MIC5205 ### 150mA Low-Noise LDO Regulator ### **General Description** The MIC5205 is an efficient linear voltage regulator with ultra low-noise output, very low dropout voltage (typically 17mV at light loads and 165mV at 150mA), and very low ground current (600 A at 100mA output). The MIC5205 offers better than 1% initial accuracy. Designed especially for hand-held, battery-powered devices, the MIC5205 includes a CMOS or TTL compatible enable/shutdown control input. When shut down, power consumption drops nearly to zero. Regulator ground current increases only slightly in dropout, further prolonging battery life. Key MIC5205 features include a reference bypass pin to improve its already excellent low-noise performance, reversed-battery protection, current limiting, and overtemperature shutdown. The MIC5205 is available in fixed and adjustable output voltage versions in a small SOT-23-5 package. For low-dropout regulators that are stable with ceramic output capacitors, see the μ Cap MIC5245/6/7 family. Data sheets and support documentation can be found on Micrel's web site at www.micrel.com. #### **Features** - Ultra-low-noise output - High output voltage accuracy - · Guaranteed 150mA output - · Low quiescent current - Low dropout voltage - Extremely tight load and line regulation - Very low temperature coefficient - · Current and thermal limiting - · Reverse-battery protection - "Zero" off-mode current - · Logic-controlled electronic enable ### **Applications** - Cellular telephones - Laptop, notebook, and palmtop computers - Battery-powered equipment - PCMCIA Vcc and VPP regulation/switching - Consumer/personal electronics - SMPS post-regulator/dc-to-dc modules - High-efficiency linear power supplies ### **Typical Application** **Ultra-Low-Noise Regulator Application** Xxxxx is a trademark of Micrel, Inc Xxxxx is a registered trademark of Micrel, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com ### **Ordering Information** | Part Number | | Marking | | A | | _ | 5 | | |-----------------|-----------------|----------|------------------------|----------|---------|-----------------|----------|--| | Standard | Pb-Free | Standard | Pb-Free ⁽¹⁾ | Accuracy | Voltage | Temperature | Package | | | MIC5205BM5 | MIC5205YM5 | LBAA | KBAA | 1% | Adj | -40°C to +125°C | SOT-23-5 | | | MIC5205-2.5BM5 | MIC5205-2.5YM5 | LB25 | <u>KB</u> 25 | 1% | 2.5V | -40°C to +125°C | SOT-23-5 | | | MIC5205-2.7BM5 | MIC5205-2.7YM5 | LB27 | <u>KB</u> 27 | 1% | 2.7V | –40°C to +125°C | SOT-23-5 | | | MIC5205-2.8BM5 | MIC5205-2.8YM5 | LB28 | <u>KB</u> 28 | 1% | 2.8V | -40°C to +125°C | SOT-23-5 | | | MIC5205-2.85BM5 | MIC5205-2.85YM5 | LB2J | KB2J | 1% | 2.85V | -40°C to +125°C | SOT-23-5 | | | MIC5205-2.9BM5 | MIC5205-2.9YM5 | LB29 | <u>KB</u> 29 | 1% | 2.9V | -40°C to +125°C | SOT-23-5 | | | MIC5205-3.0BM5 | MIC5205-3.0YM5 | LB30 | <u>KB</u> 30 | 1% | 3.0V | –40°C to +125°C | SOT-23-5 | | | MIC5205-3.1BM5 | MIC5205-3.1YM5 | LB31 | <u>KB</u> 31 | 1% | 3.1V | -40°C to +125°C | SOT-23-5 | | | MIC5205-3.2BM5 | MIC5205-3.2YM5 | LB32 | <u>KB</u> 32 | 1% | 3.2V | –40°C to +125°C | SOT-23-5 | | | MIC5205-3.3BM5 | MIC5205-3.3YM5 | LB33 | <u>KB</u> 33 | 1% | 3.3V | -40°C to +125°C | SOT-23-5 | | | MIC5205-3.6BM5 | MIC5205-3.6YM5 | LB36 | <u>KB</u> 36 | 1% | 3.6V | -40°C to +125°C | SOT-23-5 | | | MIC5205-3.8BM5 | MIC5205-3.8YM5 | LB38 | <u>KB</u> 38 | 1% | 3.8V | -40°C to +125°C | SOT-23-5 | | | MIC5205-4.0BM5 | MIC5205-4.0YM5 | LB40 | <u>KB</u> 40 | 1% | 4.0V | -40°C to +125°C | SOT-23-5 | | | MIC5205-5.0BM5 | MIC5205-5.0YM5 | LB50 | <u>KB</u> 50 | 1% | 5.0V | -40°C to +125°C | SOT-23-5 | | #### Note: ### **Pin Configuration** MIC5205-x.xBM5/YM5 MIC5205BM5/YM5 Fixed Voltages Adjustable Voltages ## **Pin Description** | MIC5205-x.x
