FEATURES ### Asynchronous Features - Software-programmable serial data rates up to 230.4 kbps, full-duplex¹ - Twelve bytes of FIFO for each transmitter and each receiver, with programmable threshold for receive-FIFO-interrupt generation - Improved interrupt schemes: Good Data™ interrupts eliminate the need for character status check - Independent bit rate selection for transmit and receive on each channel - User-programmable and automatic flow control modes for the serial channels; - In-band (software) flow control via single character (XON/XOFF) - Out-of-band (hardware) flow control via RTS/CTS and DTR/DSR - Special character recognition and generation (cont.) # Four-Channel Serial/Parallel Communications Engine with UNIX® Character Processing ### **OVERVIEW** The CL-CD1400² is a flexible asynchronous receiver/transmitterwith four full-duplex serial channels, or three full-duplex serial channels and one high-speed bidirectional parallel channel. With optional special character processing capabilities, it is especially well-suited for UNIX applications. The CL-CD1400 is fabricated in an advanced-CMOS process and operates on a system clock of up to 60 MHz. Packaged in a 100-pin PQFP³, its high throughput, low-power consumption and high level of integration permit system designs with minimum part-count, maximum performance and maximum reliability. ## Functional Block Diagram Version 1.0 March 1997 ### FEATURES (cont.) - Special character processing, particularly useful for UNIX-line-driver applications, optionally handled automatically by the CL-CD1400 - Automatic expansion of NL to CR-NL - Supports LNEXT and ISTRIP - Ignore Break - UNIX parity handling options: - Character removed from stream - Passed as Good Data™ - Replaced with null (00 hex) - Preceded with FF-00 hex - Passed as is with exception flagged - Line break detection (start and end) and generation, with programmable choice of response and data pattern to the host - Insertion of transmit delays in data stream - One timer per channel for receive data time-out interrupt - Six modem control signals-per-channel (DTRDSR, RTS, CTS, CD, RI); CD and RI Signals not available if using the parallel channel - Local and Remote Maintenance Loopback Modes - Five to eight data bits per character plus optional parity - Odd, even, no, or forced parity - **1**, 1.5, or 2 Stop bits #### Parallel Features - Parallel data rates up to 105-Kbytes/sec. receive and 32-Kbytes/sec. transmit - Thirty-byte FIFO - Programmable strobe pulse widths - Automatic generation and recognition of handshake control signals (STROBE, ACK, BUSY) - Compatible with Centronics[®]-interface specifications - New bits provided to increase parallel signal width ### CONFIGURATION EXAMPLES Figures 1-1 through 1-3 on pages 8-9 are functional block diagrams of three possible configurations that can be implemented with the CL-CD1400. The first is a typical workstation with printer, mouse, keyboard and modem ports, a mode that includes a single parallel port and three serial channels with modem control; Figure 1-2 illustrates one channel with complete bidirectional modem control and three channels with partial modem control; Figure 1-3 shows a quad serial mode of four channels with complete modem control. All modes of operation are software-programmable through Control registers within the CL-CD1400. #### **FOOTNOTES:** - A minimum clock frequency of 60 MHz is required to run all four serial channels at a 230.4-kbps data rate. Refer to the AC characteristics (Section 6 on page 135) for complete information on device timing. - 2) This document applies to the CL-CD1400 Revision J or later device. - 3) The CL-CD1400 is only offered in a 100-pin PQFP package. 2 **FEATURES** DATA BOOK v1.0 ### **DESIGN CONSIDERATIONS** The CL-CD1400 Revision J is a higher speed version of the CL-CD1400 Revision G. The CL-CD1400 Revision J is *only* available in a 100-pin PQFP package. It is recommended that the CL-CD1400 Revision J be used for any new designs. Please note that to achieve the high data rates, a 60-MHz clock is required. Please refer to the pin differences between the CL-CD1400 Revision G and J. ### Pin Differences | Feature | CL-CD1400 Revision J | CL-CD1400 Revision G | | |----------------------|----------------------|-----------------------------|--| | Package | 100-pin PQFP | 100-pin PQFP
68-pin PLCC | | | System clock | 60 MHz | 25 MHz | | | Maximum bit rates | 230.4 kbps | 115.2 kbps | | | Ground pins | 13 | 4 | | | V _{CC} pins | 8 | 3 | | | No-connect pins | 15 | 29 | | #### NOTES: - 1) Some of the no-connect pins on the CL-CD1400 Revision G (100-pin PQFP) were converted to additional V_{CC} and ground pins on the CL-CD1400 Revision J (please refer to the pin list on page 12 for details). - 2) The CL-CD1400 Revision G part does not work in a Revision J layout. The Revision G no-connect pins must be left as true no-connect pins and cannot be connected to V_{CC} or Ground. - 3) To achieve the high data rates, a 60-MHz system clock is required. However, it is not possible to achieve some low bit rates based on a 60-MHz clock (a lower system clock is required). Refer to Section 4.5 on page 78 for bit-rate programming constraints. - Higher clock rates produce shorter PSTROBE* signal pulse widths, so when Channel 0 is programmed as a parallel port, similar limitations must also be considered (see Section 3.10 on page 58 for PSTROBE* pulsewidth programming constraints). ### **CONTACT INFORMATION** Cirrus Logic can be contacted through the resources listed below (in addition to sales offices and corporate headquarters). ### **Internet Access** http://www.cirrus.com/ dcom-support@corp.cirrus.com ftp.cirrus.com/~ftp/pub/support/sio ### Fax-On-Demand 1-800-359-6414 (USA) or 510-249-4200 Before beginning any new design with this device, please contact Cirrus Logic Inc. for the latest errata information. See the back cover of this document for sales office locations and phone numbers. ### **TABLE OF CONTENTS** | | CONVENTIONS | 7 | 3.6 Receive Special Character Processing | 48 | |-------|--|------
--|-----| | 1. | PIN INFORMATION | 10 | 3.6.1 UNIX Character Processing | 48 | | 1.1 | Pin Diagram — CL-CD1400 | | 3.6.2 Non-UNIX Receive Special Character | | | 1.2 | Pin Functions — Major Operational Modes | | Processing | | | 1.3 | Pin List | | 3.7 Transmit Special Character Processing | | | 1.4 | Pin Descriptions | | 3.7.1 Line Terminating Characters | | | 2. | REGISTERS | . 19 | 3.7.2 Embedded Transmit Commands | | | 2.1 | CL-CD1400 Register Map | | 3.8 Baud Rate Generation | | | 2.1.1 | Global Registers | | 3.9 Diagnostic Facilities — Loopback | | | 2.1.2 | Virtual Registers | | 3.10 Parallel Channel Operations | | | 2.1.3 | Channel Registers | | 3.10.1 Transmit Operation | | | 2.2 | Register Definitions | | 3.10.2 Receive Operation | | | 2.2.1 | Global Registers | | 3.10.3 Programming Considerations | | | 2.2.2 | Virtual Registers | | 3.11 Hardware Configurations | | | 2.2.3 | | | 3.11.1 Interfacing to an Intel® Microprocessor-Base | | | 2.2.4 | Channel Registers | .26 | System | .62 | | 3. | FUNCTIONAL DESCRIPTION | 29 | 3.11.2 Interfacing to a Motorola® Microprocessor-
Based System | 60 | | 3.1 | Device Architecture | | 3.11.3 Interfacing to a National Semiconductor® | .02 | | 3.2 | Host Interface | .30 | Microprocessor-Based System | 62 | | 3.2.1 | Host Read Cycles | | | | | 3.2.2 | Host Write Cycles | .31 | 4. PROGRAMMING | | | 3.2.3 | Host Service Acknowledge Cycles | .31 | 4.1 Overview | | | 3.3 | Service Requests | | | | | 3.3.1 | Interrupt | | | | | 3.3.2 | Polling | .35 | 4.2.2 Global Function Initialization | | | 3.3.3 | | | 4.2.3 Individual Channel Initialization | | | | CL-CD1400s | | , | | | 3.4 | Serial Data Reception and Transmission | | 4.3.1 Polling Routine Examples | | | 3.4.1 | Receiver Operation | | The state of s | | | 3.4.2 | The operation of the second | | | | | 3.4.3 | | | | | | 3.4.4 | - F | | 4.4.3 Modem Service | | | 3.4.5 | | | 4.4.4 Baud Rate Derivation | | | 3.5 | Flow Control | | 4.6 ASCII Code Table | | | 3.5.1 | | | 4.6.1 Hexadecimal — Character | | | 3.5.2 | | | 4.6.2 Decimal — Character | | | 353 | Modem Signals and General-Purpose I/O | 16 | 4.0.2 Decimal — Character | 01 | | 5. | DETAILED REGISTER | 5.5.1 | Special Character Register 1 (SCHR1) | .120 | |----------------------|--|------------|--|-------| | | DESCRIPTIONS83 | 5.5.2 | Special Character Register 2 (SCHR2) | . 120 | | 5.1 | Global Registers83 | 5.5.3 | Special Character Register 3 (SCHR3) | . 120 | | 5.1.1 | Global Firmware Revision Code (GFRCR)83 | 5.5.4 | Special Character Register 4 (SCHR4) | .121 | | 5.1.2 | Channel Access Register (CAR)84 | 5.5.5 | Special Character Range Low (SCRL) | . 122 | | 5.1.3 | Global Configuration Register (GCR)85 | 5.5.6 | Special Character Range High (SCRH) | . 122 | | 5.1.4 | Service Request Register (SVRR)86 | 5.5.7 | LNext Character (LNC) | . 123 | | 5.1.5 | Receive Interrupting Channel Register | 5.6 | Modem Change Option Registers | . 124 | | | (RICR)87 | 5.6.1 | Modem Change Option Register 1 | | | 5.1.6 | Transmit Interrupting Channel Register | | (MCOR1) Serial Format | . 124 | | | (TICR)87 | 5.6.2 | Modem Change Option Register 1 | 40 | | 5.1.7 | Modem Interrupting Channel Register | 500 | (MCOR1) Parallel Format | . 124 | | F 4 0 | (MICR) | 5.6.3 | Modem Change Option Register (MCOR2) Serial Format | 100 | | 5.1.8 | Receive Interrupt Register (RIR) | 5.6.4 | Modem Change Option Register | . 120 | | 5.1.9 | Transmit Interrupt Register (TIR) | 5.0.4 | (MCOR2) Parallel Format | 126 | | 5.1.10 | . 3 , , | 5.6.5 | Receive Time-out Period Register | | | 5.1.11
5.2 | 5 , , | 0.0.0 | (RTPR) | . 127 | | 5.2.1 | Virtual Registers | 5.6.6 | Modem Signal Value Register 1 | | | 5.2.1 | Receive Interrupt Vector Register (RIVR)93 Transmit Interrupt Vector Register (TIVR)93 | | (MSVR1) | . 128 | | 5.2.3 | Modem Interrupt Vector Register (MVR) 93 | 5.6.7 | Modem Signal Value Register 2 | | | 5.2.4 | Transmit Data Register (TDR)95 | | (MSVR2) | | | 5.2.5 | Receive Data/Status Register (RDSR)96 | 5.6.8 | Printer Signal Value Register (PSVR) | . 129 | | 5.2.6 | Receive Data/Status Register (RDSR)96 | 5.6.9 | Receive Baud Rate Period Register | | | 5.2.7 | Modem Interrupt Status Register (MISR)98 | E 0.44 | (RBPR) | | | 5.2.8 | End Of Service Request Register | 5.6.10 | | . 131 | | | (EOSRR)99 | 5.6.11 | Transmit Baud Rate Period Register (TBPR) | . 132 | | | Channel Registers100 | 5.6.12 | 2 Transmit Clock Option Register (TCOR) | . 133 | | 5.3.1 | Local Interrupt Vector Register (LIVR)100 | 6. | ELECTRICAL SPECIFICATIONS | 139 | | 5.3.2 | Channel Command Register (CCR)101 | 6.1 | Absolute Maximum Ratings | | | 5.3.3 | Service Request Enable Register | 6.2 | Recommended Operating Conditions | | | 5.4 | (SRER) | 6.3 | DC Electrical Characteristics | | | 5.4.1 | Channel Option Register 1 (COR1)107 | 6.4 | AC Electrical Characteristics | | | 5.4.2 | Channel Option Register 2 (COR2)109 | 6.4.1 | Index of Timing Information | .137 | | 5.4.3 | Channel Option Register 3 (COR3) Serial | 6.4.2 | Asynchronous Timing | 138 | | J. 4 .U | Format110 | 6.4.3 | Synchronous Timing | 143 | | 5.4.4 | Channel Option Register 3 (COR3) Parallel | 6.4.4 | Parallel Port Timing Specifications | 147 | | | Format110 | 7 . | PACKAGE SPECIFICATIONS | 151 | | 5.4.5 | Channel Option Register 4 (COR4)113 | 7.1 | 100-Pin PQFP (JEDEC) Package | | | 5.4.6 | Channel Option Register 5 (COR5)115 | 8. | , , , | | | 5.4.7 | Channel Control Status Register (CCSR) Serial | | ORDERING INFORMATION Pin Diagram — 100-Pin PQFP | | | | Format116 | | | | | 5.4.8 | Channel Control Status Register (CCSR) | 9. | QUICK REFERENCE | | | - 4 - | Parallel Format | | CL-CD1400 Register Map | | | 5.4.9 | Received Data Count Register (RDCR) Serial | 9.1.1 | Global Registers | | | 5 / 10 | Format118 Received Data Count Register (RDCR) Parallel | 9.1.2 | Virtual Registers | | | J. 4 . 10 | Format118 | 9.1.3 | Channel Registers | | | 5.5 | Special Character Registers | 9.2 | Bit Definitions | 15/ | ### **CONVENTIONS** ### **Abbreviations** | Symbol | Units of measure | |----------------------|-----------------------------------| | °C | degree Celsius | | μF | microfarad | | μs | microsecond (1,000 nanoseconds) | | Hz | hertz (cycle per second) | | Kbit | kilobit (1,024 bits) | | kbps
kbits/second | kilobit (1,000 bits) per second | | Kbyte | kilobyte (1,024 bytes) | | Kbytes/sec. | kilobyte (1,000 bytes) per second | | kHz | kilohertz | | kΩ | kilohm | | Mbyte | megabyte (1,048,576 bytes) | | MHz | megahertz (1,000 kilohertz) | | mA | milliampere | | ms | millisecond (1,000 microseconds) | | ns | nanosecond | | pV | picovolt | | ٧ | volt | | W | watt | The use of 'tbd' indicates values that are 'to be determined', 'n/a' designates 'not available', and 'n/c' indicates a pin that is a 'no connect'. ### Acronyms | Acronym | Definition | |---------|---| | AC | alternating current | | CMOS | complementary metal-oxide semiconductor | | DC | direct current | | DRAM | dynamic random-access memory | | FIFO | first in/first out | | ISA | industry standard architecture | | LSB | least-significant bit | | MSB | most-significant bit | | PQFP | plastic quad-flat pack | | RAM | random-access memory | | R/W | read/write | | SDLC | synchronous data link control | | TTL | transistor-transistor logic | Figure 1-1. Workstation: Printer, Keyboard, Mouse, and Modem Ports Figure 1-2. Three Serial Ports and One Bidirectional Parallel Port Figure 1-3. Four Full-Modem Ports ### 1. PIN INFORMATION ### 1.1 Pin Diagram — CL-CD1400 NOTE: N/C means no connection (make no connections to these pins). 10 PIN INFORMATION DATA BOOK v1.0 ### 1.2 Pin Functions — Major Operational Modes ### Pin Functions — Four Serial Channel Mode Pin Functions —
Three Serial/One Parallel Channel Mode ### 1.3 Pin List The following naming conventions are used in the pin assignment tables: (*) after a name denotes an active-low signal. Signal names in parentheses are for the parallel channel. I = input; I/O = input/output; O = output; OD = open drain. ### General | Symbol | Pin # | # of Pins | Туре | |--------|-------|-----------|------| | RESET* | 79 | 1 | l | | CLK | 73 | 1 | ı | ### Microprocessor Interface | Symbol | Pin # | # of Pins | Туре | |---------|-------------------------|-----------|------| | CS* | 78 | 1 | l | | DS* | 77 | 1 | 1 | | R/W* | 76 | 1 | ŀ | | DTACK* | 75 | 1 | . OD | | A[6:0] | 80–83, 85, 87, 89 | 7 | ı | | DB[7:0] | 93, 95,
97–100, 1, 2 | 8 | 1/0 | ### Service Request Interface | Symbol | Pin # | # of Pins | Туре | |----------|-------|-----------|------| | SVCREQR* | 61 | 1 | OD | | SVCREQT* | 63 | 1 | OD | | SVCREQM* | 65 | 1 | OD | | SVCACKR* | 56 | 1 | ı | | SVCACKT* | 57 | 1 | ı | | SVCACKM* | 59 | 1 | ı | | DGRANT* | 69 | 1 | ı | | DPASS* | 71 | 1 | 0 | ### Communication Interface | Symbol | Pin # | # of Pins | Туре | |----------------|-------|-----------|------| | XD0 (PSTROBE*) | 3 | 1 | 0 | | RXD0 (PACK*) | 4 | 1 | 1 | | RTS0* (PSLIN*) | 45 | 1 | 0 | | CTS0* (PSLCT*) | 46 | 1 | 1 | | OSR0* (PBUSY) | 47 | 1 | ı | | OTRO* (PINIT*) | 43 | 1 | 0 | | CD0* (PERROR*) | 49 | 1 | ı | | RI0* (PPE*) | 48 | 1 | l | | PAUTOFD* | 53 | 1 | 0 | | TXD1 | 5 | 1 | 0 | | RXD1 | 6 | 1 | ı | | RTS1* | 36 | 1 | 0 | | CTS1* | 38 | 1 | ı | | DSR1* | 40 | 1 | ı | | OTR1* | 35 | 1 | 0 | | CD1* (PD[2]) | 42 | 1 | I/O | | RI1* (PD[3]) | 41 | 1 | I/O | | TXD2 | 7 | 1 | 0 | | RXD2 | 9 | 1 | ı | | RTS2* | 28 | 1 | 0 | | CTS2* | 29 | 1 | l | | DSR2* | 31 | 1 | l | | OTR2* | 27 | 1 | 0 | | CD2* (PD[4]) | 34 | 1 | 1/0 | | RI2* (PD[5]) | 33 | 1 | I/O | | TXD3 | 11 | 1 | 0 | | RXD3 | 13 | 1 | 1 | | RTS3* | 17 | 1 | 0 | | CTS3* | 21 | 1 | 0 | | DSR3* | 23 | 1 | 1 | March 1997 DATA BOOK v1.0 ### Communication Interface (cont.) | Symbol | Pin # | # of Pins | Туре | |--------------|-------|-----------|------| | DTR3* | 15 | 1 | 0 | | CD3* (PD[6]) | 26 | 1 | I/O | | RI3* (PD[7]) | 25 | 1 | 1/0 | | PD[0] | 54 | 1 | I/O | | PD[1 | 55 | 1 | I/O | ### Miscellaneous | Symbol | Pin # | # of Pins | Туре | |-----------------|--|-----------|------| | V _{CC} | 8, 19, 30, 39, 50,
58, 67, 94 | 8 | | | GND | 12, 16, 24, 32, 37,
44, 51, 60, 66, 72,
84, 91, 96 | 13 | _ | | NC | 10, 14, 18, 20, 22,
52, 62, 64, 68, 70,
74, 86, 88, 90, 92 | 15 | - | ### 1.4 Pin Descriptions | Symbol | Pin No. | Туре | Description | |--------|---------|------|--| | RESET* | 79 | 1 | ACTIVE-LOW RESET: This pin synchronously resets the CL-CD1400. RESET* must be active for a minimum of 10 system clock cycles. When RESET* is removed, the CL-CD1400 will perform a software initialization of its registers, disable all transmitters and receivers, and when complete, place the firmware revision number in the GFRCR. | | CLK | 73 | ı | CLOCK — SYSTEM CLOCK: The CL-CD1400 requires a nominal 60-MHz clock for proper operation. The system clock is divided by two, internally, to generate all on-chip timing clocks. | | CS* | 78 | I | CHIP SELECT: When active, CS*, in conjunction with DS*, initiates a host I/O cycle with the CL-CD1400. | | DS* | 77 | 1 | DATA STROBE: During an active I/O cycle, DS* strobes data into on-chip registers during a write cycle or enables data onto the data bus during read cycles. | | R/W* | 76 | ı | READ/WRITE: R/W* sets the direction of the data transfer between the host and the CL-CD1400. When high, the cycle is a read, and when low, the cycle is a write. | 14 PIN INFORMATION DATA BOOK v1.0 | Symbol | Pin No. | Туре | Description | | | | |-----------|----------------------------|-------------|--|--|--|--| | DTACK* | 75 | OD | DATA TRANSFER ACKNOWLEDGE: When the CL-CD1400 has completed internal operations associated with a host I/O cycle, it activates DTACK* to indicate the end of the cycle. The host may terminate the cycle as soon as DTACK becomes active. | | | | | A[6:0] | 80–83,
85, 87, 89 | I | ADDRESS [6:0]: These signals select the on-chip register being accessed during a host I/O cycle. | | | | | DB[7:0] | 93, 95,
97–100,
1, 2 | I/O | DATA BUS [7:0]: These eight bidirectional signals are the data interface between the host and internal CL-CD1400 registers. | | | | | SVCREQR* | 61 | OD | SERVICE REQUEST RECEIVE: When the CL-CD1400 needs host service for one of the receivers, it activates this signal. | | | | | SVCREQT* | 63 | OD | SERVICE REQUEST TRANSMIT: When the CL-CD1400 needs host service for one of the transmitters, it activates this signal. | | | | | SVCREQM* | 65 | OD | SERVICE REQUEST MODEM: The CL-CD1400 activates this signal when an enabled change occurs. | | | | | SVCACKR* | 56 | ı | SERVICE ACKNOWLEDGE RECEIVE: The host activates this signal to start a receive interrupt service. This is a special-case read cycle, during which the CL-CD1400 places the contents of the Receive Interrupt Vector register on the data bus. | | | | | SVCACKT* | 57 | ł | SERVICE ACKNOWLEDGE TRANSMIT: The host activates this signal to start a transmit interrupt service. This is a special-case read cycle, during which the CL-CD1400 places the contents of the Transmit Interrupt Vector register on the data bus. | | | | | SVCACKM* | 59 | 1 | SERVICE ACKNOWLEDGE MODEM: The host activates this signal to start a modem interrupt service. This is a special-case read cycle, during which the CL-CD1400 places the contents of the Modem Interrupt Vector register on the data bus. | | | | | DGRANT* | 69 | I | DAISY GRANT: This input, qualified with DS* and a valid service acknowledge (SVCACKR*, SVCACKT*, SVCACKM*), activates the CL-CD1400 service acknowledge cycle. | | | | | DPASS* | 71 | 0 | DAISY PASS: This output is driven low when no valid service request exists for the type of service acknowledge active. In multiple-CL-CD1400 designs, this signal is normally connected to the following CL-CD1400 DGRANT* input, forming a service acknowledge daisy chain. | | | | | TxD[3:0] | 11, 7, 5, 3 | 0 | TRANSMIT DATA [3:0]: These output signals provide the serial transmit data stream for all four channels. When Channel 0 is operating in Parallel Mode, TxD0 becomes PSTROBE* (See PSTROBE*). | | | | | RxD[3:0] | 13, 9, 4 | 1 | RECEIVE DATA [3:0]: These input signals carry the serial bit 6 bit streams into the CL-CD1400. When Channel 0 is programmed for parallel operation, RxD0 becomes PACK* (See PACK*). | | | | | RTS[3:0]* | 17, 28,
36, 45 | 0 | REQUEST TO SEND [3:0]: The request to send output 3 from each channel. These signals are controlled by the Modern Signal Value register 1 inside the CL-CD1400. RTS0* serves a dual-purpose based on the mode of operation of Channel 0 (see PSLIN*). | | | | | | | | I | | | | | Symbol | Pin No. | Туре | Description | |--|-------------------|------|--| | CTS[3:0]* | 21, 29,
