

ACT8870EVK1-102 User's Guide

Description

This document describes the characteristics and operation of the Active Semi ACT8870EVK1-102 evaluation kit (EVK). It provides setup and operation instructions, schematic, layout, BOM, and test data. This EVK demonstrates the ACT8870QJ102 ActivePMU power management IC. Other ACT8870QJxxx options can be evaluated on this EVK by replacing the IC and any other necessary components.

Features

The EVK can be used as a standalone board if desired. However, to access the internal registers and to take full advantage of the IC's capability, the user must connect the EVK kit to a PC with Active Semi's USB-TO-I2C interface dongle and use the GUI software. The EVK provides full access to the each converter's input and output voltage, as well as all the digital control signals. This gives the user the flexibility to configure the EVK to match their real world system.

Note that the ACT8870EVK1-102 is specifically configured for the ACT8870QJ102.

Figure 1 – EVK Picture

Innovative Power[™]

EVK Contents

The ACT8870EVK1-102 evaluation kit comes with the following items:

- 1. EVK assembly
- 2. USB-TO-I2C dongle
 - a. Dongle
 - b. Custom 4-pin connector that connects the USB-TO-I2C dongle to the EVK assembly

Required Equipment

ACT8870 EVK

USB-TO-I2C Dongle

Power supply – 5V @ 4A for full power operation

Oscilloscope - >100MHz, >2 channels

Loads - Electronic or resistive. 2.5A minimum current capability.

Digital Multimeters (DMM)

Windows compatible computer with spare USB port.

Hardware Setup

Figure 2 – EVK Setup

Innovative Power[™]

Quick Start

Hardware Setup

- Decide which voltage will power VIO_IN. Active Semi recommends powering VIO_IN from the VIN_B1 input. Connect a shorting jumper across the P19 header to power VIO_IN from the VIN_B1 input voltage, OR connect a shorting jumper across the P13 header to power VIO_IN from the VIN_LDO23 input voltage.
- 2. **NOTE:** Do not connect a shorting jumper across both P13 and P19 if VIN_LDO23 and VIN_B1 are different voltages.

Apply shorting jumper in only **ONE** of these two locations

Figure 3 – VIO_IN Jumper Settings

- 3. Connect a lab supply between P1 and P3 to power VIN_B1.
- 4. Connect a lab supply between P11-1 and P11-2 to power VIN_LDO1.
- 5. Connect a lab supply between P11-4 and P11-3 to power VIN_LDO23.
- 6. Connect an appropriate load to each power supply output.
- 7. Note that the typical setup is to apply the same 5V input voltage to all inputs. Using different input voltage sources requires careful consideration of startup sequencing.
- 8. Turn on the lab supplies and the outputs turn on and sequence up automatically.

Innovative Power[™]

GUI Setup (optional)

- 1. Refer to the end of this document for detailed instructions to install the ACT8870 GUI.
- 2. Connect the USB-TO-I2C dongle to the computer via a USB cable.
- Connect the USB-TO-I2C dongle to the EVK P18 connector. Refer to Figure 4 to ensure the correct polarity of the connection. As a guide, use the "Active-Semi" logo on the top of the dongle so the black wire is connected to the Dongle GND pin.

Figure 4 – USB-TO-I2C Dongle Connection

EVK Design Parameters

The ACT8870EVK1-102 is designed for a 5V input voltage. The maximum operating voltage is determined by the IC's maximum input voltage rating. The minimum operating voltages are determined by the buck converters' minimum input voltage and by the LDOs' dropout voltages. Maximum currents are determined by the IC's CMI settings, which can be changed via I2C after startup.

