pin, on Uno thats #2 or #3
#define ADAFRUITBLE_RST 9

Adafruit_BLE_UART BTLEserial = Adafruit_BLE_UART(ADAFRUITBLE_REQ, ADAFRUITBLE_RDY, ADAFRUITBLE_RST);

Setup

Setup is easy, just remember to call begin(); in the setup procedure to begin talking to the nrf8001

Polling

During your working loop, you have to give some time to the nRF8001 and tell it to process data. So be sure to call

// Tell the nRF8001 to do whatever it should be working on.
BTLEserial.pollACI();

as often as possible - and if you're having issues where data rates seem slow, try speeding up your loop

Managing Status

BLE is very asynchronous, it can connect, disconnect, time out. Part of the niceness of BTLE compared to classic BT is
that this is all much more stable. Reconnecting takes less than half a second instead of up to 20 seconds! Be sure to
check in with the nRF8001 often to see if the see the state has changed. We suggest keeping a global variable for the
last known status so you can see if its changed

aci_evt_opcode_t laststatus = ACI_EVT_DISCONNECTED;

and then calling getState() to query the latest state. If something's changed, you can notify the user: 

It's important to constantly call pollACI if you want to efficiently handle data over BLE. Be sure to include this 
function at the top of your 'loop' function in your sketch.�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 15 of 39



  // Ask what is our current status
  aci_evt_opcode_t status = BTLEserial.getState();
  // If the status changed....
  if (status != laststatus) {
    // print it out!
    if (status == ACI_EVT_DEVICE_STARTED) {
        Serial.println(F("* Advertising started"));
    }
    if (status == ACI_EVT_CONNECTED) {
        Serial.println(F("* Connected!"));
    }
    if (status == ACI_EVT_DISCONNECTED) {
        Serial.println(F("* Disconnected or advertising timed out"));
    }
    // OK set the last status change to this one
    laststatus = status;
  }

Valid events are:

ACI_EVT_DEVICE_STARTED: The device has started advertising, and can be detected by other devices in
listening range
ACI_EVT_CONNECTED: A connection has been established with another devices (meaning that advertising will
now stop)
ACI_EVT_DISCONNECTED: The connection with the external device was closed or timed out

By detecting the event type, we can perform an action like enabling an LED when we are connected, or no longer
reading sensor data when we are disconnected, etc.

Reading data

If data is available, you can query it with available() which will return the number of bytes waiting. You can then read
one byte at a time with read() just like you would with Serial

Writing data

The nRF8001 sends out packets of data, 20 bytes at time. Keep this in mind if you want to send a lot of data it will be
packetized into chunks of 20. You can of course send less than 20 bytes.

Much like Serial you can use the .write and .print functions allow us to send data out to the connected device:

 (https://adafru.it/ddw)  (https://adafru.it/ddx)uint16_t write ( uint8_t singlebyte)
Writes a single byte to the connected device, and returns the number of bytes successfully written.

 (https://adafru.it/ddw)  (https://adafru.it/ddx)uint16_t write ( uint8_t * buffer, uint8_t len )
Writes len bytes from buffer to the connection device, and returns the number of bytes successfully written. 

 (https://adafru.it/ddw)  (https://adafru.it/ddx)uint16_t print("text here")
Prints the supplied string to the connected device, and returns the number of bytes successfully written. This is simple
a helper function that points to .write, but may be easier to work with since it follows the same naming conventions as
the familiar Serial class on Arduino.

 (https://adafru.it/ddw)  (https://adafru.it/ddx)uint16_t println("text here")
Similar to the print function above, but appends the string with new line characters at the end of the string, similar to
the difference between Serial.print and Serial.println on Arduino. 

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 16 of 39

http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-buffer
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-write-uint8-t-star-buffer-uint8-t-len
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-print-const-char-star-thestr
http://learn.adafruit.com/getting-started-with-the-nrf8001/software-uart-service#uint16-t-println-const-char-star-thestr


 

Try to keep the buffers and strings under 20 bytes. The library will split up large messages but often times the app on
the other side wants to read the whole packet at once, and it can make your job a lot easier!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 17 of 39



Software: nRF UART
App

In order to test the sketch described on the previous page, you can use a free UART application from Nordic
Semiconductors (https://adafru.it/dd5) that's available in Apple's app store for recent iOS devices or Android's Play
Store for Android 4.3 or higher devices.