38, 46 | ı | CLEAR TO SEND [3:0]: These are the clear-to-send inputs for each of the channels. If enabled, this signal can control the transmitter, enabling transmission when active, disabling transmission when inactive. CTSO* serves a dual-purpose based on the mode of operation Channel 0 (see PSLCT*). | | DSR[3:0]* | 23, 31,
40, 47 | I | DATA SET READY [3:0]: Data Set Ready for each channel. DSR0* serves a dual-purpose based on the mode of operation of Channel 0 (see PBUSY). | | DTR[3:0]* | 15, 27,
35, 43 | 0 | DATA TERMINAL READY [3:0]: Data Terminal Ready for each channel. These signals are controlled by Modem Signal Value register 2. DTR0* serves a dual-purpose based on the mode of operation of Channel (see PINIT*). | | CD[3:0]*
PD[6],PD[4],
PD[2]
PERROR* | 26, 34,
42, 49 | ı | CARRIER DETECT [3:0]: These are Carrier Detects for each PD[6] and PD[4] channel and can be monitored via the Modern Signal Value registers. CD0* serves a dual-purpose based on the mode of operation of Channel 0 (see PERROR*). CD1*, CD2* and CD3* serve dual purposes as Parallel Data bits 2, 4, and 6 (PD[2], PD[4] and PD[6]) when Channel 0 is operating in Parallel mode. | | RI[3:0]*
PD[7],PD[5],
PD[3],
PPE* | 25, 33,
41, 48 | ı | RING INDICATOR [3:0]: These are the Ring Indicators for each channel and can be monitored via the Modem Signal Value registers. RI0* serves a dual purpose based on the mode of operation of Channel 0 (see PPE*). RI1*, RI2*, and RI3* serve dual purposes as Parallel Data bits 3, 5, and 7 (PD[3], PD[5], and PD[7]) when Channel 0 is operating in Parallel mode. | | PSTROBE* | 3 | 0 | PRINTER STROBE: This is the alternate function for TxD0 when Channel 0 is programmed as a parallel port. When the port is selected for output (printer), PSTROBE* is driven active by the CL-CD1400 after a proper data setup time. Data is held for a proper hold time after
PSTROBE* is deactivated. When Channel 0 is programmed as an input (scanner) port, PSTROBE* acts as the acknowledge pin to signal completion of data reception. | | PACK* | 4 | ı | PRINTER ACKNOWLEDGE: This is the alternate function of RxD0 when Channel 0 is progr†ammed as a parallel port. When the port is selected as output (printer), this signal is used by the CL-CD1400 to indicate completion of data reception by the printer, and that the next I/O cycle can begin. When Channel 0 is selected as an input (scanner), PACK* is treated as the strobe input. Proper data setup and hold times are required. | | PSLIN* | 45 | 0 | PRINTER SELECT IN | | PINIT* | 43 | 0 | PRINTER INITIALIZE | | PAUTOFD* | 53 | 0 | PRINTER AUTOFEED: These three signals are general-purpose outputs. Their state is controlled by the lower three bits of the PSVR (see the register descriptions for detailed information on register bit assignments). PSLIN* and PINIT* are alternate functions for RTS0* and DTR0*, depending on the mode of operation on Channel 0. PAUTOFD* is a single-function output pin. | | PSLCT* | 46 | ı | PRINTER SELECT 0 = latch, 1 = buffer | | PPE* | 48 | 1 | PRINTER PAPER EMPTY | | Symbol | Pin No. | Туре | Description | |---------|---------|------|--| | PERROR* | 49 | 1 | PRINTER ERROR: These three signals are general-purpose inputs. Their state can be monitored via the upper four bits of the PSVR. As with their modem input counterparts (CTS0*, RI0*, and CD0*), a change in state can be programmed to generate SVCREQM*. The function of these signals is selected automatically based on the mode of operation programmed for Channel 0. If PSLCT* input is at logic '0', the parallel port operates as a latch. The falling edge of the strobe input latches the data. If PSLCT* is logic '1', the input port is a buffer. | | PBUSY | 47 | I/O | PRINTER BUSY: PBUSY is a bidirectional signal; it is an input when transmit is enabled and an output when receive is enabled. During receive data operations, the CL-CD1400 drives PBUSY active after receiving the strobe from the remote. When the device has taken the data, it deasserts PBUSY and activates PACK*. During transmit data operations, the state of PBUSY is made available to the host via the PSVR; however, it does not affect transfer operation and is not a hand-shake signal for this direction. | | PD[0] | 54 | I/O | PARALLEL DATA BIT: When Channel 0 is operating in Parallel mode, this pin provides the Parallel Data bit 0. | | PD[1] | 55 | I/O | PARALLEL DATA BIT: When Channel 0 is operating in Parallel mode, this pin provides the Parallel Data bit 1. | Notes ### PAGE(S) INTENTIONALLY BLANK ### 2. REGISTERS All communication with the CL-CD1400 occurs through a large array of registers. Registers are divided into three types: - Global affect all channels within the device and are always available for host access; access to the local registers of a particular channel requires selecting the register set of that channel. - Virtual are only available to the host during the context of a service routine. - Per-channel pertain only to the channel being referenced. There are four sets of per-channel registers, one for each channel. Selection of the register set is accomplished by writing the Channel Number (0 through 3) into the Channel Access Register (CAR). This causes a 'bank switch' action, allowing the registers of the selected channel to be accessed. At any given time, only the registers of a single channel are available. Once selected, this register set remains available until the CAR is changed by the host. The tables on the following pages define the register symbols, names, read and write access modes, and the internal offset address for each register in the CL-CD1400. The offset address is applied to the address bus (A[6:0]) during a host I/O cycle to select a particular register. A detailed description of the host interface is presented in Section 3.2 on page 30. In the register bit definitions immediately following the register tables, some registers are shown with two functions. In these cases, the first definition applies to the Serial Operation Mode of Channel 0, and the second to Parallel Mode. For Channels 1 through 3, only the function labeled 'Serial' applies. Section 4 on page 67 presents a detailed description of register programming. Note that the addresses are shown relative to the CL-CD1400 definition of the address lines. In 16-and 32-bit systems, it is a common practice to connect 8-bit peripherals to only one byte lane. Thus, in 16-bit systems, the CL-CD1400 appears at every other address; for example, the CL-CD1400 A0 is connected to the host A1. In 32-bit systems, the CL-CD1400 appears at every fourth address; (the CL-CD1400 A0 is connected to the host A2). In either of these cases, the addresses used by the programmer will be different than what is shown. For instance, in a 16-bit Motorola 68000-based system, the CL-CD1400 is placed on data lines D0-D7, which are at odd addresses in the Motorola manner of addressing. The CL-CD1400 A0 is connected to the 68000 A1 and so on. Thus, CL-CD1400 address x'40 becomes x'81 to the programmer. It is 'left-shifted' 1 bit, and A0 must be '1' for low-byte (D0-D7) accesses. ### 2.1 CL-CD1400 Register Map ### 2.1.1 Global Registers | Name | Description | Addr.
Mode | INT | Size | Access | Page | |-------|--|---------------|-----|------|--------|------| | GFRCR | Global Firmware Revision Code Register | G | 40 | В | R/W | 83 | | CAR | Channel Access Register | G | 68 | В | R/W | 84 | | GCR | Global Configuration Register | G | 4B | В | R/W | 85 | | SVRR | Service Request Register | G | 67 | В | R | 86 | | RICR | Receive Interrupting Channel Register | G | 44 | В | R/W | 87 | | TICR | Transmit Interrupting Channel Register | G | 45 | В | R/W | 87 | | MICR | Modem Interrupting Channel Register | · G | 46 | В | R/W | 87 | | RIR | Receive Interrupt Register | G | 6B | В | R/W | 89 | | TIR | Transmit Interrupt Register | G | 6A | В | R/W | 89 | | MIR | Modem Interrupt Register | G | 69 | В | R/W | 89 | | PPR | Prescaler Period Register | G | 7E | В | R/W | 91 | ### 2.1.2 Virtual Registers | Name | Description | Addr.
Mode | INT | Size | Access | Page | |-------|------------------------------------|---------------|-----|------|--------|------| | RIVR | Receive Interrupt Vector Register | G | 43 | В | R | 93 | | TIVR | Transmit Interrupt Vector Register | G | 42 | В | R | 93 | | MIVR | Modem Interrupt Vector Register | G | 41 | В | R | 93 | | TDR | Transmit Data Register | G | 63 | В | w | 95 | | RDSR | Receive Data/Status Register | G | 62 | В | R | 96 | | MISR | Modem Interrupt Status Register | G | 4C | В | R | 98 | | EOSRR | End Of Service Request Register | G | 60 | В | W | 99 | NOTE: The page numbers shown in these tables indicate the detailed register description locations in Section 5. ### 2.1.3 Channel Registers | Symbol | Register Name | Addr.
Mode | INT | Size | Access | Page | |--------|------------------------------------|---------------|-----|------|--------|------| | LIVR | Local Interrupt Vector Register | Р | 18 | В | R/W | 100 | | CCR | Channel Command Register | Р | 05 | В | R/W | 101 | | SRER | Service Request Enable Register | Р | 06 | В | R/W | 106 | | COR1 | Channel Option Register 1 | Р | 08 | В | R/W | 107 | | COR2 | Channel Option Register 2 | Р | 09 | В | R/W | 109 | | COR3 | Channel Option Register 3 | Р | 0A | В | R/W | 110 | | COR4 | Channel Option Register 4 | Р | 1E | В | R/W | 113 | | COR5 | Channel Option Register 5 | Р | 1F | В | R/W | 115 | | CCSR | Channel Control Status Register | Р | 0B | В | R | 116 | | RDCR | Received Data Count Register | Р | 0E | В | R | 116 | | SCHR1 | Special Character Register 1 | Р | 1A | В | R/W | 120 | | SCHR2 | Special Character Register 2 | Р | 1B | В | R/W | 120 | | SCHR3 | Special Character Register 3 | Р | 1C | В | R/W | 120 | | SCHR4 | Special Character Register 4 | Р | 1D | В | R/W | 121 | | SCRL | Special Character Range, Low | Р | 22 | В | R/W | 122 | | SCRH | Special Character Range, High | Р | 23 | В | R/W | 122 | | LNC | LNext Character | Р | 24 | В | R/W | 123 | | MCOR1 | Modem Change Option Register 1 | Р | 15 | В | R/W | 124 | | MCOR2 | Modem Change Option Register 2 | Р | 16 | В | R/W | 126 | | RTPR | Receive Time-out Period Register | Р | 21 | В | R/W | 127 | | MSVR1 | Modem Signal Value Register 1 | Р | 6C | В | R/W | 128 | | MSVR2 | Modem Signal Value Register 2 | Р | 6D | В | R/W | 128 | | PSVR | Printer Signal Value Register | Р | 6F | В | R/W | 129 | | RBPR | Receive Baud Rate Period Register | Р | 78 | В | R/W | 130 | | RCOR | Receive Clock Option Register | Р | 7C | В | R/W | 131 | | TBPR | Transmit Baud Rate Period Register | Р | 72 | В | R/W | 132 | | TCOR | Transmit Clock Option Register | Р | 76 | В | R/W | 133 | ### 2.2 Register Definitions ### 2.2.1 Global Registers | Blobal Firmy | obal Firmware Revision Code Register (GFRCR) | | | | | | R/W | 83 | |-------------------------------------|--|---------------|-------------|--------------|------------|-------------|-----|-------| | | | | Firmware Ro | evision Code | | | | | | hannel Acc | ess Register | (CAR) | | | 68 | В | R/W | 84 | | Poll | Poll | Poll | Poil | Poll | 0 | С | 1 | C0 | | Global Configuration Register (GCR) | | | | | | В | R/W | 85 | | P/S* | 0 | 0 | 0 | 0 | 0 | |) | 0 |
| ervice Requ | uest Register | (SVRR) | | | 67 | В | R | 86 | | 0 | 0 | 0 | 0 | 0 | SRM | SRT S | | | | Receive Inte | rrupting Cha | nnel Register | (RICR) | | 44 | В | R/W | 87 | | X | Х | Х | Х | C1 | CO | > | (| Х | | ransmit Inte | errupting Cha | annel Registe | r (TICR) | ***** | 45 | В | R/W | 87 | | Х | х | X | X | C1 | CO | > | (| Х | | lodem Inter | rupting Char | nel Register | (MICR) | | 46 | В | R/W | 87 | | Х | X | Х | X | C1 | C0 | × | (| Х | | leceive Inte | rrupt Registe | r (RIR) | | | 6B | В | R/W | 89 | | rxireq | rbusy | runfair | 1 | 1 | 0 | ch | [1] | ch[0] | | ransmit Inte | errupt Regist | er (TIR) | | | 6 A | В | R/W | 89 | | txireq | tbusy | tunfair | 1 | 0 | 0 | ch | [1] | ch[0] | | lodem Inter | rupt Register | (MIR) | | | 69 | В | R/W | 89 | | mdireq | mbusy | munfair | 0 | 1 | 0 | ch | [1] | ch[0] | | rescaler Pe | riod Register | (PPR) | | | 7E | В | R/W | 91 | | | | | Binary | √ Value | | | | | 22 REGISTERS DATA BOOK v1.0 ### 2.2.2 Virtual Registers | | ai i logiotolo | | | | | | | | |--|----------------|---|------------|-------------|-----|----|----------|-----| | Receive Inter | rupt Vector F | Register (RIVI | 43 | В | R | 93 | | | | Х | Х | Х | х | X | IT2 | ІТ | 1 | IT0 | | ransmit Inte | errupt Vector | Register (TIV | (R) | | 42 | В | R | 93 | | х | X | Х | X | Х | IT2 | Ti | 1 | ITO | | Modem Interrupt Vector Register (MIVR) | | | | | | В | R | 93 | | Х | Х | Х | Х | Х | IT2 | IT | 1 | IT0 | | ransmit Dat | a Register (T | DR) | | | 63 | В | w | 95 | | | | | Transmit (| Character | | | | | | Receive Data | /Status Regis | ster (RDSR) | | | 62 | В | R | 96 | | | | | Received | Character | | | | | | Status | | (* - * * - * * * * * * * * * * * * * * | | * t. A. | | | | | | Time-out | SC Det2 | SC Det1 | SC Det0 | Break | PE | F | E | OE | | /lodem Inter | rupt Status R | egister (MISF | ₹) | | 4C | В | R | 98 | | DSRch | CTSch | Rich | CDch | 0 | 0 | | 0 | 0 | | nd Of Servi | ce Request F | Register (EOS | RR) | | 60 | В | w | 99 | | × | X | Х | х | х | Х | | х | Х | | 2.2.3 Char | nnel Registe | ers | | | | • | <u> </u> | | | ₋ocal Interru | pt Vector Re | gister (LIVR) | | | 18 | В | R/W | 100 | | Х | Х | X | X | Х | IT2 | l. | T1 | IT0 | | Channel Con | nmand Regis | ter (CCR) | - | | 05 | В | R/W | 101 | | Res Chan | COR Chg | Send SC | Chan Ctl | D3 | D2 | [| D1 | D0 | | | | · · · · · · · · · · · · · · · · · · · | L | | | | 1_ | | | Format | 1: Reset | Channel | Command | |---|----------|---------|---------| | , 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0 | 00 | | Offinal 1. 116. | set Orianner C | Jonninand | | | | | | |------------------------|----------------|---------------|-------------|----------|-----------|--------|--------------| | Res Chan | 0 | 0 | 0 | 0 | 0 | FTF | Туре | | Format 2: Ch | annel Option i | Register Char | nge Command | 1 | | | | | 0 | COR Chg | 0 | 0 | COR3 | COR2 | COR1 | 0 | | Format 3: Sei | nd Special Ch | aracter Comn | nand | | | | | | 0 | 0 | Send SC | 0 | 0 | SSPC2 | SSPC1 | SSPC0 | | Format 4: Ch | annel Control | Command | | | | | | | 0 | 0 | 0 | Chan Ctl | XMT EN | XMT DIS | RCV EN | RCV DIS | | Service Requ | uest Enable F | Register (SRE | ER) | · . | 06 | B R | W 106 | | MdmCh | 0 | 0 | RxData | 0 | TxRdy | TxMpty | NNDT | | Channel Opt | ion Register | 1 (COR1) | | | 08 | B R | W 107 | | Parity | ParM1 | ParM0 | Ignore | Stop1 | Stop0 | ChL1 | ChL0 | | Channel Opt | ion Register | 2 (COR2) | | | 09 | B R | W 109 | | IXM | TxIBE | ETC | LLM | RLM | RtsAO | CtsAE | DsrAE | | Channel Opti
Serial | ion Register | 3 (COR3) | | | 0A | B R/ | W 110 | | SCDRNG | SCD34 | FCT | SCD12 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | | Parallel | | | 1 | 1 | | | | | 0 | 0 | 0 | RxTh4 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | | Channel Opt | ion Register | 4 (COR4) | | | 1E | B R/ | W 113 | | IGNCR | ICRNL | INLCR | IGNBRK | -BRKINT | PEH[2] | PEH[1] | PEH[0] | | Channel Opti | ion Register | 5 (COR5) | | | 1F | B R/ | W 115 | | ISTRIP | LNE | СМОЕ | 0 | 0 | EBD | ONLCR | OCRNL | | | | · | I | <u> </u> | <u> </u> | I | | | Channel Cor
Serial | ntrol Status R | egister (CCSF | 0B | В | R | 116 | | | |-----------------------|----------------|---------------|-----------|--------------|---------|-----|-------|---------------| | RxEn | RxFloff | RxFlon | 0 | TxEn | TxFloff | TxF | lon | 0 | | Parallel | | , | | | | | · | | | RxEn | 0 | 0 | 0 | TxEn | 0 | |) | 0 | | Received Da | ta Count Reç | gister (RDCR) | | | 0E | В | R | 118 | | 0 | 0 | 0 | 0 | СТЗ | CT2 | С | Г1 | СТО | | Parallel | | | | | • | | | | | 0 | 0 | 0 | CT4 | СТЗ | CT2 | C- | Γ1 | СТО | | Special Cha | racter Regist | er 1 (SCHR1) | | | 1A | В | R/W | 120 | | | | | Special (| Character 1 | | | | | | Special Cha | racter Regist | er 2 (SCHR2) | | | 1B | В | R/W | 120 | | | | | Special (| Character 2 | | | | ******* | | Special Cha | racter Regist | er 3 (SCHR3) | | | 1C | В | R/W | 120 | | | | | Special | Character 3 | | | | | | Special Cha | racter Regist | er 4 (SCHR4) | | | 1D | В | R/W | 121 | | | | | Special | Character 4 | 7 | | ····· | | | Special Cha | racter Range | Low (SCRL) | | | 22 | В | R/W | 122 | | | | | Characte | r Range Low | - | | | | | Special Cha | racter Range | High (SCRH) | | | 23 | В | R/W | 122 | | | | | Characte | r Range High | | | | | | LNext Chara | acter (LNC) | | | | 24 | В | R/W | 123 | | | | | LNext | Character | | | | - No. 10 - 10 | March 1997 DATA BOOK v1.0 REGISTERS | 2.2.4 | Channel | Registers | |-------|---------|-----------| |-------|---------|-----------| | Modem Char | 15 | В | R/W | 124 | | | | | |---|---------------|-------------|-----------|------------|----------|-----|------|--------| | Serial | | | | | | | | | | DSRzd | CTSzd | Rlzd | CDzd | DTRth3 | DTRth2 | DTI | Rth1 | DTRth0 | | Parallel | | | | | | | | | | PBUSYzd | PSLCTzd | PPEzd | PERRORzd | 0 | 0 | (| | 0 | | Modem Change Option Register 2 (MCOR2) | | | | | 16 B R/W | | R/W | 126 | | Serial | | | | | | | | | | DSRod | CTSod | Rlod | CDod | 0 | 0 | (|) | 0 | | Parallel | | | | | | | | | | PBUSYod | PSLCTod | PPEod | PERRORod | 0 | 0 | (|) | 0 | | Receive Time-out Period Register (RTPR) | | | | | 21 | В | R/W | 127 | | | | | Binary Co | ount Value | | | | | | Modem Signal Value Register 1 (MSVR1) | | | | | 6C | В | R/W | 128 | | DSR | стѕ | RI | CD | PSTROBE*† | 0 | (|) | RTS | | Modem Signa | al Value Regi | ster 2 (MSV | R2) | | 6D | В | R/W | 128 | | DSR | CTS | RI | CD | PSTROBE*† | 0 | רם | rr | 0 | | Printer Signa | l Value Regis | ster (PSVR) | | | 6F | В | R/W | 129 | | PBUSY | PSLCT* | PPE* | PERROR* | PACK* | PAUTOFD* | PIN | IIT* | PSLIN* | | Receive Bau | d Rate Period | Register (F | RBPR) | | 78 | В | R/W | 130 | | | | | | | | | | | ### CL-CD1400 ### UXART Serial/Parallel Controller | eceive Clock Option Register (RCOR) | | | | | 7C | В | R/W | 131 | | |---|---------------|--------------|------------|-------------|---------|-----------------|------|---------|--| | Х | Х | Х | Х | Х | ClkSel2 | ClkSel1 ClkSel0 | | | | | ansmit Baud Rate Period Register (TBPR) | | | | | 72 | B R/W | | 132 | | | | | | Binary Div | visor Value | | | | | | | ransmit Clo | ock Option Re | gister (TCOF | R) | | 76 | В | R/W | 133 | | | Х | Х | Х | Х | х | ClkSel2 | Clk | Sel1 | ClkSel0 | | NOTE: † Bit 3 of MSVR1 and MSVR2 show the state of the PSTROBE* output only on Channel 0. Notes PAGE(S) INTENTIONALLY BLANK # 3. FUNCTIONAL DESCRIPTION ### 3.1 Device Architecture The CL-CD1400 can be described as a small computer system tailored to the function of sending and receiving serial and parallel data. It is made up of a RISC processor (MPU), RAM, ROM, host bus interface logic and serial data channels (one of which can function as a parallel port). It contains special instructions and hardware to facilitate serial data manipulation. The MPU is a true RISC processor. In addition to having a compact, efficient set of instructions, it has a 'windowed' architecture that allows it to handle one channel and its registers at a time. Before beginning any operations on a given channel, it loads an internal Index Register that forces all accesses to the appropriate set of registers. The Index Register becomes part of the internal address and allows direct addressing of the register bank and all hardware resources of the selected channel. No address computation is required to select the proper channel. This same windowed scheme is provided for the host interface (see Figure 3-2 on page 30). For all channel-specific accesses, the host first loads the Channel Access Register (CAR) with a pointer to the channel to be accessed. All read and write operations will now occur with the proper channel. Host software need only define a register address once, and it will be valid for all channels because the CAR is used as part of the internal addressing. Figure 3-1. CL-CD1400 Functional Block Diagram The serial data channels are made of 'bit engines' that off-load the task of receiving and transmitting each bit from the MPU. The bit engines, after processing a complete bit, interrupt the MPU so that it can perform whatever task is required next. For example, when receiving data, the MPU will take the bit and add it to a character that is being assembled. When transmitting, it will give the bit engine the next bit of the character being transmitted. Thus, the MPU does not need to concern itself with basic bit timing; this task is handled by the bit engines, freeing it to perform higher-level processing, such as detecting special characters. When Channel 0 is programmed to be a parallel port, the bit engines are used to set the timing of the handshake signals (PSTROBE*, PACK*). ### 3.2 Host Interface The host interface to the CL-CD1400 comprises an 8-bit