Parameter	Description	Min	Тур	Max	Unit
VIN_B1	All buck input voltages	4.5	5	5.5	V
VIN_LDO1	LDO1 input voltage	4.5	5	5.5	V
VIN_LDO23	LDO23 input voltage	4.5	5	5.5	V
I _{B1_max}	Maximum Buck 1 load current		4.0		A
I _{B2_max}	Maximum Buck 2 load current		2.0		А
I _{B3_max}	Maximum Buck 3 load current		2.0		A
I _{LDO1_max}	Maximum LDO 1 load current		0.5		A
I _{LDO2_max}	Maximum LDO 2 load current		0.2		A
ILDO3_max	Maximum LDO 3 load current		0.2		A

Table 1.	EVK	Design	Parameters
----------	-----	--------	------------

Innovative Power[™]

EVK Operation

Turn On

Apply the 5V input voltage. All outputs automatically turn on with the programmed startup sequence.

Pin Selectable (or VID) Outputs

Both Buck2 and Buck3 output voltages are pin selectable. This means that a GPIO input determines the output voltage. They are controlled with EXT_PG and nRESET_AUX2 respectively. If these pins default to a logic H if they are not actively pulled to ground. Pulling these pins high or low sets the voltages below.

EXT_PG (P16) = H sets BUCK2 = 1.35V

EXT_PG (P16) = L sets BUCK2 = 1.5V

nRESET_AUX2 (P15) = H sets BUCK3 = 1.8V

nRESET_AUX2 (P15) = L sets BUCK3 = 1.2V

Sleep Mode

Enter Sleep Mode by pulling PWREN low. In Sleep Mode, the BUCK4 output voltage is 0.95V and BUCK1/2/3 outputs turn off.

Test Results

Innovative Power[™]

Sleep Mode Enter

Buck2 Ripple & SW @2A

EXT_PG Low

200ns / div

200ns / div

Buck2

SW 2

ActiveSwitcher[™] is a trademark of Active-Semi.

20mV / div

2V/div

Buck4 Ripple & SW @2.5A

Innovative Power[™]

Schematic

Figure 5 – ACT8870EVK1-102 Schematic

Innovative Power[™]

Layout

Figure 6 – Layout Top Assembly

Innovative Power[™]

Figure 7 – Layout Top Layer

Innovative Power[™]

Figure 8 – Layout Layer 2

Innovative Power[™]

Figure 9 – Layout Layer 3

Innovative Power[™]

Figure 10 – Layout Bottom Layer

Innovative Power[™]

Bill of Materials

Table 2 - BOM

Item	Ref Des	QTY	Description	Package	MFR	Part Number
1	C1,C2,C3,C6,C9,C12,C21	7	Cap, Ceramic, 22uF, 6.3V, 20%, X5R	0603	Samsung	CL10A226MQ8NRNC
2	C5, C8, C11,C20	4	Cap, Ceramic, 10uF, 10V, 10%, X5R	0603	Samsung	CL10A106KP8NNNC
3	C14,C15,C16,C17,C18,C19	6	Cap, Ceramic, 1uF, 25V, 10%, X7R	0603	Yageo	std
4	C4	1	Cap, Aluminium Electro- lytic, 470uF, 10V	6.3x11mm	Capxon	KF471M010E110A
5	L1,L2,L3,L4	4	Inductor, 1uH, 7.2A, 12mohm, SMD	4.1 x 4.1 x 2.1mm	Wurth Elektronik	74438356010
6	R1	0	Res, 0Ω, 5%	0603	Yageo	std
7	R2,R3,R4,R5	4	Res, 10Ω, 1%	0603	Yageo	std
8	R6,R7,R8,R9,R10,R11,R12, R13,R14,R15	10	Res, 100kΩ, 5%	0603	Yageo	std
9	R16	1	Res, 0Ω, 5%	0603	Yageo	std
10	R17,R18	2	Res, 2.7kΩ, 5%	0603	Yageo	std
11	P1,P2,P3,P4,P5,P6,P7,P8, P9,P10,P13,P14,P16,P17,P 19	15	Header, 2 pin, 100mil		Wurth Elektronik	61300211121
12	P11,P18	2	Header, 4 pin, 100mil		Wurth Elektronik	61300411121
13	P12,P15	2	Header, 6 pin, 100mil		Wurth Elektronik	61300611121
14	TP1,TP3,TP4,TP5,TP6,TP7 ,TP8,TP9,TP10,TP11,TP12, TP13,TP14,TP15	14	Test Point, Red	0.063"	Keystone	5000
15	TP2	1	Test Point, Black	0.063"	Keystone	5001
16	U1	1	IC, ACT8870, PMIC	QFN40	Active-semi	ACT8870QJ102-T
17		3	Shorting Jumper	n/a	Wurth Elektronik	60900213421
18		1	PCB, ACT8870EVK1	n/a	n/a	PCB-0304-02