Android: nRFUART 2.0

Go to the Play Store and search for nRFUART 2.0 (https://adafru.it/dd6), then install the application. If you can't
find this application, your Android device probably doesn't support BLE or isn't running Android 4.3+!
Load the 'callbackEcho' sketch onto your Arduino (File > Examples > Adafruit_nRF8001 > callbackEcho)
Run the sketch and open the Serial Monitor (Baud Rate = 9600)

Once the device starts advertising, you can open the nRFUART 2.0 application, and you should be able to connect to
the 'UART' device, similar to the screenshot below:

Once you're connected, you can click on the 'send' textbox at the bottom, and any data you send out should show up
in the Serial Monitor, and also get echoed back to the Android application, as seen below:

Be sure to use the 2.0 version of the app on Android.  The earlier (non 2.0) version is based on a proprietary 
BLE stack for certain Samsung devices, which was created before Google added official support for BLE in 
Android 4.3.

�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 18 of 39

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App
https://play.google.com/store/apps/details?id=com.nordicsemi.nrfUARTv2


iOS: nRF UART
If you are using a BLE-enabled iOS device (recent iPhones, iPod Touch models, iPads, etc.), you can also test this on
iOS.

Download nRF UART (https://adafru.it/dd7) application from Apple's App Store.
Load the 'callbackEcho' sketch onto your Arduino (File > Examples > Adafruit_nRF8001 > callbackEcho)

You will need an Android device running Android 4.3 or higher with BLE support to use this application. 
Nexus 4, Nexus 5 and Nexus 10 devices running the latest version of Android can all use this application, but 
other devices will need to be verified for BLE support.

�

If you wish to create your own Android BLE UART project, you can have a look at some Android source code 
from Tony Dicola that works with our UART service here: https://github.com/tdicola/BTLETest�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 19 of 39

https://github.com/tdicola/BTLETest
https://itunes.apple.com/us/app/nrf-uart/id614594903?mt=8


Once the sketch is running, open up the Serial Monitor at 9600 baud.
You should be able to connect to the board using the 'Connect' button in the iOS application now, and send and
receive text via the textbox at the bottom of the app:

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 20 of 39



 

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 21 of 39



Software: BlueFruit UART
App

If you're using an iOS based device, we've made your life easy with our BlueFruit application (https://adafru.it/dd2),
which is available in Apple's App Store.

This free iOS application allows you to send or received UART messages between your iOS device and the nRF8001
(select UART on the home page), or toggle pins from the iOS UI setting them to input, output or as PWM (select Pin I/O
discussed in the next page)

UART Echo Demo
This UART is basically the same as nRF's but its a little more like a terminal window instead of a timestamped log.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 22 of 39

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8


The echoDemo example sketch allows you to send and receive simple messages using Serial-esque style commands,
and the data will be displayed on both BlueFruit on the iOS device and the Serial Monitor on the Uno.

After programming the Uno with the sketch, you can open up the Serial Monitor (make sure it's set to 9600 baud!), and
then open up the BlueFruit application on your iOS device and select UART on the home screen. It should connect!

Now, any data that you enter on the iOS device or the Uno will be transmitted to the other device as long as the
connection is open:

The corresponding BlueFruit output can be seen below, where the red message is incoming data and the blue
message is outgoing data.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 23 of 39



Click the HEX button in the top right to switch over to hex display mode instead of plain 'ascii' mode

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 24 of 39



 

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 25 of 39



Software: BlueFruit Pin I/O

In addition to the UART functionality in BlueFruit (https://adafru.it/dd2), you can also use Firmata to control the pins on
your Uno. 

Firmata (https://adafru.it/dda) is a light weight protocol that was designed to make it possible to control an Uno from a
variety of external devices, such as you laptop using another programming language. We've ported Firmata over to
BLE using our Adafruit_BLE_UART as the transport layer, and created an easy to use IDE to help you get started with
it.

BLE StandardFirmata

The first thing you'll need to do is download the Adafruit_BLE_PinIO (https://adafru.it/fTO) repository from the Arduino
library manager.