bidirectional data bus, a 7-bit address bus and various strobes that identify the type of I/O cycle occurring. In most system designs, the I/O cycles will be normal host read and write cycles that activate the appropriate strobes. Although the strobe names and basic timing match that of the Motorola 68000 family, the CL-CD1400 easily fits into any CPU environment. In most cases, when the host reads or writes an internal CL-CD1400 location, it actually accesses a location in a RAM array that serves as a bank of registers. Some locations, however, are mapped to actual hardware resources; for example, when a hard output signal is required, such as a Service Request Output (in the SVRR), or when it is necessary to read the actual state of an input, such as a modem input. The CL-CD1400 is, by design, a synchronous device. All internal operations take place on edges and levels (phases) of the internal clock. Note that the internal clock is generated by dividing the external (system) clock by two. When the host performs an I/O cycle with the CL-CD1400, its strobes, address and data are sampled on falling edges of the internal clock. As can be seen in the timing diagrams in Section 6, external control signals must meet setup times with respect to clock edges. Once a cycle has started, the sequence of events is locked to the CL-CD1400 clock, with events (address setup, write data setup and read data available) occurring at predictable times. Figure 3-2. Internal Address Generation 30 FUNCTIONAL DESCRIPTION DATA BOOK v1.0 It is not necessary, however, to design a synchronous interface to the CL-CD1400. In an asynchronous design, the Data Transfer Acknowledge (DTACK*) Signal is used as an indication that the CL-CD1400 has completed the requested data transfer. Thus DTACK* can be an input to wait-state generation logic that will hold the host CPU until the operation is complete. If the strobes (Chip Select and Data Strobe – CS* and DS*) do not meet the minimum setup time with respect to a clock edge, the CL-CD1400 will not detect the I/O request, and the cycle will be delayed two full-system clock cycles, thus meeting the setup time. The I/O cycle will then commence and follow the predictable timing, with DTACK* signaling the end. ### 3.2.1 Host Read Cycles Read cycles are initiated when the CL-CD1400 senses that both the CS* and DS* Inputs are active and the Read/Write (R/W*) Input is high. All strobes and address inputs must meet setup times as specified in the timing specifications in Section 6. It is important to note that both the CS* and DS* Signals must be valid for a cycle to start, thus cycle times are measured from whichever of the two signals goes active last. The CL-CD1400 signals that it has completed the read cycle (placing the data from the addressed register on the data bus pins), by activating the DTACK* Signal. The read cycle is terminated when the host removes CS* and DS*. ### 3.2.2 Host Write Cycles Write cycle timing and strobe activity is nearly identical to read cycles except that the R/W* Signal must be held low. Write data, strobes and address inputs must meet setup and hold times as specified in the timing diagrams in Section 6. Again, the DTACK* Signal is used to indicate that the cycle is complete and the CL-CD1400 has taken the data. Removing both CS* and DS* terminates the cycle. ### 3.2.3 Host Service Acknowledge Cycles Service acknowledge cycles are special-case read cycles. Timing is basically the same as a normal read cycle, and one of the SVCACK* Inputs is activated instead of the CS* Input (a slightly longer setup time is required on the SVCACK* Input than on the CS* Input). The data that the CL-CD1400 provides during the read cycle is the contents of the Interrupt Vector Register associated with the type of request being acknowledged (RIVR for receive, TIVR for transmit and MIVR for modem) of the channel that is requesting service (see description of service request procedures later in this section). As with read and write cycles, DTACK* will indicate the end of the cycle and removing DS* and SVCACK* terminates the cycle. An important fact to note about timing and service acknowledge cycles: When the host has completed the service routine and writes to the EOSRR, a subsequent I/O cycle, if started immediately, will be delayed by approximately 1 us. This is due to the time required by the internal processor to complete housekeeping activities associated with the switch out of the service acknowledge context. These activities are primarily FIFO-pointerupdates and restoration of the environment prior to the service request/service acknowledge procedure, and must be completed before any internal registers are modified by the host. If the situation occurs that the host attempts an access before the internal procedures are complete, the CL-CD1400 will delay the cycle until it is ready. In system designs that monitor DTACK*, this will not cause a problem; the cycle is extended until DTACK* becomes active, and the delay will automatically be met. If a system design does not monitor DTACK*, a mechanism must be provided to introduce the required delay. ### 3.3 Service Requests From the host point of view, the CL-CD1400 operates in one of two modes: normal operation and service request/acknowledge. The normal mode of operation allows the host system to make changes and obtain current operating status on a global and per-channel basis. The Service Request/Acknowledge Mode is used when a particular channel needs service; for example, it is used when a receive FIFO has reached its programmed threshold and requires emptying. A unique behavior of the CL-CD1400 is that a service request can only be responded to after it has been placed in a service acknowledge 'context'. This context switch takes place when the request is acknowledged, either by activating the appropriate SVCACK* Input Pin, or by proper manipulation of two internal registers. When the internal processor (MPU) detects a condition on a channel that requires host attention, it posts a service request internally and externally. The external request is the activation of one of the SVCREQ* Output Pins, depending on whether the type of service needed is for receive, transmit or modem signal change. Included with the internal request is a channel pointer that points to the channel requiring service. When the host service acknowledge begins, this pointer is loaded into the CAR, thus the request automatically services the proper channel. This is the purpose of the context switch; it prepares the CL-CD1400 for servicing of the proper channel. At the completion of the acknowledge procedure, the CL-CD1400 must be taken out of the acknowledge context by indicating that the procedure is complete, thus restoring the internal state to what it was before the context was switched. It is important to remember that several of the registers within the CL-CD1400 can only be accessed when the context switch has been made and are referred to as 'virtual' registers. For example, the host cannot directly place data in the transmit FIFO at any arbitrary time. It must wait for a transmit service request indicating that the FIFO is empty, and then acknowledge it. Once the acknowledge procedure has started, the transmit FIFO is available for loading. The CL-CD1400 requests service when required. Two basic ways the host is informed of these service requests is through hardware (interrupt), or software (polling internal CL-CD1400 registers). The method used will be dependent on the hardware/software design of the system; the CL-CD1400 functions well in both environments. The following section discusses the trade-offs in choosing one or the other of the basic methods, and how the two can be combined for maximum performance. ### 3.3.1 Interrupt The term 'interrupt' is used as a generalized description of the method by which the CL-CD1400 gains the attention of the host CPU. It is used interchangeably with 'service request' because the two really are the same function. 'Interrupt' is often used to describe an unconditional response on the part of the host. Whether or not this is the case, the source is still the same — a service request from the CL-CD1400. The hardware signals generated by the CL-CD1400 (SVCREQR*, SVCREQT* and SVCREQM*) can be connected to the host CPU interrupt generation/controlfacility and can cause it to invoke an interrupt service routine. The service routine can then begin servicing a request of the CL-CD1400 by starting an acknowledge sequence. The SVCREQ* Outputs can be connected to the host interrupt circuitry individually, thus using three unique interrupt-level inputs; or, they can be logically OR'ed together into a single interrupt and applied to one interrupt-level input. In the latter case, the host may examine the SVRR to determine which service requests are active. The method (single or multiple interrupts) chosen by the designer will be dependent on the system requirements and hardware and/or board space limitations; the CL-CD1400 places no restrictions on it. It is likely that interrupt latency will be slightly shorter with the first method, since the individual interrupt levels can cause a software vector directly to the correct service routine without first checking for the source of the interrupt. No matter which interrupt method is used, the end result is the same. Once the host has recognized that a service request is active, a service acknowledge routine must be executed to satisfy the request. There are two ways in which to start the acknowledge and force the context switch: through four hardware input pins, or by making specific modifications to internal registers. ### 3.3.1.1 Hardware-Activated Context Switch The internal register manipulation that is involved in the context switch can be forced through the Service Acknowledge (SVCACK*) Input Pins on the CL-CD1400. There is one SVCACK* for each service request type: SVCACKR*
for receive service requests, SVCACKT* for transmit service requests and SVCACKM* for modem signal change service requests. Each of these inputs is a special-case chip select that causes the MPU to set up the CL-CD1400 for servicing that particular service request type for the requesting channel. Note that the CS* Input is not activated on service acknowledge cycles. Instead, the appropriate SVCACK* Input and the DGRANT* Inputs are used. DGRANT* will be discussed in the description of daisy-chaining multiple CL-CD1400s in Section 3.3.3 on page 36. Figure 3-3 shows a generalized logic diagram of the hardware interface to the SVCACK* Inputs. For a service acknowledge, one of the SVCACK* address locations will be accessed instead of the CS* location. To the host, the service acknowledge cycle is a read cycle. The data that the CL-CD1400 places on the bus during the read cycle is the contents of the Interrupt Vector Register (RIVR, TIVR or MIVR) associated with the service acknowledge input that is active (SVCACKR*, SVCACKT* or SVCACKM*). The upper five bits of the Vector Register are whatever was previously loaded into the LIVR by the host; the lower three bits will be supplied by the CL-CD1400, indicating the type of interrupt (vector). Figure 3-3. Control Signal Generation At the time the CL-CD1400 is ready to post the service request, it copies the upper five bits of the LIVR into the appropriate Vector Register (RIVR, TIVR, MIVR) and then places the request type vector in the lower three bits. The table below shows the assignment of the request type bits. For transmit and modem service acknowledge cycles, the data in the lower three bits will be redundant to the host, since this information is known because the corresponding acknowledge has taken place. However, these bits will be important for a receive data service acknowledge because they provide an indication of whether the request is for Good DataTM or exception data. The value contained in the upper five bits of the LIVR can be used for a number of purposes. The primary purpose of the LIVR is to source a software vector that can be used by the host system as an index for an interrupt dispatch table. However, systems that cannot use this or do not require it can use these bits for any purpose. In multiple-CL-CD1400 daisy-chained designs, a logical value to place in these bits is a chip identification number. This is discussed in more detail in the daisy-chaining description in Section 3.3.3 on page 36. In a single-CL-CD1400 design or one that does not use daisvchaining (unique address range for each device) and does not need the value in the LIVR as a vector for hardware interrupt response, a convenient use for these bits is channel encoding. Since each channel has its own LIVR, these five bits can have a unique value identifying the channel. By doing this, there is no need to read the RICR, TICR or MICR to determine the channel number; thus in a single I/O operation, the host determines both the type of interrupt and the number of the channel requesting service. In fact, with five bits available, systems with small numbers of CL-CD1400s can encode both the channel number and chip identification number in the LIVR. Once all of the above has been completed, the CL-CD1400 is ready to be serviced for the type of interrupt that has been acknowledged. For example, if the interrupt was for receive Good Data, the host would read the RDCR to determine the number of characters available in the receive FIFO, then read that many characters by successive reads from the RDSR. Other work, such as disabling future interrupts or changing channel parameters could also be performed at this time. Once all tasks involved in servicing the interrupt have been completed, one further operation *must* be performed. In order to inform the CL-CD1400 that the service acknowledge is complete, the host must write a dummy value to the EOSRR. The data written does not matter; any value will do. What is important is the write operation itself. This write forces the internal context switch back to normal Operating Mode. | 2 B | it 1 | Bit 0 | Request Type | |-----|------|--|--| | | 0 | 0 | Not used · | | I | 0 | 1 | Group 1: Modem signal change service request | | | 1 | 0 | Group 2: Transmit data service request | | | 1 | . 1 | Group 3: Received Good Data service request | | | 0 | 0 | Not used | | (| 0 | 1 | Not used | | | 1 | 0 | Not used | | | 1 | 1 | Group 3: Received exception data service request | | | | 2 Bit 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 | 0 0
0 1
1 0
1 1
0 0 | ### Summary of Interrupt-Driven Service Requests In summary, the actions that take place during an interrupt request/service are: - Host senses service request through its interrupt request input from one of the CL-CD1400 service request outputs. - Host responds by performing a read cycle that activates the appropriate SVCACK* Input Pin. - Host decodes the value read from the Vector Register during Step 2, making a decision on the type of service request (if necessary). - Host reads (R, T, M)ICR to determine channel number. - Host services the request (load transmit FIFO, read receive FIFO, and so on. - 6) Host writes a dummy value to the EOSRR to terminate the service routine. ### 3.3.1.2 Software-Activated Context Switch It is possible — through host manipulation of some internal registers — to cause the context switch without activating any of the SVCACK* Hardware Inputs. The method used is the same as that which is used in a Poll-Mode-CL-CD1400 design. Once the host has detected the service request through its interrupt response circuitry, it can then follow the same procedures that a polling method would use once it had detected an active service request. Refer to the context switching description in the following section. One reason a design might make use of this method is that there is limited board space available to provide the additional hardware address decoding required to generate the three SVCACK* and DGRANT* Control Signals. The system gains the advantage of not having to constantly check for active service requests by polling the CL-CD1400: it will be interrupted when a request is posted and can then examine internal CL-CD1400 Registers to determine the source and channel number generating that request. If this method is chosen, the three SVCACK* and DGRANT* Input Pins should be tied inactive (logic '1') to prevent false activation of a service acknowledge cycle due to noise. They should be terminated with a resistor, not hard-wired to VCC. ### 3.3.2 Polling In Poll Mode, the hosts periodically checks the CL-CD1400 to see if there are any active service requests. If it detects any, it proceeds to service them through a software-driven technique. There are several registers within the CL-CD1400 provided specifically to facilitate Poll Mode service request detection and acknowledgment. These are the SVRR, RIR, TIR, MIR, RIVR, TIVR and MIVR. Section 5 provides detailed bit definitions for these registers. The SVRR (Service Request Register) is the Master Service Request Register. The least-significant three bits (Bits 2:0, SRM, SRT, and SRR) reflect the inverse of the state of the three Service Request Output Pins (SVCREQM*, SVCREQT* and SVCREQR*). For example, if Bit 0 (SRR) is a 'one', it indicates there is an active receive data service request pending, and that the SVCREQR* Output Pin is active (low). Thus, with a single read, the host can determine if the CL-CD1400 needs any service and, if so, which ones are active. Each service request type has an Interrupt Request Register; RIR for receive, TIR for transmit and MIR for modem. These are special-purpose registers that are used with the CAR to force the context switch and start a service acknowledge procedure. When a service request of a particular type is pending, the corresponding Interrupt Request Register is set by the MPU with the appropriate data to cause the context switch to the requested type and the requesting channel. When the host is ready to service the request, it reads the contents of the Request Register and copies it into the CAR. The action of writing this value into the CAR forces the context switch, and the CL-CD1400 is ready to be serviced. This is the same result as if a service acknowledge cycle had been performed with the SVCACK* Pin. Each of the Interrupt Request Registers provides the channel number that is requesting service in the least significant two bits. The most-significant three bits provide status and control over internal interrupt sequencing. The middle three bits contain a code that is used by the MPU at the end of a hardware service acknowledge cycles (write to the EOSRR) to tell it which type of acknowledge cycle is ending. Each of the three registers has a unique code in these three bits that select the proper service acknowledge type; however, they are meaningless in Poll Mode operation. At the end of a service request operation, the host must inform the CL-CD1400 that the request has been satisfied and take it out of the service request context. This is done by writing the value that was in the Interrupt Request Register back into it after first clearing the upper two bits. As with the hardware-driven request/acknowledge procedure, the virtual registers should only be accessed after the context switch has been made. Their contents are undefined until this time. ### Summary of Poll Mode Service Requests To summarize, the major steps involved in a Poll Mode service request/service acknowledge sequence are: - Host scans the SVRR periodically, checking the three least-significant bits. If any of them are true ('1'), a service request is active. - Depending on which of the service request bits is active, read the appropriate Interrupt Request Register (RIR, TIR or MIR) and copy the contents into the CAR.