(fixed) | MIC5205
(adjustable) | Pin Name | Pin Function | |------------------------|-------------------------|----------|---| | 1 | 1 | IN | Supply Input | | 2 | 2 | GND | Ground | | 3 | 3 | EN | Enable/Shudown (Input): CMOS compatible input. Logic high = enable, logic low or open = shutdown | | 4 | | ВҮР | Reference Bypass: Connect external 470pF capacitor to GND to reduce output noise. May be left open. | | | 4 | ADJ | Adjust (Input): Adjustable regulator feedback input. Connect to resistor voltage divider. | | 5 | 5 | OUT | Regulator Ouput | ^{1.} Underbar (_) symbol may not be to scale. MIC5205 Micrel # Absolute Maximum Ratings⁽¹⁾ # Operating Ratings⁽²⁾ | Supply Input Voltage (V _{IN}) | 20V to +20V | |---|-------------------------| | Enable Input Voltage (V _{EN}) | 20V to +20V | | Power Dissipation (P _D)Inte | ernally Limited, Note 3 | | Lead Temperature (soldering, 5 sec.) | 260°C | | Junction Temperature (T _J) | 40°C to +125°C | | Storage Temperature (T _S) | 65°C to +150°C | | Input Voltage (V _{IN}) | +2.5V to +16V | |---|----------------| | Enable Input Voltage (V _{EN}) | 0V to VIN | | Junction Temperature (T _J) | 40°C to +125°C | | Thermal Resistance, SOT-23-5 (θ _{JA}) | Note 3 | ### **Electrical Characteristics**(4) $V_{IN} = V_{OUT} + 1V$; $I_L = 100\mu\text{A}$; $C_L = 1.0\mu\text{F}$; $V_{EN} \ge 2.0V$; $T_J = 25^{\circ}\text{C}$, **bold** values indicate $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$; unless noted. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |--------------------------------|--|---|-----------------|-------|----------------------|------------| | Vo | Output Voltage Accuracy | variations from specified V _{OUT} | −1
−2 | | 1
2 | %
% | | $\Delta V_{O}/\Delta T$ | Output Voltage Temperature Coefficient | Note 4 | | 40 | | ppm/°C | | $\Delta V_{O}/V_{O}$ | Line Regulation | V _{IN} = V _{OUT} + 1V to 16V | | 0.004 | 0.012
0.05 | %/V
%/V | | $\Delta V_O/V_O$ | Load Regulation | I _L = 0.1mA to 150mA, Note 5 | | 0.02 | 0.2
0.5 | %
% | | $V_{\text{IN}} - V_{\text{O}}$ | Dropout Voltage, Note 6 | I _L = 100μA | | 10 | 50
70 | mV
mV | | | | I _L = 50mA | | 110 | 150
230 | mV
mV | | | | I _L = 100mA | | 140 | 250
300 | mV
mV | | | | I _L = 150mA | | 165 | 275
350 | mV
mV | | I _{GND} | Quiescent Current | $V_{EN} \le 0.4V$ (shutdown)
$V_{EN} \le 0.18V$ (shutdown) | | 0.01 | 1
5 | μA
μA | | I _{GND} | Ground Pin Current, Note 7 | V _{EN} ≥ 2.0V, I _L = 100μA | | 80 | 125
150 | μA
μA | | | | I _L = 50mA | | 350 | 600
800 | μΑ
μΑ | | | | I _L = 100mA | | 600 | 1000
1500 | μA
μA | | | | I _L = 150mA | | 1300 | 1900
2500 | μΑ
μΑ | | PSRR | Ripple Rejection | Frequency = 100Hz, I _L = 100µA | | 75 | | dB | | I _{LIMIT} | Current Limit | V _{OUT} = 0V | | 320 | 500 | mA | | $\Delta V_O/\Delta P_D$ | Thermal Regulation | Note 8 | | 0.05 | | %/W | | e _{NO} | Output Noise | I_L = 50mA, C_L = 2.2 μ F, 470pF from BYP to GND | | 260 | | nV/√Hz | | ENABLE I | nput | | 1 | • | | • | | V _{IL} | Enable Input Logic-Low Voltage | regulator shutdown | | | 0.4
0.18 | V
V | | V _{IH} | Enable Input Logic-High
Voltage | regulator enabled | 2.0 | | | V | | I _{IL} | Enable Input Current | V _{IL} ≤ 0.4V
V _{IL} ≤ 0.18V | | 0.01 | -1
-2 | μA
μA | | I _{IH} | | $V_{IL} = 2.0V$
$V_{IL} = 2.0V$ | 2 | 5 | 20
25 | μA