Open up the Arduino library manager:

Search for the Adafruit BLEFirmata library and install it

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

The Adafruit_PinIO sketches also requires Adafruit_nRF8001 to be present in your libraries folder but you already
installed that so you should be good to go if you went through the UART echo tests.

Once this library is installed, open up the StandardFirmata sketch (File > Examples > Adafruit_BLEFirmata >

At this time, our Firmata sketch/App support is limited to iOS devices. BLE is relatively new to the Android 
ecosystem and there are only a handful of devices that support it today, and the stack itself is still in active 
development and has some issues that will no doubt be resolved in future updates.  For the moment, though, 
we have made the decision to concentrate our limited resources on iOS since this is the still statistically the 
most natural target plaform in the BLE world.

�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 26 of 39

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://firmata.org/wiki/Main_Page
https://github.com/adafruit/Adafruit_BLE_PinIO
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use


StandardFirmata), compile the sketch, and program the Uno with your firmware.

Next, open Adafruit Bluefruit LE Connect on your iOS device and select the Pin I/O option on the home page:

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 27 of 39



This will establish a connection between the nRF8001 and your iOS device, and you should see an I/O screen that
allows you to select any available pin.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 28 of 39



Wiring up for Firmata demo
The Firmata BLE app demo allows you to some basic functionality with your Arduino, great for testing out ideas or
sensors

Digital Input (e.g. switches)
Digital Output (e.g. relays)
Analog Input (e.g. sensors)
PWM Output (e.g. LED dimming)

We'll demo all of these with the following wiring, grab some components from your parts bin and follow along!

Connect a standard LED (any color) with a inline resistor (220-1K is fine) to Digital 7
Connect an RGB LED (either common cathode or anode) so that the red, green and blue LED pins tie to Digital 3
5 and 6 with inline resistors. If using common anode, connect the fourth pin to 5V. If using common cathode,
connect it to GND.
Connect a switch of some sort to Digital 4 so that when pressed, it connects to ground. No pullup resistor is
required
Connect a potentiometer (any value 500 ohm to 1Mohm) so that the two outer legs connect to 5V and GND and
the middle pin connects to Analog 5

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 29 of 39



Simply click on the pin that you wish to manipulate (pin 3 is selected in the screenshot below), set one of the three pin
modes (Input, Output, PWM or Analog mode), and adjust the settings accordingly:

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 30 of 39



Some of the various options can be seen below, such as the ability to change the PWM rate when you select PWM
mode, or whether to set output pins high or low, etc.:

Input Mode
This mode will setup the pin as an input, and the latest pin state will be displayed as High or Low:

Output Mode
In Output Mode you can set the pin state yourself to High or Low, allowing you to manually toggle an LED, enable or

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 31 of 39



 

disable a FET driving a heavy load, etc.:

PWM Mode
PWM Mode allows you to set adjust the PWM output on a pin between 0 and 255 using a convenient slider, as shown
below:

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 32 of 39



 

Adding App
Support

While we don't have a tutorial yet on creating your own custom applications on iOS, Android or any other BLE-enabled
operating system, the following information will be useful to any application developers, and you're free to look at our
open source code for our own iOS application (https://adafru.it/ddv).

Tony Dicola has also published some source code for Android around our BLE UART service, which you can consult on
github (https://adafru.it/drl).

The UART Service
For reasons that are clearly beyond the comprehension of mere mortals like us, the Bluetooth SIG has decided not to
include a UART-type service in the list of officially accepted BLE service definitions (https://adafru.it/ddI). 

Without an equivalent to SPP in Bluetooth Classic, we only have one choice ... defining and implementing a custom
UART-esque service ourselves!

The custom UART service uses the following UUIDs, which are the values you need to know to make your application
talk to the appropriate characteristic. There is one characteristic for TX and another for RX, similar to the way that
UART uses two lines to send and receive data:

UART Service UUID : 6E400001-B5A3-F393-E0A9-E50E24DCCA9E
TX Characteristic UUID: 6E400002-B5A3-F393-E0A9-E50E24DCCA9E
RX Characteristic UUID: 6E400003-B5A3-F393-E0A9-E50E24DCCA9E

Using some sample code for your target OS (the Application Accelerator (https://adafru.it/ddJ) code from Bluetooth is a
good start for iOS, Android or Windows), you can connect to the nRF8001 Breakout, find the UART service via the
service UUID above, and then transfer data back and forth over the two available characteristics.