- 3) Perform service routine. - 4) Write the original contents of the interrupt request register back with the most-significant two bits cleared. ### 3.3.3 Service Requests and Multiple CL-CD1400s Multiple CL-CD1400s can be combined to form systems with more than four channels. There are a number of ways that two or more can be connected, but one way provides a more efficient service request/service acknowledge sequence by allowing the CL-CD1400s to arbitrate between themselves. This mode only works if hardware-activated service acknowledges are being utilized. The CL-CD1400 provides a means of 'daisy-chaining' the service request and service acknowledgments of two or more devices together. This allows them to arbitrate and set priorities between themselves regarding which may post a particular type of service request. This is the Fair Share interrupt scheme. Figure 3-4 on page 37 shows the way that two CL-CD1400s would be connected to enable the Fair Share function. The open-drain request outputs of the two CL-CD1400s (SVCREQR*, SVCREQT* and SVCREQM*) are wire OR'ed together to form one request for each type. This allows each to monitor the state of the others' outputs. Each of the Service Acknowledge Inputs (SVCACKR*, SVCACKT* and SVCACKM*) is also connected together to form one acknowledge of each type. The DGRANT* Input of the first CL-CD1400 is connected to the logical OR of all three SVCACK* Inputs; the DPASS* Output of the first CL-CD1400 drives the DGRANT* Input of the second. Before a request for service of a particular type is posted, the MPU checks the current state of the 'fair bit' of the internal interrupt register for that type. If it is inactive, indicating that it is fair to post an interrupt of that type, a request can be posted; otherwise, it will wait. This guarantees that each CL-CD1400 will have an opportunity to have this request type serviced when needed. When the host acknowledges the request, both CL-CD1400s will receive the acknowledge through the SVCACK* Input. However, only the first will receive the DGRANT*. If it has an active request of this type pending, it will take the acknowledge and drive its Vector Register (RIVR, TIVR, MIVR) onto the data bus. If it does not have a request pending, it will pass the DGRANT* Input to the second CL-CD1400 through the DPASS* Output. Assuming that the second has an active request pending, it will take the acknowledge and drive its Vector Register onto the data bus. As mentioned earlier, the upper five bits of the LIVR will reflect whatever the host loaded into them during its initialization of the CL-CD1400s. These bits must be used as a unique chip identification number so the host will know which CL-CD1400 responded to the service acknowledge. These five bits could be set to binary zero in the LIVR of the first CL-CD1400, and to binary 1 in the second. The host can easily test the bit to determine which device responded. Some examples of host service acknowledge software routines that show one way of performing this task are provided in Section 4. CAUTION: If neither CL-CD1400 has a pending request, the DGRANT* will be passed by the second and neither will respond, thus causing the cycle to hang. The only time this could happen would be due to an error condition outside the CL-CD1400s that caused the host to respond to a request that was not made. A mechanism should be provided to terminate or abort the cycle if this error should occur. This can be accomplished with time-out circuitry or the DPASS* output of the second CL-CD1400 can activate an abort condition. Other devices may share the daisy-chain mechanism and could be connected to the DPASS* output of the second (or whichever is last) CL-CD1400 in the chain. The actual implementation is system-dependent, but it is important to provide some way for the host to know that the cycle did not complete normally if no device exists at the end of the chain. Figure 3-4. CL-CD1400 Daisy-Chain Connections March 1997 DATA BOOK v1.0 **FUNCTIONAL DESCRIPTION** ## 3.4 Serial Data Reception and Transmission The CL-CD1400 has four channels, each with a receiver and a transmitter. Although a receiver and a transmitter pair are associated with each channel, in many respects they operate independently, sharing only parameter settings regarding character format such as length, parity type, if any, and number of stop bits. Each receiver and transmitter has its own baud-rate generation function, allowing a channel to send at one rate and receive at another. Shared and independent parameters are shown in the diagram below: | Receiver | Transmitter | |----------|-------------| | | | | Baud Rate | Baud Rate | |------------------|-------------| | Pai | rity | | Character Length | | | Stop Bits | | | Prescale Peri | od Register | | FIFO Thresh | | | Rx Time-out | | Channel service requirements, such as an empty transmit FIFO, are indicated to the host by one of three service request indicators: one for all receivers, one for all transmitters and one for all modem signal changes. The internal processor (MPU) scans each channel sequentially for service needs. posting a request when it detects a particular type. It continues the Fair Share scheme used in the external daisy-chain configuration by not allowing a channel to post another request of one type until all other channels have posted their requests of that type, if any. For example, if Channel 0 is currently being serviced for a transmit request and Channel 3 has one pending, the request from Channel 3 will be posted before Channel 0 is able to make another request for transmit service. Each receiver and transmitter has a 12-character FIFO. The receiver has two additional character holding locations, the Receive Character Holding Register and the Receiver Shift Register. The transmitter also has two additional locations, the Transmitter Holding Register and Transmitter Shift Register. The receive FIFO has a programmable threshold that sets the level at which a service request will be posted. When data reaches this 'high water' mark, a request will be made of the host to empty the FIFO. More details on this are provided in the following section. Receive FIFOs also have a programmable threshold that, when reached, can cause the DTR Output to be deasserted (see the flow-control description). In the asynchronous serial data protocol, a message consists of one 'character', made up of bits, either high or low, representing a one or zero value. A character can be made up of from five to eight bits, plus an optional parity bit bracketed by a Start Bit and at least one Stop Bit. Each bit has a time duration that sets the data transmission rate, or baud rate. The Start Bit indicates the beginning of a character bit stream and is indicated by a transition from a logic '1' to a logic '0' (mark to space) on the transmission media. The Start Bit lasts one 'bit time' and is immediately followed by the Data Bits (5 to 8), the parity, if any, and the Stop Bit(s). As previously discussed, the CL-CD1400 incorporates special hardware to receive and transmit each bit. These are the 'bit engines'. They perform all timing associated with sending or receiving one serial data bit. A bit engine behaves differently depending on whether it is sending or receiving. When a complete bit has been received, the bit engine interrupts the MPU so that it can handle the bit on the character level. This usually entails its addition to the character being assembled. For transmitting, a transmit-bit-engine interrupt causes the MPU to give it the next bit to be transmitted. The bit-engine interrupt happens at the end of a bit time, which has been timed by the engine, thus removing that duty from the MPU. #### 3.4.1 Receiver Operation Each channel can be programmed to receive characters with several different parameters, such as character length, parity, number of stop bits, FIFO threshold and baud rate. Each receiver is independent of any other receiver. It may also be set to a different baud rate from its corresponding transmitter. Before valid data can be received, the host must set up each channel by programming the desired oper- 38 March 1997 ational parameters in the Channel Option Registers (COR1-COR5) and the Baud Rate Generator Registers (Receiver Clock Option Register and the Receiver Baud Rate Period Register — RCOR and RBPR). Once these are set, the channel is enabled by issuing the receiver enable command through the CCR and enabling service requests in the Service Request Enable Register (SRER). Once a receiver is enabled, its bit engine begins scanning the RxD Input for a valid Start Bit. It does this by detecting a falling-edge transition on the input. When the transition is detected, the bit engine delays until the middle of the programmed bit time and checks the input again. If the input is still low, then the start bit is considered valid and character assembly begins. At each subsequent full bit time, the input is checked and its level recorded as the value of the next bit. If, at the center of the bit time, the RxD Input has returned to a mark state, then the Start Bit is considered invalid and the bit engine goes back to the Start Bit Detect Mode. Following a valid Start Bit, the bit engine begins receiving data bits. At the end of the programmed number of bits, following bits are checked for parity (if enabled) and a valid Stop Bit. A valid Stop Bit is defined as a mark or logic '1' on the input. If a valid Stop Bit is not detected, a framing error will be noted for the character. After a properly assembled (no framing error) character has been received, it is checked for several special conditions, and the overflow condition before it is placed in the receive FIFO. (See Section 3.7 on special character handling and Section 3.5 on flow control.) If no errors or special character processing are required, the character is considered Good Data and placed directly in the FIFO. If
errors exist, it is placed in the FIFO as 'exception' data along with status indicating the type of error. As each good character is placed in the FIFO, the Receive Data Count Register (RDCR) is updated to reflect the number of good characters currently in the FIFO. The receive FIFO has a programmable threshold that determines the level at which the CL-CD1400 will request receive data service. This level is programmed through the RxTh3-RxTh0 Bits in Channel Option Register 3. The host may place the threshold at any number of characters from 1 to 12. Note that this only sets the level at which the CL-CD1400 will post a service request, not the depth of the FIFO. When the host responds to a receive Good Data service request, it may read any number of characters out of the FIFO, from zero up to the number indicated in the RDCR before exiting the service routine. If the number read is zero, the CL-CD1400 will post another request for service almost immediately. If the number of characters read is less than the number indicated by the RDCR but enough such that the number in the FIFO falls below the threshold, a new request will not be made until the threshold is once again exceeded. The term 'almost immediately' is used above because. since the MPU scans the channels in a 'roundrobin' fashion, another channel may post a receive service request before this channel again has the opportunity. ## 3.4.2 Receiver Timer Operations Also associated with each receiver FIFO is a timer whose duration is set by the Receive Time-out Period Register (RTPR). This timer provides two services in relation to receive FIFO operation: a time-out to prevent 'stale' data in the FIFO and a time-out after the last character is taken out of the FIFO. The first type, Type 1, will occur if the receive FIFO does not reach the set threshold before the programmed time period expires and the second, Type 2, will occur if the timer expires and no new data has been placed in the FIFO after the last character was removed; this is called the No New Data Time-out (NNDT) service request. The timer is driven by the prescaled clock generated by the Prescale Period Register (PPR) in the global register set. The timer is loaded with the value contained in the RTPR each time a character is placed in the receive FIFO or when the last character is removed from the FIFO. Each 'tick' of the prescaler decrements the timer. If the timer reaches zero and receiver interrupts are enabled, the MPU will generate a receive data service request for one of the two time-out conditions, depending on which is valid. Type 1: If there are characters in the FIFO but the threshold level has not been reached, a Good Data service request will be posted when the timer expires. This function is provided to prevent data March 1997 from remaining in the FIFO for long (potentially infinite) periods of time because the remote did not send enough data to fill the FIFO to the threshold level. This time-out cannot be disabled. Type 2: If there is no data in the FIFO when the timer expires and the No New Data Time-out (NNDT) service request is enabled in the SRER, a receive exception service request will be posted with status indicating the time-out condition. This time-out is optional, and is provided so that host driver software can detect the possible end of a block of data and allows its buffers to be flushed to the higher, operating system level. The NNDT will be posted only on the first occurrence of a time-out after the FIFO becomes empty. Also note that the NNDT timer is not started if the last character removed from the FIFO was an exception character, such as a break or parity error. The flow chart in Figure 3-5 on page 42 shows the timer process evaluation performed by the MPU when the timer reaches zero. #### 3.4.3 Receive Exceptions Several conditions can cause the CL-CD1400 to evoke the receive exception service request. If an exception condition occurs, two bytes are placed in the receive FIFO. The first is the status indicating the type of error and the second is the data itself. Exception data is given to the host one event at a time. That is, there will be a separate service request for each character that is received with some special condition. If, when an exception condition occurs, the receive FIFO has Good Data in it, a Good Data receive service request will be posted immediately upon receipt of the bad data, regardless of the number of characters in the FIFO and the programmed threshold. This allows the host to remove the data in the FIFO ahead of the exception data so that the CL-CD1400 can post the service request for the error condition. Once the host terminates the service acknowledge procedure for the Good Data, a new service request will be posted for the exception data. When the host acknowledges the receive exception service request, it reads the Receive Data/Status Register (RDSR) first to get the status and second to get the data. Reading the data is optional: if the host does not read the FIFO twice during the service routine, the CL-CD1400 will update its internal FIFO pointers appropriately and discard the second byte. (Actually, the host need not read *any* data from the FIFO during an exception service acknowledge—the FIFO pointers will update correctly at the end of the service routine, discarding both the status and the data. Thus, the host must read at least the status, or it will be lost forever.) Another special case of the exception data handling is for received-line-breakconditions. A line break is a character with zero data and no parity or Stop Bit. In this case, a null (zero) character is placed in the FIFO with the break condition indicated in the accompanying status and a receive exception service request will be posted. However, regardless of the length of the break, only one character will be placed in the FIFO. If the 'end-of-break' option is enabled, another null character is placed in the FIFO with status indicating the end-of-break condition, once it is detected in the receive data stream. This option is enabled by the EBD Bit (Bit 2) of COR5 — see Section 5.3 for details. Resumption of normal character reception will cause new data to again be placed in the FIFO. Refer to the register definitions in Section 5 for a description of the status bits in the RDSR. ## 3.4.4 Transmitter Operation Each of the four channels on the CL-CD1400 are capable of transmitting characters with a number of programmable characteristics such as length, parity and baud rate. The channels operate independently and settings in one have no effect on the operation of another. After being reset, from either hardware (RESET* Input Pin) or software (through the master reset command in the CCR), all transmitters are disabled with the TxD Output held at a logic '1' condition. This is the off, or mark, condition of the asynchronous protocol. Before any operation of the transmitter can begin, the host must program the appropriate parameters in the Channel Option Registers (COR), the Clock Option Register (TCOR) and Transmit Baud Rate Period Register (TBPR). Once these registers are set, the channel is enabled by issuing a transmit enable command through the CCR and enabling service requests by setting the appropriate transmit enable request bit(s) in the Service Request Enable Register (SRER). The channel will immediately post a transmit service request since its FIFO is empty. The host responds to the request by loading up to 12 characters into the transmit FIFO through the Transmit Data Register (TDR) after it places the CL-CD1400 in the Service Request Acknowledge Mode (see description of service request/serviceacknowledge procedures in Section 4.3). The transmitter does not begin transmitting the characters until the host terminates the service routine and writes the EOSRR. Transmission begins by sending a Start Bit (logic '0') followed by five to eight data bits (depending on the programmed value), least-significant bit first. The last data bit is followed by the appropriate parity bit, if enabled, and a minimum of one stop bit. All bit transmission is handled by the transmit bit engine with the MPU giving it each bit as it is required. If there are still characters in the FIFO, the next one will be transmitted immediately after the last stop bit of the previous character. This process continues until all characters in the FIFO have been transmitted. The CL-CD1400 will then post a service request for more data. There are actually 14 transmit character holding locations for each channel: 12 in the FIFO, one in the Transmitter Holding Register, and one in the Transmitter Shift Register itself. The CL-CD1400 can be programmed, on a per-channel basis, to request transmit data when one of two conditions exist: when the last character in the FIFO is transferred to the Holding Register or when the last data bit of the last character is shifted out of the Transmitter Shift Register. The first option allows the host two character transmit times in which to reload the FIFO and prevent a transmit data underrun. This is the normal mode of operation. The second mode can be used to make sure the transmitter is empty before reconfiguring the channel. It is likely that the transmitter will underrun if the second option is chosen unless the host is sufficiently fast enough to respond to a transmit service request and reload the FIFO during the transmission of the stop bit(s) of the last character. If the transmitter underruns, it will continue to send stop bits (mark) until more data is placed in the FIFO. Normally, when a string of characters greater than 12 is being transmitted, host software will program the CL-CD1400 transmitter to post a service request when the FIFO becomes empty. When the last of the data to send has been placed in the FIFO, the service request enable is changed so that requests are made after the last character is sent. This allows the host to know that