μA | #### Notes: - 1. Exceeding the absolute maximum rating may damage the device. - 2. The device is not guaranteed to function outside its operating rating. - 3. The maximum allowable power dissipation at any TA (ambient temperature) is PD(max) = (TJ(max) TA) \ \JA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The \JA of the MIC5205-xxBM5 (all versions) is 220°C/W mounted on a PC board (see "Thermal Considerations" section for further details). - 4. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range. - 5. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification. - 6. Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. - Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current. - 8, Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 150mA load pulse at VIN = 16V for t = 10ms. MIC5205 Micrel ### **Typical Characteristics** ### **Typical Characteristics** ### **Block Diagrams** **Ultra-Low-Noise Fixed Regulator** **Ultra-Low-Noise Adjustable Regulator** ### **Application Information** #### Enable/Shutdown Forcing EN (enable/shutdown) high (> 2V) enables the regulator. EN is compatible with CMOS logic gates. If the enable/shutdown feature is not required, connect EN (pin 3) to IN (supply input, pin 1). See Figure 1. #### **Input Capacitor** A 1µF capacitor should be placed from IN to GND if there is more than 10 inches of wire between the input and the ac filter capacitor or if a battery is used as the input. ### **Reference Bypass Capacitor** BYP (reference bypass) is connected to the internal voltage reference. A 470pF capacitor (CBYP) connected from BYP to GND quiets this reference, providing a significant reduction in output noise. CBYP reduces the regulator phase margin; when using CBYP, output capacitors of 2.2µF or greater are generally required to maintain stability. The start-up speed of the MIC5205 is inversely proportional to the size of the reference bypass capacitor. Applications requiring a slow ramp-up of output voltage should consider larger values of C_{RYP}. Likewise, if rapid turn-on is necessary, consider omitting C_{BYP} . If output noise is not a major concern, omit C_{RYP} and leave BYP open. ### **Output Capacitor** An output capacitor is required between OUT and GND to prevent oscillation. The minimum size of the output capacitor is dependent upon whether a reference bypass capacitor is used. 1.0µF minimum is recommended when C_{BYP} is not used (see Figure 2). 2.2 μ F minimum is recommended when C_{BYP} is 470pF (see Figure 1). Larger values improve the regulator's transient response. The output capacitor value may be increased without limit. The output capacitor should have an ESR (effective series resistance) of about 5Ω or less and a resonant frequency above 1MHz. Ultra-low-ESR capacitors can cause a low amplitude oscillation on the output and/or underdamped transient response. Most tantalum or aluminum electrolytic capacitors are adequate; film types will work, but are more expensive. Since many aluminum electrolytics have electrolytes that freeze at about -30°C, solid tantalums are recommended for operation below -25°C. At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 0.47 F for current below 10mA or 0.33µF for currents below 1mA. #### **No-Load Stability** The MIC5205 will remain stable and in regulation with no load (other than the internal voltage divider) unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications. #### **Thermal Considerations** The MIC5205 is designed to provide 150mA of continuous current in a very small package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation: $$P_{D(max)} = \frac{\left(T_{J(max)} - T_{A}\right)}{\theta_{JA}}$$ T_J(max) is the maximum junction temperature of the die, 125°C, and TA is the ambient operating temperature. θ_{JA} is layout dependent; Table 1 shows examples of junction-toambient thermal resistance for the MIC5205. | Package | θJA