If you're new to Bluetooth Low Energy and don't know what characteristics and services are, have a look at our helpful
Introduction to Bluetooth Low Energy (https://adafru.it/dd1) learning guide as well, which lists some useful development
resources at the end!

These are the same UUID values used by Nordic Semiconductors in their test applications to stay compatible 
with their iOS and Android utilities�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 33 of 39

https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/tdicola/BTLETest
https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx
https://developer.bluetooth.org/Pages/bluetooth-smart-developers.aspx
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction


 

Related
Links

The following links may be useful to you working with the nRF8001 Breakout:

Adafruit Resources

Adafruit_nRF8001 (https://adafru.it/dd8) drivers and samples sketches
Adafruit BlueFruit LE Connect (https://adafru.it/dd2) iOS Application
Adafruit's Introduction to Bluetooth Low Energy (https://adafru.it/dd1) learning guide

General Resources

Bluetooth Core Specification (https://adafru.it/ddd) (BLE was introduced as part of the 4.0 core spec)
Bluetooth Development Portal (https://adafru.it/dde)
Nordic Semiconductor's nRF8001 (https://adafru.it/ddf) product page

If you have any specific problems with the Adafruit nRF8001 breakout, fee free to visit our actively moderated support
forums (https://adafru.it/forums), though be sure to check for the latest code on github (https://adafru.it/dd8) first since
that's the first place new features and bug fixes will be introduced!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 34 of 39

https://github.com/adafruit/Adafruit_nRF8001
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=830125974&mt=8
http://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.bluetooth.org/Pages/default.aspx
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
http://forums.adafruit.com/
https://github.com/adafruit/Adafruit_nRF8001


�

F.A.Q.

I'm having connection dropouts in Android, whats up with that?

Android devices have some incompatibilities with 5GHz wifi on at the same time as BTLE, try disabling 5GHz wifi!

See for more details: https://code.google.com/p/android/issues/detail?id=63056

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 35 of 39

https://code.google.com/p/android/issues/detail?id=63056


 

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 36 of 39



Downloads

Datasheets & Files

Nordic Semiconductor's nRF8001 (https://adafru.it/ddf) product page
Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)
EagleCAD PCB files in GitHub (https://adafru.it/rqE)

Schematic

Fabrication Print

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 37 of 39

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Bluefruit-LE-nRF8001-PCB


 

© Adafruit Industries https://learn.adafruit.com/getting-started-with-the-nrf8001-bluefruit-le-
breakout Page 38 of 39



© Adafruit Industries Last Updated: 2019-11-15 07:10:51 PM UTC Page 39 of 39



 

 
 

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при 
поставках импортных электронных компонентов на взаимовыгодных условиях! 

 
Наши преимущества: 

 Оперативные поставки широкого спектра электронных компонентов отечественного и 
импортного производства напрямую от производителей и с крупнейших мировых 
складов; 

  Поставка более 17-ти миллионов наименований электронных компонентов; 

 Поставка сложных, дефицитных, либо снятых с производства позиций; 

 Оперативные сроки поставки под заказ (от 5 рабочих дней); 

 Экспресс доставка в любую точку России; 

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; 

 Система менеджмента качества сертифицирована по Международному стандарту ISO 
9001; 

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих 
государственную тайну; 

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, 
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, 
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.); 
 

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление 
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: 

 Подбор оптимального решения, техническое обоснование при выборе компонента; 

 Подбор аналогов; 

 Консультации по применению компонента; 

 Поставка образцов и прототипов; 

 Техническая поддержка проекта; 

 Защита от снятия компонента с производства. 
 
 
 

 
 

Как с нами связаться 

Телефон: 8 (812) 309 58 32 (многоканальный)  
Факс: 8 (812) 320-02-42  
Электронная почта: org@eplast1.ru  

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, 

дом 2, корпус 4, литера А.  
 

mailto:org@eplast1.ru