all the data has been transmitted before disabling a channel. If a channel is disabled, any characters other than the one currently being transmitted will be held and the transmitter will enter the marking state. If the channel is subsequently re-enabled, any remaining data will be transmitted. The transmitter is capable of performing several special functions such as break generation, intercharacter delays and automatic flow control. These functions are discussed in the sections describing special character handling (embedded transmit commands) and flow control. ### 3.4.5 Transmitter Timer Operations As with the receiver, the transmitter has a timer associated with it. This timer is used to generate the timing for the embedded transmit commands that send line breaks and inter-character delays. Whenever the MPU detects an embedded transmit command specifying the delay command, it loads the timer with the value contained in the parameter byte. This timer is decremented on each 'tick' of the prescaler timer (PPR) until it reaches zero. At that time, the delay is terminated unless the next character in the FIFO is the beginning of another delay-command sequence. Figure 3-5. FIFO Timer Processing 2136639 0010550 360 #### 3.5 Flow Control In all data communications applications, data is sent from one system to another through some protocol. Most systems have some method of buffering data for transmission and reception. In the asynchronous protocol, there is no way, at the protocol level, to determine the length of a data transmission; therefore, it is normally not possible to set aside a buffer area that is known to handle the entire length of the transmission. Also, the hardware receiving the data generally has a limited amount of buffer area, usually a FIFO, and if the host does not unload data at a fast enough pace, the buffer or FIFO may overflow. For these reasons, two methods are provided that can be used to stop the remote from sending data until room is once again available to receive data. This is known as flow control. Flow control can be inband or out-of-band. In-band flow control makes use of special characters that can be sent to the host to stop data transmission. Out-of-band flow control are signals outside of the serial data channel that perform the same function. These are the Request To Send (RTS), Clear To Send (CTS) pair and the Data Set Ready (DSR) and Data Terminal Ready (DTR) pair. The CL-CD1400 can make use of either kind and has built-in capabilities to do so automatically and/or semi-automatically (depending on direction and options chosen) without host intervention (or knowledge, if desired). ## 3.5.1 In-Band Flow Control As mentioned, in-band flow control is implemented by special characters that are imbedded in the serial data stream, one to request that transmission stop and one to request resumption. The characters chosen can be any characters although conventionally the XON or DC1 (x'11) and XOFF or DC3 (x'13) characters are used if the ASCII character set is being used. The XOFF value designates the character that is to be used to stop data transmission and the XON character determines the character that is to be used to resume transmission. Whether or not the ASCII XON and XOFF Characters are used, the CL-CD1400 allows the two characters to be set to any value that is appropriate to the system design by the value programmed in Special Character Registers 1 and 2 (SCHR1 and SCHR2). SCHR1 defines the XON Character and SCHR2 defines the XOFF Character. #### 3.5.1.1 Receiver In-Band Flow Control When the host senses a need to flow control a sender, due to its receive buffer filling too fast to service, it can request that remote stop transmission by sending an XOFF character through the transmitter. This is accomplished by issuing a Send Special Character 2 command through the Channel Command Register (CCR). The CL-CD1400 will then transmit whatever character is programmed in SCHR2. As discussed earlier, the send special character command is preemptive to data currently in the transmit FIFO, and thus the XOFF character will be transmitted after the currently transmitting character and the character in the Transmitter Holding Register have been sent, a maximum delay of two character times. When the host is again ready to start receiving characters, it sends an XON Character, also through a send special character command. This time, the CL-CD1400 is issued the command to send whatever is programmed in SCHR1. Send special character commands will override the remotes' flow-controlling of the CL-CD1400; in other words, even if the CL-CD1400 transmitter has been shut off by the remote, it can still send flow control characters. The current state of the flow control condition is always made available to the host through the Channel Control Status Register (CCSR). In addition to the enabled/disabled status of the receiver and transmitter, the CCSR displays the flow control status. Two bits in the CCSR pertain to receiver flow control, RxFloff and RxFlon. Whenever the host issues the send Special Character 2 (send XOFF). the CL-CD1400 sets the RxFloff Bit, indicating that it has requested the remote to stop transmission. When the host issues the send Special Character 1 (send XON) command, the RxFlon Bit is set and RxFloff is reset. RxFlon remains set until the first character is received after the XON was transmitted. The table below shows the bit encoding for RxFloff and RxFlon. The RxFloff/RxFlon Bits are cleared whenever the receiver is disabled or enabled, regardless of the state of flow control when the disable/enable occurred. | RxFlof | f RxFlon | Encoded Status | |--------|----------|--| | 0 | 0 | Transmission has resumed, receiver has been enabled/disabled or receiver is in default reset state | | 0 | 1 | XON has been sent, transmission not yet restarted | | 1 | 0 | XOFF has been sent | | 1 | 1 | Not Used | **NOTE:** Regardless of the current state of RxFloff, the CL-CD1400 continues to receive characters. If the remote ignores or is slow to respond to the XOFF Character, there is the possibility of overruns. #### 3.5.1.2 Transmitter In-Band Flow Control The CL-CD1400 has the ability to automatically flow control its own transmitter when it receives the XON and XOFF Characters, as programmed in SCHR1 and SCHR2. Control Bits in Channel Option Registers 2 and 3 (COR2 and COR3) enable or disable various aspects of the automatic flow control. in order for flow control characters to be acted upon, special character detection must be enabled through Bit 4 (Special Character Detect 1 and 2 — SCD12) of COR3 and Bit 6 (TxIBE) of COR2. When these bits are set, the CL-CD1400 will scan received characters for a match with one of the special characters programmed in SCHR1-SCHR2. If enabled, and it has received a character matching the contents of SCHR2 (the XOFF Character), the CL-CD1400 will then check to see if automatic transmit in-band flow control is enabled through Bit 6 of COR2. If this function is enabled, the CL-CD1400 will cease transmission after the currently transmitting character and the character in the transmitter holding register, if any. If enabled, the CL-CD1400 will also attempt to match against erroneous characters. This function is enabled through the CMOE Bit in COR5. One other Control Bit in COR2 is involved in flow control activities. This is Bit 7, the Implied XON Mode, IXM. This bit determines what character will restart transmission after an automatic flow control has caused it to stop. If Bit 7 is a zero, only a programmed XON Character (SCHR1) will restart the transmitter; all other characters will be received and placed in the FIFO normally. If IXM is set, any character received will restart data transmission. As with receiver flow control, the host can always determine the current state of the transmitter through two bits in the CCSR: TXFloff and TxFlon. When automatic in-band flow control is enabled and the CL-CD1400 receives and XOFF character, it sets TxFloff. When an XON character is received, TxFlon is set. Once transmission actually resumes, TxFlon is cleared. The encoding is shown in the table below. The TxFloff/TxFlon Bits are cleared whenever the transmitter is disabled or enabled, regardless of the state of flow control when the disable/enable occurred. This feature can be used to force resumption of transmission regardless of remote initiated flow control. | | TxFloff | TxFlon | Encoded Status | |---|---------|--------|--| | | 0 | 0 | Transmission has resumed, transmitter has been enabled/disabled or transmitter is in default reset state | | • | 0 | 1 | XON has been received, transmission not yet restarted | | | 1 | 0 | XOFF has been received, transmission has stopped | | | 1 | 1 | Not Used | March 1997 There is one final aspect of automatic in-band flow control: Flow Control Transparency (FCT) which is enabled/disabled by Bit 5 in COR3, FCT determines whether or not remote flow control will be transparent to the host. If this bit is not set, in addition to stopping transmission when an XOFF is received, the CL-CD1400 will place the received XOFF Character in the receive FIFO and inform the host of the reception through a receive exception service request. When the XON Character is received, it too will be given to the host through an exception service request as well as restarting data transmission. If FCT is enabled, received flow control characters will control transmission but they will be discarded rather than be placed in the FIFO. If the host system software doesn't need to be informed when its transmit data has been stopped. this bit can be set to reduce the number of service requests that must be handled. The table below summarizes the Control
Bits in the Channel Option Registers that enable the various modes of in-band flow control. ## 3.5.2 Out-of-Band Flow Control Flow control can also be accomplished through the modem handshake signal pairs RTS/CTS and DSR/DTR. These are called out-of-band flow control because they are external to the data channel. The CL-CD1400 can be programmed to automatically respond to and generate out-of-bandflow control through these signals. ## 3.5.2.1 Receiver Out-of-Band Flow Control Along with the receiver FIFO threshold that sets the level at which the CL-CD1400 will post a service request, another threshold can be set that deter- mines when it will automatically assert/deassertthe DTR* Output if so enabled. This is the DTR threshold and is enabled through the DTRth3-DTRth0 Bits in Modem Change Option Register 1 (MCOR1). The level can be set for any number of characters from 0 to 12, with a threshold of 0 disabling the function. If the function and the receiver are enabled, the CL-CD1400 will automatically assert the DTR* Output whenever the number of characters in the receive FIFO is less than the programmed number. Once the level reaches the threshold, DTR* will be deasserted. DTR* will be held in the deasserted state until the host removes enough characters from the FIFO to lower the level below the threshold. In order for the receiver to operate properly, the DTR threshold must be set to a value equal to or higher than the receiver service request threshold. If the levels were reversed, normal character reception could not be completed because DTR* would always be deasserted before the receive FIFO threshold is reached, thus the host would not get a receive data service request until the receive FIFO time-out is reached. A serial data transmission performance limitation would result. The DTR* Output may also be controlled manually through Bit 1 of Modem Signal Value Register 2 (MSVR2). Setting this bit to a '1' will assert the DTR* Output. The DSR* Input can also be used to flow-control the receiver. If this mode is enabled through Bit 0 of COR2 (DSR Automatic Enable — DsrAE), and characters received while DSR* is deasserted will be discarded. | Bit Name | Register | Function | |-----------|----------|--| |
SCD12 | COR3 | Enables recognition of Special Characters 1 and 2 | |
FCT | COR3 | Enables transparent flow control | |
TxIBE | COR2 | Enables automatic transmitter in-band flow control | | IXM | COR2 | Enables implied XON Mode | # 3.5.2.2 Transmitter Out-of-Band Flow Control Transmitter out-of-band flow control is implemented with three Modem Control Signals: the RTS* Output and the CTS* and DSR* Inputs. The RTS* Output can be programmed to automatically be asserted whenever there is data in the transmit FIFO and the transmitter is cleared to send. CTS* and DSR* can be enabled to automatically control the transmitter. RTS Automatic Output (RtsAO) is enabled through Bit 2 in COR2. If this bit is set, the CL-CD1400 will automatically assert the RTS* Output when there is data in the FIFO to send. When the data has been sent and the FIFO is empty, RTS* will be deasserted until the host inserts more data. If RtsAO is not set, the host software must control the RTS* output manually through Modem Signal Value Register 1 (MSVR1) if required by the remote. The CTS* Input can also be monitored by the CL-CD1400 and used as a transmitter enable. The function is enabled by setting Bit 1 (CTS Automatic Enable — CtsAE) of COR2. If the function is enabled, character transmission will occur only when the CTS* Input Signal is asserted. If the signal is deasserted during active transmission, the current character plus the character in the Transmitter Holding Register, if any, will be transmitted and then transmission will cease. Thus, a minimum of one and a maximum of two characters may be transmitted after the control signal is deasserted. Transmission will resume when the signal(s) are reasserted. The send special character command does not, however, sample the CTS* Input. If the host chooses to send one of the special characters, the character will be transmitted regardless of the state of this input. In most cases, this is desirable so that the host can 'flow-control' a remote even if the host is itself flow-controlled. If the state of CTS* is important, it should be tested through MSVR1 before the special character send command is issued. # 3.5.3 Modem Signals and General-Purpose I/O Each channel of the CL-CD1400 has four pins that can be used either as modem-control or general- purpose input/output pins. The modem signal names assigned to these four pins have been chosen to provide an easy reference for systems designers. In fact, they are all simply general purpose inputs and outputs (if automatic out-of-band flow-control is not used) that can be individually controlled through the modem signal value register(s). Since they are general purpose, system designers may choose to connect the pins in any way that suits the application. However, when the system software design chooses to make use of the automatic out-of-band flow control with the pins, then the signal naming convention no longer holds true in some cases, depending on whether the device is used as DCE or DTE. In this case, it is best to think of the pins in terms of their actual uses within the CL-CD1400 and connect them accordingly, without regard to their names. The RTS* and CTS* Pins are associated with the transmitter and the DTR* and DSR* Pins are associated with the receiver. The table below shows Cirrus Logic's recommended signal hook-up if automatic, out-of-band flow control is desired. | DCE | DTE | CL-CD1400
Pins | Out-of-Band Flow
Control | |-----|-----|-------------------|--| | CTS | | DTR | Signal remote to transmit | | RTS | | | Not implemented in this direction | | | RTS | RTS | Request remote per-
mission to transmit | | | CTS | CTS | Enable transmitter | For example, if the CL-CD1400 is designed to be a DCE and automatic out-of-band flow control is desired, the pin labeled DTR should be connected to remote CTS input. If the CL-CD1400 is to be used as the DTE side, then the CL-CD1400 CTS output would be connected to the remote CTS input. Note that if automatic out-of-band flow control is implemented, the activity of DTR and DSR Pins do not implement the function assigned to those signal names by the signalling conventions of the CCITT March 1997 and other standards organization. These names would only apply to these pins if they are under program control and not under automatic CL-CD1400 control. In fact, the 'DTR' function, as defined, enables the modem to go on- and off-line, depending on the state of the pin. If automatic control is used, then DTR would go inactive when the receive FIFO reached the programmed threshold thus causing the modem to drop the connection (carrier) to the remote, which would not be the correct function. | Modem
Control
Pins | Function | |--------------------------|--| | RTS* | Request to Send (general-purpose output). | | CTS* | Clear to Send (general-purpose input). | | DTR* | Data Terminal Ready (carrier detect/general-purpose input/output). | | DSR* | Data Set Ready (general-purpose input). | | CD* | Carrier Detect (general-purpose input). | | RI | Ring Indicator (general-purpose input). | Modem pins are implemented as I/O ports accessible by either the CL-CD1400 processor or the host. The modem pins are not connected directly to the transmit or receive hardware. When a user programs out-of-band modem functions to be active, the CL-CD1400 processor will read from and write to these pins. Specifically, when RTS* and CTS* are being used for transmit flow control, the CL-CD1400 processor will assert RTS* and sense CTS*, as required. Likewise, when configured to do so, the Receive FIFO will negate DTR* when full. The host should not be allowed to re-assert it inadvertently. The host is not 'locked out' of accessing these bits; care should be taken so that these bits are not written to, causing the system to malfunction. The user has direct control over the RTS* and DTR* Outputs and can sense the state of CTS*, CD*, and DSR* Inputs through the Modem Signal Value Register (MSVR). Since the host is accessing these pins directly, there is no delay in the host's ability to detect a level change. DTR* and CD* depend on the state of the DTRSEL input. When the CL-CD1400 is programmed to detect level changes and generate service requests when level changes occur, it does so in firmware by reading the pins and comparing to a previously stored value. This function is performed in the main timing loop of the firmware; the maximum time required to detect a level change under worst-case conditions is approximately 2 milliseconds. When the CL-CD1400 is performing this function, the modem pins are periodically sampled rather than continuously monitored; as such they have very little sensitivity to noise, which is desirable in data communication applications. However, in extremely noisy applications, re-read a modem line which has caused a Modem Signal Change Service Request to verify that it has indeed changed and is not merely malfunctioning. This will eliminate even the slight possibility of a noise pulse causing erratic operation. When the CL-CD1400 is monitoring modem pins to control transmit or receive functions, it does not rely on the previously stored value, but checks the pins at the appropriate time. Thus, there is very little delay in this response. For example, before deciding to transmit another character, it will examine the CTS* Pin at that time. (The CL-CD1400 makes this decision when moving characters from the FIFO to the Holding Register, not from the Holding Register to the Shift Register.) Note that the logical sense of the modem
bits is inverted; that is, writing a '1' to MSVR1 or MSVR2 causes the output pin to go to nominal zero volts. Likewise, a low-voltage input will be sensed as a '1'. # 3.5.3.1 Generating Service Requests with Modem Pins The CL-CD1400 can generate service requests when any one of the input pins changes state. Either or both edges may be detected by setting bits in the two Modem Change Option Registers (MCOR1 and MCOR2). For each pin, the user can individually enable on-to-off or off-to-on transition detection of the inputs. When the CL-CD1400 detects such a transition, it sets the corresponding bit in the Modem Change Register. If the corresponding bit in the channel's Interrupt Enable Register is set, the CL-CD1400 will assert its IREQ1* Output. The user must clear the Modem Change Register during the service request service routine before writing to the EOIR. The CL-CD1400 performs this task by reading the modem input signals and comparing the current value with the value read in the last pass through the outer scanning loop. Because this is the lowest-priority event in the CL-CD1400 scanning loop, changes may not be detected unless they are several hundred microseconds long. Modem Input Pins can be used for purposes such as detecting the closing of a switch. However, the relatively slow speed of response should be taken into account when using Modem Input Pins for this purpose. The CL-CD1400 does not latch the Modem Input Signals. # 3.5.3.2 Using Modem Pins as General-Purpose I/O Since the modem pins can be directly accessed by the host, they can be used as general-purpose I/O pins if they are not needed for flow control or modem interfacing. Simply read from and write to them as any I/O port. ## 3.6 Receive Special Character Processing The CL-CD1400 has several means of sending special characters and ways in which it processes these characters when it receives them. Some special characters can have fixed definitions and some can be user-defined. The flow-chart at the end of this section defines the processing that the CL-CD1400 performs for receive data. The chart may aid in understanding the special character handling process. ## 3.6.1 UNIX Character Processing The CL-CD1400 incorporates special character processing that can be of particular benefit in systems designed to run the UNIX operating system. The processing performs some of the functions normally handled by the 'line discipline' part of a serial device driver program. The effect of this is higher overall performance in serial communication than would otherwise be obtained because the character manipulation takes place at the hardware level with- out host action. This processing includes carriage return (CR) and new line (NL) substitution, programmable response to errored characters (framing, parity and overrun errors), the LNext function and ISTRIP. Each of the types of processing is optional; any, all or none of them can be enabled/disabled through control bits in the Channel Option Registers two, four and five (see the detailed register descriptions for the format of COR2, COR4 and COR5). This section gives detailed descriptions of each of the functions. If Channel 0 is programmed as a parallel channel, only the transmit special character processing occurs, such as repeat space and carriage return and new line translation. #### 3.6.1.1 Line-Terminating Characters The CL-CD1400 can be programmed to perform automatic substitution of carriage return (CR) and new line (NL) characters on both received and transmitted data. Received character processing has five unique substitutions based on the value of three bits in COR4 - IGNCR, ICRNL and INLCR (some combinations cause identical actions): | 000 | Do nothing - function not enabled | | | |-----|--|--|--| | 001 | Received NL changed to CR | | | | 010 | Received CR changed to NL | | | | 011 | Received CR change to NL and received NL changed to CR | | | | 100 | Received CR discarded | | | | 101 | Received CR discarded and received NL changed to CR | | | | 110 | Received CR discarded | | | | 111 | Received CR discarded and received NL changed to CR | | | #### 3.6.1.2 Errored Character Processing The CL-CD1400 provides a number of ways to handle characters that are received with errors (parity, framing and overrun errors). If none of the special processing functions are enabled, errored characters are delivered to the host through a receive exception service request. Alternatively, these characters can be handled in one of the following ways, as defined by the PE[2:0] Bits of COR4: - Parity errors can be ignored the character is placed in the FIFO as Good Data and is given to the host as any other received Good Data. - An errored character can be replaced with a NULL (x'00) character in the FIFO. - An errored character can be replaced in the FIFO with the three byte string x'FF - 00 - character. If this mode is enabled and an actual good x'FF character is received, it is replaced in the FIFO by two x'FF characters. - An errored character can be discarded. Received breaks are handled a little differently from other errored characters. They can be processed, based on the settings of the IGNBRK and -BRKINT Bits in COR4, as: - Reported as an errored character through a received exception service request. - Replaced with a good NULL (x'00) character in the FIFO. - Discarded #### 3.6.1.3 LNext This function provides a means of 'escaping' or ignoring any special meaning of special characters and treats them as normal data. The escape character is defined by the value in the LNC Register. If the CL-CD1400 receives this character, it will put it and the next character in the FIFO without further processing. This allows, for example, a flow-control character to be received without it actually causing flow-control activity. LNext can be enabled to operate even on characters that are received with