Innovative Power[™]

GUI Installation

- 1. Contact Active Semi for the GUI files and save them on your computer.
- 2. Plug the USB-TO-I2C dongle into a free USB port.
- 3. Follow the instructions in the "How to install driver for dongle" folder.

🟃 Driver	7/26/2016 3:01 AM	File folder	
🟓 How to install driver for dongle	7/26/2016 3:01 AM	File folder	
💯 ACT8870 GUI user guide Rev0.1 Mar-23	7/26/2016 3:01 AM	Adobe Acrobat D	746 KB
ACT8870_REV0.3_26JUL16.cpmu	7/26/2016 3:01 AM	CPMU File	89 KB
🐼 ActiveGUI	7/26/2016 3:01 AM	Application	2,648 KB
🔬 desktop	7/26/2016 3:01 AM	Configuration sett	1 KB

Figure 12 – Dongle Driver

4. Double click on the ACT8870 GUI.exe to start the ACT8870 GUI.

Innovative Power[™]

ActiveSwitcher[™] is a trademark of Active-Semi.

GUI Overview

The GUI has 2 basic function buttons allocated in top-left of the Tool Bar which are Read and Write I2C. The GUI contains 2 setting modes: Basic Mode and Advanced Mode. In Basic Mode screen it displays basic user programmable configuration options are programmed using the drop-down boxes or check boxes. Advanced Mode contain the button text for changing setting for every single bit.

Basic Mode

The following figure show the GUI in basic mode. This mode allows the user to easily change one or more IC settings.

Read I2C Icon	Write I2C Icon								
		AC1	18870 GUI Rev 0.	.2					×
🗢 े ? 1	<u>습</u>		ACT8870						
Basic Mode	SYSTEM STATUS		BUCK SETTINGS	;					_
Advanced Mode	ILIM Fault No fau	ılt		BUCK1		BUCK2	BUCK3	BUCK4	
	Over Voltage Fault No fau	ılt	VOUT1 (V)	1.1000	~	1.1500 v	1.3500	3.1000	*
	Under Voltage Fault No fau	ılt	VOUT2 (V)	1.1000	\checkmark	0.8000 🗸	0.8000 v	0.8000	¥
	Current State RESE	Т	Current Limit (A)	3.0	¥	2.0 ∨	2.0 ∨	2.0	¥
			Soft Start (us)	500	¥	500 v	500 v	500	¥
	SYSTEM SETTINGS		Startup Delay (us)	28	~	28 🗸	28 ∨	28	¥
	nRESET Delay (us) 4;	27 🗸	DVS (mV/us)	Immed	\checkmark	Immed \lor	Immed \lor	Immed	¥
	nRESET_AUX1 Delay (us)	96 🗸	Phase (Degrees)	0	~	180 🗸	0 🗸	180	¥
	nRESET_AUX2 Delay (us) 8	53 v	Phase Delay (ns)	0	\checkmark	0 🗸	200 🗸	200	¥
	POK UV Setting (V) 2	.9 v	Rise/Fall times	6.3/9.0	~	6.3/9.0 v	6.3/9.0 v	6.3/9.0	¥
	POK OV Setting (V) 4.4	/5.5 ∨							_
	Enable DVS		LDO SETTINGS						
	nRESET Mask			LDO1		LDO2	LDO3		
	nRESET_AUX1 Mask		VOUT (V)	3.000	~	1.800 ∨	0.800 ∨		
	nRESET_AUX2 Mask		Current Limit (A)	1.00	~	0.290 v	0.290 v		
			Soft Start (us)	600	~	330 🗸	80 ∨		
			Startup Delay (us)	100	~	0 🗸	0 🗸		
Cactive-semi									