Recommended
Minimum
Footprint | θJA Square
Copper Clad | θJC | |--------------|--|---------------------------|---------| | SOT-23-5(M5) | 220°C/W | 170°C/W | 130°C/W | Table 1. SOT-23-5 Thermal Resistance The actual power dissipation of the regulator circuit can be determined using the equation: $$P_D = (V_{IN} - V_{OUT}) I_{OUT} + V_{IN} I_{GND}$$ Substituting PD(max) for PD and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. For example, when operating the MIC5205-3.3BM5 at room temperature with a minimum footprint layout, the maximum input voltage for a set output current can be determined as follows: $$P_{D(max)} = \frac{(125^{\circ}C - 25^{\circ}C)}{220^{\circ}C/W}$$ $P_{D(max)} = 455mW$ The junction-to-ambient thermal resistance for the minimum footprint is 220°C/W, from Table 1. The maximum power dissipation must not be exceeded for proper operation. Using the output voltage of 3.3V and an output current of 150mA, the maximum input voltage can be determined. From the Electrical Characteristics table, the maximum ground current for 150mA output current is 2500µA or 2.5mA. $455\text{mW} = (V_{IN} - 3.3\text{V}) 150\text{mA} + V_{IN} \cdot 2.5\text{mA}$ $455\text{mW} = V_{IN} \times 150\text{mA} - 495\text{mW} + V_{IN} \cdot 2.5\text{mA}$ $950\text{mW} = V_{IN} \times 152.5\text{mA}$ $$V_{IN(max)} = 6.23V$$ Therefore, a 3.3V application at 150mA of output current can accept a maximum input voltage of 6.2V in a SOT-23-5 package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the Regulator Thermals section of Micrel's *Designing with Low-Dropout Voltage Regulators* handbook. #### **Fixed Regulator Applications** Figure 1. Ultra-Low-Noise Fixed Voltage Application Figure 1 includes a 470pF capacitor for low-noise operation and shows EN (pin 3) connected to IN (pin 1) for an application where enable/shutdown is not required. Cout = 2.2μ F minimum. Figure 2. Low-Noise Fixed Voltage Application Figure 2 is an example of a low-noise configuration where C_{BYP} is not required. Cout = 1 μ F minimum. #### **Adjustable Regulator Applications** The MIC5205BM5 can be adjusted to a specific output voltage by using two external resistors (Figure 3). The resistors set the output voltage based on the following equation: $$V_{OUT} = 1.242V \times \left(\frac{R2}{R1} + 1\right)$$ This equation is correct due to the configuration of the bandgap reference. The bandgap voltage is relative to the output, as seen in the block diagram. Traditional regulators normally have the reference voltage relative to ground and have a different Vout equation. Resistor values are not critical because ADJ (adjust) has a high input impedance, but for best results use resistors of $470k\Omega$ or less. A capacitor from ADJ to ground provides greatly improved noise performance. Figure 3. Ultra-Low-Noise ### **Adjustable Voltage Application** Figure 3 includes the optional 470pF noise bypass capacitor from ADJ to GND to reduce output noise. ### **Dual-Supply Operation** When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground. ### **Package Information** #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2004 Micrel, Incorporated. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.