errors (parity, framing, overrun), otherwise errored characters are handled normally and the next character is not escaped. #### 3.6.1.4 ISTRIP ISTRIP is a simple function that, if enabled, resets the most-significant bit (Bit 7) of all received good characters. If the character has a parity or framing error, the ISTRIP function does nothing and the character is given to the host through a normal receive exception service request. # 3.6.2 Non-UNIX Receive Special Character Processing In addition to the UNIX special character processing, the CL-CD1400 provides other special character recognition capabilities. The CL-CD1400 has four registers that define special characters, SCHR1-SCHR4. Two of these, SCHR1 and SCHR2 are used in flow control activities and were discussed in the flow control section. SCHR3 and SCHR4 define two additional special characters that the CL-CD1400 can scan for in the receive data stream. Recognition of Special Characters 3 and 4 are enabled by the SCD34 Bit of COR3 (Bit 6). If either of these are received, it is cause for a special character detect (receive exception) service request. It should be noted that if automatic in-band flow control is not enabled, SCHR1 and SCHR2 can still be used as special characters. They will be detected and reported as receive exceptions, but will not cause any flow control activities to be invoked. Another special character function is the range detect function. If this mode is enabled (through the SCDRNG bit in COR3), the CL-CD1400 will compare all received characters against the values in Special Character Range Low (SCRL) and Special Character Range High (SCHL). If the character received falls between these two values (inclusive), a special character detect service request will be posted. The status shown in the RDSR indicates which of the special character recognition conditions were met and that caused the receive exception service request. See the RDSR description in the register definitions in Section 5 for the bit encoding. Figure 3-6. CL-CD1400 Receive Character Processing Figure 3-6. CL-CD1400 Receive Character Processing (cont.) March 1997 DATA BOOK v1.0 **FUNCTIONAL DESCRIPTION** Figure 3-6. CL-CD1400 Receive Character Processing (cont.) ## 3.7 Transmit Special Character Processing The CL-CD1400 also provides some special character handling on the transmit side; embedded transmit commands and direct commands that cause transmission of predefined special characters. A flow chart (Figure 3-7 on page 55) is included at the end of this section to help describe the process of special character handling. ### 3.7.1 Line Terminating Characters On transmit, there are four possible substitutions based on the setting of two flags in COR5 (Bits 1 and 0 — ONLCR and OCRNL): - 00 Do nothing function not enabled - 01 Change all <CR> characters to <NL> - 10 Change all <NL> characters to <CR> <NL> - 11 CR characters changed to NL or NL changed to <CR> <NL> In the last case, where both flags are set, only one of the translations will take place. In other words, a CR that has been changed to NL will not then be changed into CRNL. #### 3.7.2 Embedded Transmit Commands The CL-CD1400 has a special feature that optionally allows specific 'escape' character sequences in the transmit data stream to be interpreted as commands. These are called Embedded Transmit Commands (ETC) and are enabled by the ETC Bit in Channel Option Register 2. They can be used to insert programmed time delays between characters and generate a line break on the transmit data output. If enabled, an ETC is detected when the two- or three-character'escape' sequence is detected in the transmit FIFO. An escape-character sequence is made up of the special escape character followed by the command character and an optional count for the delay period. The escape character is an all-zero (null) character. It should not be confused with the ASCII ESC character, which is 1B hex; for this discussion, ESC refers to the null character. Five commands are supported in
the ETC command set: **ESC ESC**: Send one **ESC** character. This command sequence is provided to allow the ESC character to be sent alone. Thus, this 'escapes' the escape when it is actually desired to send a null character. ESC x'81: Send BREAK. This causes the transmitter to enter the line-break condition for at least one character time. Several conditions control the continuation and/or termination of the line break. If there is no more data in the FIFO following the send break command, the break will continue indefinitely until terminated by a stop break command. If there is an insert delay command (see the next command) immediately following the send break command, the break duration will be set by the value programmed in the delay command. Any other character in the FIFO immediately following the send break command carries an 'implied' end of break condition, causing the break to be terminated and the next character to be sent. Insert delay. This command will ESC x'82 x'xx. cause a delay between the previous character transmitted and the next character to be transmitted. The hex value contained in the third byte of the sequence determines the time of the delay based on the basic time period set by the Prescale Period Register (PPR). The value is treated as an unsigned binary value that is loaded into an internal counter. The counter is decremented once for each 'tick' of the prescale period timer. Thus, if the PPR sets a basic timing period of 10 ms and the value set by the command is 100 (x'64), then a delay of 1 second will be generated. Multiple insert delay commands can be placed in the FIFO if time delays longer than that generated by a single delay period are needed. This command is useful when a delay is required after sending a carriage return. A printer is an example of this type of situation. Often, the carriage return causes the printer to start a print cycle and the sending device must wait for the print to complete before sending the next line of text (unbuffered input). Using the insert delay command allows the delay to be performed automatically without the need for the host to time it. The delay command is placed in the FIFO directly following the carriage return and preceding the first data for the next line. The CL-CD1400 will automatically execute the delay following the carriage return and then start sending characters again. Another useful application of the delay command is as a built-in timer that the host can use as an interrupt source causing it to periodically check its internal buffers for data to transmit. This assumes that the channel is not currently transmitting data. When the host services the transmit FIFO service request after a delay time-out, as set by the delay value, it can start transmission of a buffer if data is available or re-send the insert delay command and wait for the next service request. This removes the necessity of the host setting an internal timer interrupt to perform the same function. ESC x'83: Stop BREAK. This command will terminate a break in progress regardless of other conditions. This command may be preceded by insert delay commands to set a specific, programmed break period if more than one character time is needed. Any character in the FIFO will cause the break to terminate. EXC x'83 is needed only if it is necessary to stop the break and there is no more data to be sent. A break will continue until another character is sent or the ESC x'83 is encountered in the FIFO. ESC x'01- x'3F: Send Repeat Space. This command will cause the CL-CD1400 to send repeated space characters. The character following the ESC is interpreted as a binary count specifying the number of ASCII space (x'20) characters to send. The count must be in the range of x'01 through x'3F (1-63 decimal), inclusive. ## 3.7.3 Send Special Character Command The CL-CD1400 has, as one of its host commands, a method of transmitting any one of the four special characters programmed in Special Character Registers SCHR1-SCHR4. The command is issued through the CCR with Bit 5 set to a one and the least significant three bits encoding a selection of one of the four characters (see Section 5 for details of the bit-encoding). The function is preemptive, meaning that the selected character will be transmitted immediately following the currently transmitting character and a character in the transmitter holding register, if any. This preempts any characters in the transmit FIFO. If there are characters in the transmit FIFO, transmission of those will resume after the special character is sent. CTS is ignored if CtsAE is set. One important use of this command is that it allows the host to flow-control a remote without having to wait for the transmit FIFO to empty before the flow control character can be put in. This is a special case of the normal transmitter operation of the CL-CD1400 in that the character can be sent without waiting for a transmit service request. The only requirement is that the transmitter be enabled (interrupts need not be enabled). Figure 3-7. CL-CD1400 Transmit Character Processing March 1997 Figure 3-7. CL-CD1400 Transmit Character Processing (cont.) #### 3.8 Baud Rate Generation The CL-CD1400 provides a separate baud rate generator for each direction of each channel. Each receive and transmit baud rate generator can be driven from one of five available clock sources. The source being used is selected by the value in the Receive Clock Option Register (RCOR) and Transmit Clock Option Register (TCOR). The selected clock is divided by the value in the Receive Baud Rate Period Register (RBPR) or Transmit Baud Rate Period Register (TBPR) to yield the desired bit rate. The five clock sources are: Clk0 System clock divided by 8, RCOR/TCOR = 0 Clk1 System clock divided by 32, RCOR/TCOR = 1 Clk2 System clock divided by 128, RCOR/TCOR = 2 Clk3 System clock divided by 512, RCOR/TCOR = 3 Clk4 System clock divided by 2048. RCOR/TCOR = 4 The system clock is the external clock driving the CLK Input of the CL-CD1400. Four example baud rate tables are provided at the end of Section 3. ## 3.9 Diagnostic Facilities — Loopback The CL-CD1400 provides the capability to perform loopback testing internally for both local and remote loopback modes. Loopback Mode is enabled through the Local Loopback Mode (LLM) and Remote Loopback Mode (RLM) Bits of COR2. Figure 3-7. CL-CD1400 Transmit Character Processing (cont.) In local loopback, the output of the transmitter bit engine is connected directly to the input of the receiver bit engine and the input and output pins (TxD and RxD) are disconnected. The TxD Output is left in the *mark* condition so that remote equipment does not sense any line activity. Input conditions on the RxD are ignored. All channel parameters and service request functions are in effect and operate normally. If enabled, special characters are detected and acted upon and UNIX translations occur. Remote Loopback Mode causes the CL-CD1400 to echo any received data immediately back to the Transmit Output. This is done character-by-character rather than bit-by-bit; in other words, characters are echoed once they have been completely received and assembled. Received data will not be placed in the FIFO, thus no data is given to the host. The received character will be re-transmitted with parity and Stop Bit options as defined by COR1. It is important to note that, if transmit baud rate is lower than receive baud rate, overrun errors and loss of data are likely to occur. #### 3.10 Parallel Channel Operations Channel 0 is user-configurable as either a serial or a parallel port. The selection of operating modes is made by the value of the P/S* Bit (Bit 7) in the Global Configuration Register (GCR). After reset, Channel 0 is configured as a serial port by default. Host software reconfigures the port to the parallel mode by setting this bit to a '1'. The port is capable of bi-directional operation, the direction being set by the enabled mode: transmit or receive. In the receive mode, the CL-CD1400 drives PBUSY as well as PSTROBE* automatically.PBUSY, however, is not a bi-directional handshake control: in Transmit Mode, it is not monitored by the CL-CD1400. PACK* is used as the acknowledge that the transfer has been completed. It is important to note that when Channel 0 is configured for parallel operation, several of the modem input signals of the other three channels are taken over for use by the parallel channel to provide the necessary data and control/status signals required to support the parallel interface definition of the Centronics parallel specifications. These are the RI and CD Inputs (since they are used for bidirectional data transfer, they are actually Input/Output Sig- nals). These six signals (RI[3:1]* and CD[3:1]*) and the two separate Parallel Data Input/Output Signals (PD[0] and PD[1]) form the bi-directional parallel data port. Other modem input/output signals on Channel 0 provide the control and status signals. The data transfer handshake is provided by the PSTROBE* Output and the PACK* Input. Note also that these two signals never change direction; PSTROBE* is always an output and PACK* is always an input. This is the normal signal name convention for parallel data transmit. For receive, the PSTROBE* Output effectively becomes the Transfer Acknowledge (ACK) Output function and the PACK* becomes the Data Strobe (STROBE) Input function. Unlike some parallel interface devices which require the host to control and generate the timing for the handshake signals directly, the CL-CD1400 automatically generates the PSTROBE* and PBUSY Outputs and monitors the PACK* Input. This removes nearly all host overhead in data transmission or reception other than putting data in, or taking data out of, the FIFO. Since parallel data movement is inherently half-duplex, the CL-CD1400 combines the serial receive and transmit FIFOs, plus some other registers not needed in Parallel Mode, into
one large, 30-byte FIFO. This further reduces host overhead by providing larger buffering and thus reduced service request activity. The width of the PSTROBE* pulse is set by the value programmed in the least-significant five bits of the TBPR (the TCOR is not used in Parallel Mode) multiplied by the system clock divided by two. Thus, the width can be any duration in the range of 33.3 ns to 1.03 µs (based on a 60-MHz system clock, hex values of 1 to 1F in the TBPR). For best overall performance, the RCOR/RBPR pair should be set to generate a bit-time slightly more than twice the width of the expected pulse on the PACK* Input. The PBUSY pulse width is dependent on the duration between the Strobe Input to the CL-CD1400 and the Acknowledge Output (PACK* to PSTROBE* delay; see Section 6). General operation of the parallel port is the same as the serial port. When the channel is in the Transmit Mode and the transmitter and transmit service requests are enabled, the CL-CD1400 will request service whenever the FIFO is empty. The host responds by writing up to 30 bytes into the FIFO. Carriage return and new line mapping occur on transmit data in the same manner as in Serial Mode, if so enabled. Only the send repeated space command of the embedded transmit command set is operative. The receiver also works the same way in Parallel Mode as it does in serial. The FIFO threshold can be set to trigger on any level between 1 and 30 inclusive. However, in the interest of highest possible performance, no receive special character processing occurs. ## 3.10.1 Transmit Operation When the channel is enabled for transmit operation and service requests are enabled, the CL-CD1400 will transmit data whenever characters are in the FIFO. Service requests can be programmed to occur when the FIFO becomes empty. There is no equivalent to the Serial Transmitter Empty Interrupt in Parallel Mode, thus only the TxRDY Interrupt Bit in the SRER is operational. Characters are taken directly from the FIFO and placed on the parallel data pins for transmission. Therefore, when the FIFO is empty (as indicated by the TxRDY Bit in the SRER), there is no more data to send and the 'transmitter' is empty. Data transmission is controlled by the CL-CD1400 through the handshake signals PSTROBE* and PACK*. When the FIFO has a byte to send, the CL-CD1400 puts the eight bits of data on the parallel port. After a 200 ns setup time, the PSTROBE* Signal is driven active (low) and remains active for the time specified by the value programmed in the TBPR. PSTROBE* is then deactivated and the data is held until the PACK* Input is driven active (low) by the receiving device. PACK* is the only signal monitored automatically by the CL-CD1400 for flow-control purposes. The state of PBUSY, however, is made available to the host through the PSVR. Host software can detect the busy condition and disable the transmitter, if necessary. Once PACK* becomes inactive, the CL-CD1400 will place the next data byte on the port (if the FIFO is not empty), and the cycle repeats. If the receiving device is not able to accept the data, it may hold off the cycle indefinitely by not activating PACK*. This provides the parallel version of flow control. Figure 3-8 shows a typical connection for a CL-CD1400 parallel transmit interface, which is a printer in this example. Figure 3-8. CL-CD1400 Parallel Data Transmit Connections #### 3.10.2 Receive Operation The receive operation in Parallel Mode is also very much like the Serial Mode. The receive FIFO has a threshold setting that determines the level of data required to cause a receive service request. The threshold can be set anywhere from 1 to 30 characters. When the number of characters in the FIFO equals the set value of the threshold, the CL-CD1400 will post a receive service request. The sequence of events in receiving a byte is the reverse of sending, the sending device places the data on the parallel data port; after an appropriate setup time, it activates its strobe out. The strobe is connected to the PACK* Input of the CL-CD1400. When the CL-CD1400 senses the active level on the PACK* Input, it activates PBUSY to indicate that it is taking the data but is not yet done. Once it has taken the data, it will activate its PSTROBE* Output, which should be connected to the sender acknowledge input. At the end of the programmed pulse width duration (set by TBPR), PSTROBE* and PBUSY are deactivated. Flow control happens automatically in the receive direction. If the FIFO is full when the next data byte is being received, the CL-CD1400 will maintain PBUSY in the active (high) state and will not activate PACK*. Once the host has serviced the receive FIFO and has removed at least one byte, thus providing space for the current byte, the CL-CD1400 will complete the receive cycle by acknowledging the byte (activate PSTROBE*) and deactivating PBUSY. Figure 3-9 shows the connections between the CL-CD1400 and a sending device such as a scanner. This connection might also be seen in an application where the CL-CD1400 is the receiving device in a printer application. Figure 3-9. CL-CD1400 Parallel Data Receive Connections ## 3.10.3 Programming Considerations There are a few guidelines that should be followed for optimum parallel port data transfer performance. These are primarily related to the programming of the RCOR/RBPR pair, although programming the TBPR properly also has affects performance. Only the TBPR is used in determining the pulse width of the PSTROBE* Output when Channel 0 is programmed to be a parallel port; the TCOR is not used and its value is 'don't care'. In the Parallel Mode, the transmit bit engine is not used PSTROBE* generation. Instead, the PSTROBE* Output is produced by a five-bit hardware counter that is loaded with the value contained in the least significant five bits of a register that is itself loaded from the TBPR each time the channel is enabled (or re-enabled). This five-bit counter is loaded each time a strobe generation cycle is started. This happens simultaneously with the activation of the PSTROBE* Output. The counter is decremented once for each cycle of the internal clock (CLK divided by 2); when the count reaches zero, PSTROBE* is deactivated. In general, the TBPR should be programmed to produce the shortest pulse width to which the receiving device can reliably respond. Depending upon the operating frequency of the clock (CLK), the pulse width may be as short as 80 ns (TBPR = 1, CLK = 60 MHz) to as long as 16 µs (TBPR = 32, CLK = 1 MHz). It is important to note that any time the strobe width of PSTROBE* is to be changed (that is, a new value is loaded into TBPR), the change will not be reflected until a channel reenable, either receive or transmit, is performed through the CCR. By far, the programming of the RCOR/RBPR pair will have the most significant impact on parallel port performance. An explanation of how the device works internally in Parallel Mode will help make this apparent. The same bit engine that is used to receive serial data is used to detect the PACK* Signal. When the CL-CD1400 is waiting for an active PACK* Signal, the bit engine is running in its 'Start-Bit Detect' Mode. In this mode, once it has detected the leading edge of the PACK* Signal, it times to the middle of the 'bit' (one-half bit time, based on the programmed baud rate as determined by the RCOR/RBPR pair) and then generates an interrupt to the MPU. This would normally be the time that start-bit validation would take place for serial data. In Parallel Mode, when the MPU executes the 'foreground' routine to service this interrupt, it checks to see if the PACK* Signal is still present or if it has returned to the inactive state. If it is still active, the foreground process hands the duty of searching for the end of the PACK* to the background task and terminates the interrupt, since waiting for PACK* to become inactive during foreground processing would seriously degrade device performance. Figure 3-10. Relationship between RCOR/RBPR and PACK* Pulse March 1997 DATA BOOK v1.0 FUNCTIONAL DESCRIPTION If, on the other hand, PACK* has already returned to the inactive state, the MPU can take the appropriate action immediately, during the foreground loop. In the case of Receive Mode (when PACK* is actually performing as the strobe input), the MPU retrieves the data from the parallel port and inserts it directly in the FIFO. If in Transmit Mode, it can allow the background code to schedule the next character immediately. The ability of the foreground code to handle the transaction greatly decreases the response time since the background code cycles through all channels in round-robin fashion. Thus there is a variable delay between each channel's MPU processing time. The highest performance will be obtained when the RCOR/RBPR pair are programmed to produce a bit-time whose half bit-time is just slightly longer than the expected strobe width on the PACK* Input. In this way, when the foreground process begins execution, the PACK* Input will have returned to the inactive state and the MPU can handle the data transaction immediately. For example, if the expected strobe width is 10 µs (100 kbaud), the RCOR/RBPR pair should be programmed to produce an effective baud rate of a little less than 50K, say 49K to allow for a small margin of error. To produce this baud rate, the RCOR would be loaded with zero, which selects clk0 (CLK divided by 8) as the clock source and the RBPR would be loaded with 51 (hex 33). These numbers assume a 20-MHz system clock (CLK). The timing diagram in Figure 3-10 on page 61 shows the sample point that yields the highest performance, as explained above. ## 3.11 Hardware Configurations The simplicity of the host interface to the CL-CD1400 allows it to be built into systems that use popular microprocessors, such as the Intel 80x86 family (8086, 80286, 80386, and so on), the Motorola family (68000, 68010, 68020, and so on), the