Figure 13 – GUI Basic Mode

Innovative Power[™]

Advanced Mode

Click the "Advanced Mode" button in the left of the GUI screen to see all available user programmable options. With Advanced Mode, additional user programmable features can be selected using the button text. In the left side of the Advanced Mode Screen, click on the Tiles Selector to display the register to view or change. Then change a register one bit at a time by clicking on the desired bit. The value of the bit is display right next to the bit-name button.

Note that the far right side of the screen contains a scroll down button to scroll down to additional registers since the Tile Screen can only display up to 8 bytes at once.

♦ ACT8870 GUI Rev 0.2 - □ ×										
	e 😽 🖗 🕯	삶	ACT8870						0	•
E	Basic Mode	Address 0x00	Address 0x01	1 Address 0x02			Address 0x03	^		
4	dvanced Mode	PWREN EN	0 SLEEP		0	POK UV	0	0		
	SYSTEM	DVS EN	0	IDLE ENTER	0	POK OV	0	GPIO V2 INPUT	0	
	BUCK1	IRQ nMASK	0	RFU	0	TSD ALERT	0	RFU	0	
	BUCK2	POK nMASK	0	RFU	0	TSD SHUTDWN	0	RFU	0	
	BUCK3	RFU	0	RFU	0	PWREN STAT	0	REU	0	
		nRST MASK	0	RFU	0	current state[0]	0	RFU	0	
		nRST AUX2 MASK	0	RFU	0	current_state[1]	0	REU	0	
	LDO2	nRST_AUX1_MASK	0	REU	0	current_state[2]	0	REU	0	
	Current Limit			1.10		A 11 0.00		140		
		Address 0x04		Address 0x05		Address 0x06				
		ILIM_REG[0]	0	OV_REG[0]	0	UV_REG[0]	0			
		ILIM_REG[1]	0	OV_REG[1]	0	UV_REG[1]	0			
		ILIM_REG[2]	0	OV_REG[2]	0	UV_REG[2]	0			4
		ILIM_REG[3]	0	OV_REG[3]	0	UV_REG[3]	0			
		ILIM_REG[4]	0	OV_REG[4]	0	UV_REG[4]	0			
		ILIM_REG[5]	0	OV_REG[5]	0	UV_REG[5]	0			
		ILIM_REG[6]	0	OV_REG[6]	0	UV_REG[6]	0			
	matter consti	RFU	0	RFU	0	RFU	0			
ଡ	Solutions for Santhalyobility	Address 0x08		Address 0x09		Address 0x0A			~	,

Figure 14 – GUI Advanced Mode

Button Descriptions

Read: Clicking on this button reads the ACT8870 registers and displays them in the GUI. Note that this reads all registers. Active-Semi recommends reading registers each time the ACT8870 powers-up to acquire the initial register settings. Active-semi also recommends reading registers after making changes to them. Immediately reading the registers after a write confirms the changes were properly stored. This also updates the SYSTEM STATUS box to ensure that one of the changes did not generate a fault condition.

Innovative Power[™]

ActiveSwitcher[™] is a trademark of Active-Semi.

Figure 15 – Read Button

Write: Clicking on this button writes the GUI settings to the ACT8870's registers. All registers are written, regardless of whether or not they were changed.

Figure 16 – Write Button

Dongle Connection Status: The GUI also contains a dongle is connected status which indicates that Active-Semi's USB-TO-I2C dongle is connected to the USB port of the driver installed. The figure below shows the two possible indication status graphics.

Figure 17 – Dongle Connection Status

Innovative Power[™]

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.