National 32x32 family (32CG16, 32332, 32532, 32GX32, and so on), and the AMD29000. # 3.11.1 Interfacing to an Intel® Microprocessor-Based System With little extra logic, the CL-CD1400 can be interfaced to any system based on a processor in the Intel 80x86 family. Figure 3-11 on page 63 shows a generalized view of an I/O-mapped interface with an 80286-based system. To provide the proper strobes and controls, the IOR* and IOW* control strobes are used to synthesize the DS* and R/W* Signals. DTACK* is used as an input to wait-state generation logic that will hold the processor (if necessary) until the CL-CD1400 has completed the I/O request. # 3.11.2 Interfacing to a Motorola® Microprocessor-Based System Interfacing to a 68000 family device is straightforward. The bus timing and the interface signal definitions very closely match those of the 68000 microprocessor, thus allowing direct connection in most cases. With later versions (68020, 68030), some additional logic is required to generate the DSACK0* and DSACK1* functions that replace the DTACK* on the earlier devices. The example in Figure 3-12 on page 64 shows a generalized interface to a 68020 device. ## 3.11.3 Interfacing to a National Semiconductor® Microprocessor-Based System The connections between the CL-CD1400 and a NS32000 (32GX320, 32CG16, and so on) embedded controller are also relatively simple. As with the Intel devices, cycles are controlled by the DS, CS and R/W Signals that have been synthesized from the available I/O Control Signals and I/O cycle extensions (wait states) are generated by logic connected to the DTACK Signal. Some additional consideration is required when implementing memory-mapped I/O to prevent multiple read and write cycles with the CL-CD1400 FIFOs due to the pipelined architecture of the 32000 device but all of the necessary controls are available. Figure 3-13 on page 65 depicts a simplified interface example. Figure 3-11. Intel® 80x86 Family Interface March 1997 DATA BOOK v1.0 **FUNCTIONAL DESCRIPTION** Figure 3-12. Motorola® 68020 Interface Figure 3-13. National® 32000 Interface **■** 2136639 0010573 968 **■** March 1997 DATA BOOK v1.0 **FUNCTIONAL DESCRIPTION** Notes # PAGE(S) INTENTIONALLY BLANK ## 4. PROGRAMMING #### 4.1 Overview The CL-CD1400 host interface is made up of a large array of registers that control aspects of chip behavior; some affect overall chip operations, and some affect only one channel. At first glance, this can appear to be a bewildering number of registers that need to be manipulated. However, most of the registers will only be set up once, during initialization, and only rarely modified during normal operation. The purpose of this section is to discuss these aspects, as well as the methods of interacting with the CL-CD1400 for channel service needs. #### 4.2 Initialization In order to properly bring up a CL-CD1400, several procedures must be completed. These include chip initialization, programming global functions and setting channel-specific parameters. In most cases, initialization routines will only be executed once, during overall system boot-up. The following sections discuss these steps in detail. The flow chart on the next page presents this information in a visual format. ## 4.2.1 Chip Initialization The procedures that perform chip reset will normally be executed after a power-up, system-wide reset and, therefore, the CL-CD1400 will have performed its own internal initialization, caused by the Hardware Reset Control Signal, RESET*. If desired, the host may issue a software chip reset to make sure it has been completed before chip initialization begins. The following steps can be followed to accomplish this (following the text description, there is a flow chart depicting the same steps): ## 1) Wait for CCR to contain 0x00 The contents of the Channel Command Register (CCR) must be zero before a command is issued. This is required so that any currently executing command has completed before the new one is started. Since this is probably the first command being writ- ten to the CL-CD1400 after power-on initialization, the CCR is likely to be zero, but it is recommended to always check the CCR before writing a new command into it. 2) Write hexadecimal 81 (x'81) to the Channel Command Register (CCR). This command causes the CL-CD1400 to perform an all-channel and global reset. Its effect is to cause the internal RISC processor to begin execution from its power-up reset location. All internal host interface registers are cleared, the FIFOs are flushed, and all channels are disabled. The all-channel reset command is a special-case CCR operation. Normally, commands issued to the CCR affect only the channel selected by the CAR. In this case, the setting of the CAR is not significant. 3) Wait for the firmware revision code to be written into the GFRCR. This operation is used by the internal firmware to flag completion of the reset procedure. After reset, the GFRCR is one of the first registers to be cleared and is the last register set before normal run-time code execution begins. The initialization routine must wait for this register to become non-zero before beginning any other programming of CL-CD1400 Registers. However, if the host code is sufficiently fast, it may begin testing the GFRCR before the MPU clears it; thus, the assumption would be made that the CL-CD1400 has completed its internal initialization when, in fact, it has not. To avoid this error, the host software should clear the GFRCR just prior to issuing the global reset and then poll for the correct revision code. This is the recommended procedure to reset the CL-CD1400. This procedure can also be used as part of a diagnostic test suite. The device will complete internal initialization within 500 μ s. Therefore, a timer (software or hardware) can be used to detect if the operation does not finish within this time, in which case the chip may not be functional. * Revision Code for Revision J device = 48 Figure 4-1. CL-CD1400 Master Initialization Sequence #### 4.2.2 Global Function Initialization Once chip reset has been completed, the next step is to set the Global Operating Mode and timer prescale. All other initialization will take place at the channel level. 1) Set the Global Configuration Register (GCR). The GCR setting determines the mode of operation of Channel 0. After reset, this register is set to all '0's. This sets Channel 0 to be a serial port. If this is the intended mode for Channel 0, nothing further needs to be done with this register. If Channel 0 is used as a parallel port, Bit 7 must be set to a '1'. 2) Set the Prescaler Period Register (PPR). The PPR sets the master time 'tick' for the CL-CD1400. It is a binary value that sets the constant by which the system clock is divided (after a fixed prescale of 512) to produce the internal clock for the on-chip timers (*not*the baud rate generators, however). This clock is used for receiver FIFO timeout generation and delay timing for the insert delay command in the embedded transmit command set. For example, to generate a timer clock of 1 ms, the value is computed as: $$\left(\frac{60MHz}{512}\right) \times 1 \, ms = 117.18 \qquad \text{Equation 4-1}$$ The value 117 would be loaded into the PPR. This value, in effect, selects an approximate 1-kHz clock as the source for the Receiver Time-out Period Registers of each channel. Those registers would, in turn, be loaded with an appropriate value divisor to generate the desired character time-out periods. This value, 117, is the recommended minimum value that should be placed in the PPR for a 60-MHz CLK. Values that generate a time period of less than 1 ms adversely affect the performance of the MPU and, thus, overall serial data performance. #### 4.2.3 Individual Channel Initialization At this point, the basic operation of the CL-CD1400 has been set up. The internal register states have been cleared, the mode for Channel 0 is set, and basic timer operations initialized. The next step is to program the operating modes of each channel. This includes setting the values for the interrupt vectors, the receive and transmit baud rates, number of bits per character, number of stop bits, parity, special characters, if any, and so on. Each channel can have a completely unique set of operating characteristics. Or, they can all be the same. It is application dependent; the operating modes of one channel have no effect on the operation of any other (operating Channel 0 as a parallel port does affect the available input/output signals associated with Channels 1-3 (CD and RI are borrowed) but not operating characteristics). The following shows a typical initialization sequence to set up a single serial channel. In this example, Channel 1 is set up as: - 9600 Baud, send and receive - 8 bits per character, 1 Stop Bit - No parity - Automatic In-Band (Xon/Xoff) flow control - Transparent flow control - · Special character detect enabled - Eight character receive FIFO threshold - Receiver and transmitter enabled for interrupt operation - Enable ISTRIP on incoming characters The clearest way to show this initialization sequence is through a 'C' program fragment; the code shown is compatible with Borland[®] Turbo C^{TM} : ``` /* Init channel. Channel number is included in call. Register names and addresses are defined in * the header file (not shown). init_channel(chan) char chan outportb(CAR, chan); /* set channel number in CAR */ /* constants for 60-MHz clock - clock option*/ outportb(TCOR, 0x01); outportb(TBPR, 0xc3); - baud rate period */ outportb(RCOR, 0x01); /* constants for 60-MHz clock - clock option */ outportb(RBPR, 0xc3); - baud rate period */ outportb(COR1, 0x03); /* no parity, 1 Stop Bit, 8-bit chars */ outportb(COR2, 0x40); /* auto. in-band flow control */ outportb(COR3, 0x38); /* transp. flow-control, special char 1 & 2 detect, fifo thresh = 8 */ while (inportb(CCR) != 0) /* make sure that CCR is zero before issuing
commands */ outportb(CCR, 0x4E); /* issue COR changed command for COR1, 2, 3 */ outportb(COR5, 0x80); /* enable ISTRIP */ while (inportb(CCR) != 0) /* make sure that CCR is zero before issuing commands */ outportb(CCR, 0x1A); /* issue receiver and transmitter enable command to CCR */ outportb(SRER, 0x14); /* enable receive and transmit interrupts */ } ``` ## 4.3 Poll Mode Examples The CL-CD1400 provides a set of seven registers that are dedicated to Poll Mode operation, as described in Section 3. on page 29. This section shows one of many ways in which these registers can be used to detect and service requests from any of the channel receiver, transmitter or modem signal change functions. The primary registers involved in polling are the SVRR, RIR, TIR, MIR and CAR; supplementary registers are the RIVR, TIVR and MIVR. Of the latter three, only the RIVR is actually used; it provides the status about whether the service request is for Good Data or exception data. The TIVR and MIVR provide redundant information and are rarely used. Other registers related to service requests (TDR, RDSR, MISR, and so on) perform the same functions as they would in a hardware-acknowledged service request. Once again, 'C' code fragments will be used to describe the functions. As with other coding examples, it is assumed that register addresses are defined elsewhere, such as in a header file, and are not shown here. Also, the routines cannot be considered complete. Some pieces will be dependent on the system software design so liberties are taken in the examples. They do, however, show methods that can be used to implement the Poll Mode service request/service acknowledge sequence. ## 4.3.1 Polling Routine Examples ## 4.3.1.1 Scanning Loop ``` /* Poll Mode code fragment. This routine simply checks for any servicing requests and * branches to the appropriate service routine. The code prioritizes service requests as * receive, transmit and modem, in that order. poll() { char status: char rx_stat = tx_stat = md_stat = 0; if (status = inportb(SVRR)) { switch (status) { case 1: /* all values that include a receive request */ case 3: case 5: case 7: rx_stat = service_rec(); return(rx_stat); break; case 2: /* all values that include transmit but not receive */ case 6: tx_stat = service_txm(); return(tx_stat); break; case 4: /* modem service request alone */ md_stat = service_mdm(); return(md_stat); break; default: /* can't happen :-) */ break; } } } ``` Once the code above finds an active request posted in the SVRR, it calls the appropriate subroutine to service the request. The service routines follow. #### 4.3.1.2 Receive Service ``` /* The receive service acknowledge cycle begins by reading the RIR. This register contains * the necessary information to switch the CL-CD1400 into the correct service acknowledge * context. The RIR is saved for use at the end of the routine and then copied into the CAR. * The act of copying the RIR into the CAR forces the context switch. The channel number * requesting service is extracted from the RIR. The RIVR Register indicates whether the * request is for Good Data or exception data and is used to correctly handle the request. At * the end of the service, the upper two bits in the RIR are cleared causing the switch out of * the service acknowledge context. service_rec() char serv_type, save_rir, save_car, channel, status, char; int char_count, i; /* retrieve and save receive interrupt value */ save_rir = inportb(RIR); channel = save_rir & 0x03; /* extract channel number from the RIR */ save_car = inportb(CAR); /* save CAR for restore */ outportb(CAR, save_rir); /* switch CL-CD1400 to service ack. context */ serv_type = inportb(RIVR) & 0x07; /* read vector register; get type (good/exception)*/ switch (serv_type) { case 3: /* Good Data service */ char_count = inportb(RDCR); /* get number of characters in FIFO */ for (i = 1; i \le char_count; i++){ /* - read that number of chars */ char = inportb(RDSR); /* read char from FIFO */ /* Code here would put the character in a buffer of some sort for each * channel. That code would be dependent on system software design * so it won't be shown here. */ outportb(RIR, save_rir & 0x3f);/* terminate service ack. sequence */ outportb(CAR, save_car); /* restore original CAR* / return(0); break: case 7: /* exception data service request */ /* by definition, only one char; get status */ status = inportb(RDSR); outportb(RIR, save_rir & 0x3f); /* terminate service ack. sequence */ outportb(CAR, save_car); /* restore original CAR */ return(status); /* just return the error type */ break: ``` } #### 4.3.1.3 Transmit Service ``` /* The transmit service acknowledge routine follows very nearly the same steps that the * receive service routine follows. This time, the TIR is used to force the switch to a * transmit service for the requesting channel. service_txm() char save_tir, save_car, channel; int char_count, i; save_tir = inportb(TIR); /* retrieve and save transmit interrupt value */ channel = save_tir & 0x03; /* extract channel number from the TIR */ save_car = inportb(CAR); /* save CAR for restore */ outportb(CAR, save_tir); /* switch CL-CD1400 to service ack. context */ /* Buffer management code would set-up pointers to the next 12 * characters (maximum) to be sent on this channel. Again, buffer * layout is system design dependent and won't be shown here. */ for (i = 0; i < char_count; i++) { /* transmit FIFO can take 12 characters */ outportb(TDR, *next_char++); /* it is assumed that char_count and next_char is set up by buffer code */ } outportb(TIR, save_tir & 0x3f); /* terminate service ack. sequence */ outportb(CAR, save_car); /* restore original CAR; may not be necessary */ return(0); } ``` #### 4.3.1.4 Modem Service ``` /* Code to handle modem signal change service request can be simple or complex depending * on whether port control is handled directly in the service routine or simply noted with * status returned. The following routine services the request and returns the status of which * signals changed with the channel number OR'ed into the least significant two bits; the main * driver software must perform the necessary functions. As with the receive and transmit * routines,the Interrupt Register, this time the MIR, is used to force the CL-CD1400 into the * service context. service_mdm() char save_mir, channel, save_car, mdm_status; save_mir = inportb(MIR); /* retrieve and save modem interrupt value */ /* extract channel number from the MIR */ channel = save_mir & 0x03; /* save CAR for restore */ save_car = inportb(CAR); /* switch CL-CD1400 to service ack. context */ outportb(CAR, save_mir); mdm_status = inportb(MISR); /* get status of which modem signals changed */ outportb(MIR, save_mir & 0x3f) /* terminate the service ack. sequence */ outportb(CAR, save car); /* restore CAR */ return(mdm_status | channel); } ``` # 4.4 Hardware-Activated Service Examples In nearly all respects, the way in which the host interacts with the CL-CD1400 during hardware activated service acknowledge is the same as for the software-activated methods. The main difference is that the SVCACK* Input Signals perform the context switch automatically thus relieving that duty from the host. The result is the same; the CAR is set to point to the correct channel and the chip is placed in the proper internal mode to service the request. When the host activates the SVCACK* Input, a read cycle is performed. The CL-CD1400 places the contents of the appropriate interrupt vector register (RIVR. TIVR, MIVR) of the channel requesting service on the data bus. When multiple-CL-CD1400s daisychained together, the host uses the information provided to determine the type of service and the ID number of the device being accessed. At the end of the service routine, the host writes a dummy value to the EOSRR Register. This causes the switch out of the service acknowledge context and restores the environment to what it was before the service began. The following code fragments show the differences between this type of service acknowledge and those shown above for the software activated context switch. Only the beginning and ending steps are shown; the code in between would be very similar to the previous examples. These routines could be executed as the result of a hardware interrupt or through software polling as in the previous examples. For purposes of this discussion, the method of arriving at the proper service routine is not important. #### 4.4.1 Receive Service ``` /* The receive service acknowledge cycle begins by executing a service acknowledge cycle that * activates the SVCACKR* Input. The data obtained as a result of this 'read' cycle is the * contents of the RIVR Register of the channel making the service request. The service routine * decodes the vector in the least significant three bits to determine if the data is 'good' * or 'bad' (exception). The context switch was done automatically when the SVCACKR* Signal was * activated so the CAR does not need to be loaded. The routine reads the RICR to determine the * requesting channel number. If this were a multiple-CL-CD1400 system using daisy-chaining, the * routine would extract the chip ID from the upper five bits of the RIVR. service_rec() { char serv_type, vector, channel, status, char; int char_count, i; vector = inportb(SVCACKR); /* gen. ack and get vector (read LIVR) */ channel = inportb(RICR) >> 2; /* extract channel number from the RICR */ serv_type = vector & 0x07; /* mask RIVR to get type (good/exception)*/ switch (serv_type) { case 3: /* Good Data service */ char_count = inportb(RDCR); /* get number of characters in FIFO */ for (i = 1; i \le char_count; i++) {/* - read that number of chars */ char = inportb(RDSR); /* read char from FIFO */ /* Code here would put the character in a buffer of some sort for each * channel. That code would be dependent on system software design * so it won't be shown here; this code just shows how to
manipulate the * CL-CD1400 registers to implement the poll mode service acknowledge. */ } break; case 7: /* exception data service request */ status = inportb(RDSR); /* by definition, only one char; get status */ outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate */ } ``` #### 4.4.2 Transmit Service ``` /* The transmit service acknowledge routine closely follows the same steps of the receive * service routine follows. The SVCACKT* Input is activated to start the service cycle, reading * the contents of the TIVR, and the TICR is read to get the channel number. service_txm() char vector, channel; int char_count, i; vector = inportb(SVCACKT); /* retrieve and save transmit interrupt value */ channel = inportb(TICR) >> 2; /* extract channel number from the RICR */ /* Buffer management code would setup pointers to the next 12 * characters (maximum) to be sent on this channel. Again, buffer * layout is system-design-dependent and won't be shown here. for (i = 0; i < char_count; i++) { /* transmit FIFO can take 12 characters */ outportb(TDR, *next_char++); /* it is assumed that char_count and next_char is set up by buffer code */ outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate */ } ``` #### 4.4.3 Modem Service ``` /* The following routine services the modem change service request. Context switch is set up by * activating the SVCACKM* Input, reading the MIVR. The routine reads the MISR Register to * determine which modem signal(s) changed. Channel status is an externally defined variable that * this routine updates. */ service_mdm() char vector, channel; vector = inportb(SVCACKM); /* retrieve and save transmit interrupt value */ channel = inportb(MICR) >> 2; /* extract channel number from the RICR */ mdm_status(channel) = inportb(MISR); /* get status of which modem signals changed */ outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate */ } ``` 76 #### 4.4.4 Baud Rate Derivation ``` /* This is a simple code example, which shows a way to derive the proper values for the RCOR/TCOR * and RBPR/TBPR register pairs for any baud rate. Routine is called with the desired baud rate; \star master clock is fixed; global variables cor and bpr are set by the routine. */ doublecor_values[] = {8.0, 32.0, 128.0, 512.0, 2048.0, -1.0}; compute_baud(baud_rate) doublebaud_rate; double clock = 60000000.0; i; for (i = 0; cor_values[i] != -1; i++) brp = (int) (((clock / baud_rate) / cor_values[i]) + 0.5); if (brp < 0xFF) { cor = i; bpr = brp; break; } } return(0); ``` } #### 4.5 Baud Rate Tables The following three tables show the values that need to be loaded into the RCOR/RBPR and TCOR/TBPR registers to set the designated baud rate when using three standard frequency crystals. The first one uses a 60-MHz frequency; the second table uses a 25-MHz frequency and shows error rates that are larger, though still well within the limits set by the various standards of asynchronous communications. The third uses a 20.2752-MHz frequency, which yields near-perfect bit rates. It is, of course, not necessary that both the receiver and transmitter of a channel be programmed to the same baud rate; the CL-CD1400 can send and receive at different rates on the same channel. #### Baud Rate Constants, CLK = 60 MHz | Baud Rate | RCOR/TCOR | RBPR/TBPR
(Hex) | Error | | |-----------|-----------|--------------------|-------|--| | 134 | 4 | db | 0.17% | | | 150 | 4 | C3 | 0.16% | | | 200 | 4 | 92 | 0.33% | | | 300 | 4 | 62 | 0.35% | | | 600 | 3 | С3 | 0.16% | | | 1200 | 3 | 62 | 0.35% | | | 1800 | 3 | 41 | 0.16% | | | 2400 | 2 | СЗ | 0.16% | | | 4800 | 2 | 62 | 0.35% | | | 6400 | 2 | 49 | 0.33% | | | 9600 | 1 | СЗ | 0.16% | | | 19200 | 1 | 62 | 0.35% | | | 38400 | 0 | C3 | 0.16% | | | 56000 | 0 | 86 | 0.05% | | | 57600 | 0 | 82 | 0.16% | | | 64000 | 0 | 75 | 0.16% | | | 76800 | 0 | 62 | 0.35% | | | 115200 | 0 | 41 | 0.16% | | | 128000 | 0 | 3b | 0.69% | | | 150000 | 0 | 32 | 0.00% | | | 230400 | 0 | 21 | 1.38% | | | | | | | | # 4.5 Baud Rate Tables (cont.) # **Baud Rate Constants, CLK = 25 MHz** | Baud Rate | RCOR/TCOR | RBPR/TBPR
(Hex) | Error | | |-----------|-----------|--------------------|-------|--| | 110 | 4 | 6F | 0.02% | | | 150 | 4 | 51 | 0.47% | | | 300 | 3 | A3 | 0.15% | | | 600 | 3 | 51 | 0.47% | | | 1200 | 2 | А3 | 0.15% | | | 2400 | 2 | 51 | 0.47% | | | 4800 | 1 | А3 | 0.15% | | | 9600 | 1 | 51 | 0.47% | | | 19200 | 0 | А3 | 0.15% | | | 38400 | 0 | 51 | 0.47% | | | 56000 | 0 | 38 | 0.35% | | | 57600 | 0 | 36 | 0.47% | | | 64000 | 0 | 31 | 0.35% | | | 76800 | 0 | 29 | 0.76% | | | 115200 | 0 | 1B | 0.47% | | | 115200 | 0 | 1B | 0.47% | | # 4.5 Baud Rate Tables (cont.) # Baud Rate Constants, CLK = 20.2752 MHz | RCOR/TCOR | RBPR/TBPR
(Hex) | Error | | |-----------|-------------------------------|---|---| | 4 | 5 A | 0.00% | | | 4 | 42 | 0.00% | | | 3 | 84 | 0.00% | | | 3 | 42 | 0.00% | | | 2 | 84 | 0.00% | | | 2 | 42 | 0.00% | | | 1 | 84 | 0.00% | | | 1 | 42 | 0.00% | | | 0 | 84 | 0.00% | | | 0 | 42 | 0.00% | | | 0 | 2D | 0.57% | | | 0 | 2C | 0.00% | | | 0 | 28 | 1.00% | | | 0 | 21 | 0.00% | | | 0 | 16 | 0.00% | | | | 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 | (Hex) 4 5A 4 42 3 84 3 42 2 84 2 42 1 84 1 42 0 84 0 42 0 2D 0 2C 0 28 0 21 | (Hex) 4 5A 0.00% 4 42 0.00% 3 84 0.00% 3 42 0.00% 2 84 0.00% 2 42 0.00% 1 84 0.00% 1 42 0.00% 0 84 0.00% 0 42 0.00% 0 2D 0.57% 0 2C 0.00% 0 28 1.00% 0 21 0.00% | ## 4.6 ASCII Code Table #### 4.6.1 Hexadecimal — Character | 00 | NUL | 01 | SOH | 02 | STX | 03 | ETX | 04 | EOT | 05 | ENQ | 06 | ACK | 07 | BEL | |----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----| | 80 | BS | 09 | HT | 0A | NL | 0B | VT | OC | NP | 0D | CR | 0E | SO | 0F | SI | | 10 | DLE | 11 | DC1 | 12 | DC2 | 13 | DC3 | 14 | DC4 | 15 | NAK | 16 | SYN | 17 | ETB | | 18 | CAN | 19 | EM | 1A | SUB | 1B | ESC | 1C | FS | 1D | GS | 1E | RS | 1F | US | | 20 | SP | 21 | ! | 22 | u | 23 | # | 24 | \$ | 25 | % | 26 | & | 27 | ı | | 28 | (| 29 |) | 2A | * | 2B | + | 2C | , | 2D | - | 2E | | 2F | 1 | | 30 | 0 | 31 | 1 | 32 | 2 | 33 | 3 | 34 | 4 | 35 | 5 | 36 | 6 | 37 | 7 | | 38 | 8 | 39 | 9 | ЗА | : | 3B | ; | 3C | < | 3D | = | 3E | > | 3F | ? | | 40 | @ | 41 | Α | 42 | В | 43 | С | 44 | Ð | 45 | E | 46 | F | 47 | G | | 48 | Н | 49 | 1 | 4A | J | 4B | K | 4C | L | 4D | M | 4E | N | 4F | 0 | | 50 | Р | 51 | Q | 52 | R | 53 | S | 54 | T | 55 | υ | 56 | V | 57 | W | | 58 | X | 59 | Υ | 5A | Z | 5B | [| 5C | \ | 5D |] | 5E | ^ | 5F | | | 60 | ~ | 61 | a | 62 | b | 63 | С | 64 | d | 65 | е | 66 | f | 67 | g | | 68 | h | 69 | i | 6A | j | 6B | k | 6C | 1 | 6D | m | 6E | n | 6F | 0 | | 70 | p | 71 | q | 72 | r | 73 | s | 74 | t | 75 | u | 76 | V | 77 | w | | 78 | x | 79 | у | 7A | z | 7B | { | 7C | 1 | 7D | } | 7E | _ | 7F | DEL | #### 4.6.2 Decimal — Character | 0 | NUL | 1 | SOH | 2 | STX | 3 | ETX | 4 | EOT | 5 | ENQ | 6 | ACK | 7 | BEL | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | _ | | | | | | | | | | _ | | - | | - | | | 8 | BS | 9 | HT | 10 | NL | 11 | VT | 12 | 13 | 13 | CR | 14 | SO | 15 | SI | | 16 | DLE | 17 | DC1 | 18 | DC2 | 19 | DC3 | 20 | DC4 | 21 | NAK | 22 | SYN | 23 | ETB | | 24 | CAN | 25 | EM | 26 | SUB | 27 | ESC | 28 | FS | 29 | GS | 30 | RS | 31 | US | | 32 | SP | 33 | ! | 34 | 14 | 35 | # | 36 | \$ | 37 | % | 38 | & | 39 | • | | 40 | (| 41 |) | 42 | * | 43 | + | 44 | , | 45 | - | 46 | | 47 | 1 | | 48 | 0 | 49 | 1 | 50 | 2 | 51 | 3 | 52 | 4 | 53 | 5 | 54 | 6 | 55 | 7 | | 56 | 8 | 57 | 9 | 58 | : | 59 | ; | 60 | < | 61 | = | 62 | > | 63 | ? | | 64 | @ | 65 | Α | 66 | В | 67 | С | 68 | D | 69 | E | 70 | F | 71 | G | | 72 | Н | 73 | 1 | 74 | J | 75 | K | 76 | L | 77 | M | 78 | N | 79 | 0 | | 80 | Р | 81 | Q | 82 | R | 83 | S | 84 | T | 85 | U | 86 | V | 87 | W | | 88 | Χ | 89 | Υ | 90 | Z | 91 | [| 92 | \ | 93 |] | 94 | ^ | 95 | _ | | 96 | ~ | 97 | а | 98 | b | 99 | С | 100 | d | 101 | е | 102 | f | 103 | g | | 104 | h | 105 | i | 106 | j | 107 | k | 108 | 1 | 109 | m | 110 | n | 111 | 0 | | 112 | р | 113 | q | 114 | r | 115 | S | 116 | t | 117 | u | 118 | ٧ | 119 | w | | 120 | X | 121 | у | 122 | z | 123 | { | 124 | 1 | 125 | } | 126 | _ | 127 | DEL | Notes PAGE(S) INTENTIONALLY BLANK ## 5. DETAILED REGISTER DESCRIPTIONS This section presents a complete, detailed description of each register. Registers have two formats: full eight bits, where the entire content defines a single function; or, the register is a collection of bits, grouped singly or in multiples, defining a function. In the second case, the descriptions break the register down into its component parts and describe the bits individually. The order of register presentation follows that given in the brief register descriptions in Section 2 on page 19. ## 5.1 Global Registers #### 5.1.1 Global Firmware Revision Code (GFRCR) | Register Desi
Default Value | Register Name: GFRCR Register Description: Global Firmware Revision Code Default Value: x'48 Access: Read/Write | | | | | | | | |--------------------------------|---|-------|-------------|--------------|-------|-------|---------------------------------------|--| | Access: Rea | d/Write
Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | | Firmware re | evision code | | | · · · · · · · · · · · · · · · · · · · | | The GFRCR serves two purposes in the CL-CD1400. First, it displays the revision number of the firmware in the chip. When a revision to the CL-CD1400 is required, the revision number of the firmware is incremented by one. The code is 48 for the Revision J device. Later revisions, if necessary, will
increment this by one; for example, Revision K will be 49, and so on. Secondly, this register can be used by the system programmer as an indication of when the internal processor has completed reset procedures, after either a power-on reset (through the Reset* Input) or a software global reset (through the reset command in the CCR). Immediately after the reset operation begins, the internal CPU clears the register. When complete, and the CL-CD1400 is ready to accept host accesses, the register is loaded with the revision code. ## 5.1.2 Channel Access Register (CAR) | Register Nai
Register Des
Default Valu
Access: Re | scription: Chann
e: x'C0 | el Access | | | | Н | ex Address: 68 | |--|-----------------------------|-----------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | poll | poll | poll | poll | poli | 0 | C1 | CO | The CAR provides access to individual channels within the CL-CD1400. The least significant two bits of the register selects one of the four channels. Before any operation that affects a channel, this register must be loaded so that Channel Registers are available to the host. | Bit | Description | | | | | | | | |----------|----------------|--------------|--|------------------------|--|--|--|--| | Bits 7:3 | Bits 7:3 are n | ot used exc | cept during Poll Mode operation (see Section 3 | on page 29 for details | | | | | | Bit 2 | Bit 2 must alv | vays be '0'. | | | | | | | | | C1 | C0 | Channel number Channel 0 | | | | | | | Bits 1:0 | 0 | 1 | Channel 1 | | | | | | | DIIS 1.0 | 11 | 1 | | | | | | | | DIS 1.0 | 1 | 0 | Channel 2 | | | | | | ## 5.1.3 Global Configuration Register (GCR) | Register Nan
Register Des
Default Value
Access: Rea | cription: Global
e: x'00 | Configuration | | | | Не | ex Address: 4E | |--|-----------------------------|---------------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | P/S* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The GCR is used to define the mode of operation for Channel 0. Resetting Bit 7 will select Serial Mode; setting Bit 7 selects parallel. The default mode selection after reset is serial. | Bit | Description | |----------|--| | Bit 7 | P/S* = 0 Channel 0 Mode is serial
P/S* = 1 Channel 0 Mode is parallel | | Bits 6:0 | Must be '0'. | ## 5.1.4 Service Request Register (SVRR) | Register Nai
Register Des
Default Valu
Access: Rea | scription: Servic
e: x'00 | e Request | | | | H | ex Address: 67 | |---|------------------------------|-----------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | 0 | 0 | o | 0 | SRM | SRT | SRR | The SVRR reflects the inverse of the state of the Service Request Pins (SVCREQR*, SVCREQT* and SVCREQM*). Its primary use is in polled systems, and it allows system software to determine what, if any, service requests are pending. | Bit | Description | |----------|--| | Bits 7:3 | Always '0' | | Bit 2 | Service Request Modem; '1' indicates request pending. | | Bit 1 | Service Request Transmit; '1' indicates request pending. | | Bit 0 | Service Request Receive; '1' indicates request pending. | ## 5.1.5 Receive Interrupting Channel Register (RICR) | Register Nam
Register Des
Default Value
Access: Rea | cription: Receive: x'00 | e Interrupting | Channel | | | Н | ex Address: 44 | |--|-------------------------|----------------|---------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Х | x | х | × | C1 | CO | х | х | #### 5.1.6 Transmit Interrupting Channel Register (TICR) | Register Nam
Register Des
Default Value
Access: Rea | scription: Transn
e: x'00 | nit Interrupting | Channel | | | Н | Hex Address: 45 | | |--|------------------------------|------------------|---------|-------|-------|-------|-----------------|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | X | X | х | × | C1 | C0 | X | х | | # 5.1.7 Modem Interrupting Channel Register (MICR) | Register Nai
Register Des
Default Valu
Access: Rea | <i>cription:</i> Moden
e: x'00 | n Interrupting C | Channel | | | H | ex Address: 46 | |---|-----------------------------------|------------------|---------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | x | x | X | х | C1 | CO | x | х | These registers indicate the channel number that is currently being serviced by an active acknowledge cycle (whether polled or interrupt). Bits 3-2 (C1 and C0) are valid *only* during the context of a channel service routine; at any other time, their state is undefined. Host system software uses these registers to determine the number of the channel that originated the particular service request (receive, transmit or modem). The format of these registers is the same and the description is valid for each. The upper four bits and lower two bits are user-defined and may be set to any value desired. When the register is read, these bits will be presented as defined by the user; C1 and C0 will be set by the CL-CD1400 to reflect the proper channel number. # Receive/Transmit/Modem Interrupting Channel Registers (cont.) | Bit | | | Description | | | | | |----------|-------------|---------------|----------------|--|--|--|--| | Bits 7:4 | User-define | User-defined. | | | | | | | | Defines Cha | annel Numbe | er. | | | | | | | C1 | C0 | Channel number | | | | | | | 0 | 0 | Channel 0 | | | | | | Bits 3:2 | 0 | 1 | Channel 1 | | | | | | | 1 | 0 | Channel 2 | | | | | | | 1 | 1 | Channel 3 | | | | | | Bits 1:0 | User-define | d. | | | | | | # 5.1.8 Receive Interrupt Register (RIR) | Register Des
Default Value | Register Name: RIR Register Description: Receive Interrupt Default Value: x'18 Access: Read/Write | | | | | | ex Address: 6B | |-------------------------------|---|---------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | rxireq | rbusy | runfair | 1 | 1 | 0 | ch[1] | ch[0] | #### 5.1.9 Transmit Interrupt Register (TIR) | Register Nai
Register Des
Default Valu
Access: Rea | <i>scription:</i> Transr
e: x'10 | nit Interrupt | | | | He | ex Address: 6A | |---|-------------------------------------|---------------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | txireq | tbusy | tunfair | 1 | 0 | 0 | ch[1] | ch[0] | #### 5.1.10 Modem Interrupt Register (MIR) | Register Nam
Register Des
Default Value
Access: Rea | <i>scription:</i> Moder
e: x'08 | n Interrupt | | | | Не | ex Address: 69 | |--|------------------------------------|-------------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | mdireq | mbusy | munfair | 0 | 1 | 0 | ch[1] | ch[0] | These registers are used during Poll Mode operation of the CL-CD1400. All three provide the same type of information for each of the three service requests. The functions of rxireq, txireq and mdireq have identical meanings, as do the group rbusy, tbusy and mbusy and the group runfair, tunfair and munfair. The least significant two bits indicate the number of the channel requesting service. Bits 2 through 4 are used internally by the CL-CD1400 to set the context of the service acknowledge cycle. See the description of Poll Mode operation in Section 4 for complete details. | Bit | Description | | | | | | | |-------|--|--|--|--|--|--|--| | Bit 7 | rxireq, txireq, mdireq: These bits are set by the internal processor when service is required by a channel. They are a direct reflection of the inverse state of the SVCACK* Pins, and they are not actually part of the register but are the active-high output of the latch that drives the SVCACK* Pins. The bits can be scanned by the host to detect an active service request. These bits are cleared by the internal processor at the beginning of the service acknowledge cycle (hardware service acknowledge) or by the host software when the Poll Mode cycle is terminated. | | | | | | | | Bit 6 | rbusy, tbusy, mbusy: These bits are set by the internal processor and remain set until the end of the service acknowledge cycle is indicated by either a write to the EOSRR (hardware service acknowledge), or cleared by the host software when the Poll Mode cycle is terminated. They signal the current state of the service acknowledge cycle. When cleared, the internal processor senses that it can assert another
service request of this type. | | | | | | | March 1997 | Bit | Description (cont.) | | | | | | | | |----------|---|--|--|--|--|--|--|--| | Bit 5 | runfair, tunfair, munfair: These bits are used by the internal processor to implement the 'Fair Share' service request function. If this bit is set, the CL-CD1400 will not assert another service request of this type until the bit is cleared by a pulse on the external SVCACK* Pin. These bits are not used in Poll Mode. | | | | | | | | | Bits 4:2 | These bits define the context of the current service acknowledge cycle during Poll Mode and are fixed by hardware within the CL-CD1400. These bits must be replicated exactly when the register is copied to the CAR when activating a service acknowledge cycle. See the discussion of Poll Mode operation in Section 2 for a more detailed description. | | | | | | | | | Bits 1:0 | ch[1] - ch[0]: These two bits encode the channel number of the requesting channel. During Poll Mode operation, when the RIR, TIR and MIR are copied into the CAR to start the service routine, ch[1:0] set the channel number that will be serviced. | | | | | | | | ## 5.1.11 Prescaler Period Register (PPR) | Register Nam
Register Desi
Default Value
Access: Rea | cription: Presca
c: x'FF | ler Period | | | | He | ex Address: 7E | |---|-----------------------------|------------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | <u> </u> | Bit 6 | Bit 5 | | Value | Bit 2 | Bit 1 | Bit 0 | The PPR sets the divisor that will be used to generate the time period for CL-CD1400 timer operations. It can be set to any value between 0 and 255 (x'FF). The PPR is clocked by the system clock prescaled (divided) by 512. Note that this value does not have any effect on baud rate generation. The time period generated by this register drives the receive timer and is used to activate the 'no new data' and 'receive data time-out' interrupts. See the receiver operation discussion in Section 3.4.2 on page 39 for a description of receiver timer functions. #### 5.2 Virtual Registers The CL-CD1400 has two operational contexts, a normal context that allows host access to most registers and any channel, and a service acknowledge context, allowing host access to some registers specific to the channel requesting service. This special set of registers is called virtual because they are only available to host access and valid during this service acknowledge context; at all other times, their contents will be undefined and must *not* be written to by host software. The use of virtual registers and context switching allows the CL-CD1400 to maintain all channel-specific information. The host need not make any changes to chip registers in order to access the registers pertinent to the channel being serviced. The service acknowledge context is entered into in one of two ways; either via activation of one of the SVCACK* Input Pins (hardware-activated), or via host software when the contents of any one of TIR, RIR or MIR is copied into the CAR by host software during a Poll Mode acknowledge cycle. See Section 3 for a discussion of the differences between these two modes. ## 5.2.1 Receive Interrupt Vector Register (RIVR) | Register Nam
Register Des
Default Value
Access: Rea | cription: Receive: x'00 | e Interrupt Vec | tor | | | Hex Address: 4 | | |--|-------------------------|-----------------|-------|-------|-------|----------------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Х | × | × | × | × | IT2 | IT1 | IT0 | #### 5.2.2 Transmit Interrupt Vector Register (TIVR) | Register Des
Default Value | Register Name: TIVR Register Description: Transmit Interrupt Vector Default Value: x'00 Access: Read only | | | | | | ex Address: 42 | |-------------------------------|---|-------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | х | x | × | × | × | IT2 | IT1 | ITO | #### 5.2.3 Modem Interrupt Vector Register (MIVR) | Register Name: MIVR Register Description: Modem Interrupt Vector Default Value: x'00 Access: Read only | | | | | | | | |--|-------|-------|-------|-------|-------|-------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | X | x | х | х | × | IT2 | IT1 | іто | These registers serve the same function for each of their respective service types — receive, transmit and modem. They provide information about the service request that is being acknowledged. The upper five bits are user-defined, as programmed via the LIVR Register of the channel being serviced; the lower three bits provide the service acknowledge vector and are OR'ed in by the CL-CD1400 when the register is read. The use of the TIVR and MIVR is optional if the value contained in the upper five bits is not needed by host software. The vector provided will be as indicated for the particular interrupt. IT2-IT0 will indicate that the service is for transmit in the case of the TIVR and modem for the MIVR. The value of these bits will be important when servicing a receive service request; IT2-IT0 will indicate whether the service request is for Good Data or 'exception' data. The table on the following page shows the encoding of IT2-IT0. ## Receive/Transmit/Modem Interrupt Vector Registers (cont.) | Bit | Description | | | | | | | | | |----------|--------------|-----|-----|--|--|--|--|--|--| | Bits 7:3 | User defined | | | | | | | | | | | IT2 | IT1 | ITO | Group/Type | | | | | | | | 0 | 0 | 0 | Not used | | | | | | | | 0 | 0 | 1 | Group 1: Modem Signal change service request | | | | | | | Dia 0.0 | 0 | 1 | 0 | Group 2: Transmit data service request | | | | | | | Bits 2:0 | 0 | 1 | 1 | Group 3: Received Good Data service request | | | | | | | | 1 | 0 | 0 | Not used . | | | | | | | | 1 | 0 | 1 | Not used | | | | | | | | 1 | 1 | 0 | Not used | | | | | | | | 1 | 1 | 1 | Group 3: Received exception data service request | | | | | | ## 5.2.4 Transmit Data Register (TDR) | Register Description
Default Value: x'0
Access: Write On | 00 | nit Data | | | | ,,, | ex Address: 63 | |--|-------|----------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | The Transmit Data Register is the host port for writing to the transmit FIFO. When a channel is being serviced for a transmit service request, the host may write up to twelve characters into this register. The Transmit Data Register must only be written to during the context of a transmit service acknowledge. Writing data to this location at any other time will have unpredictable results. #### 5.2.5 Receive Data/Status Register (RDSR) | Default Value | cription: Receive: x'00 | e Data | | | | H | ex Address: 6 | |---------------|-------------------------|--------|-------|-------|-------|-------|---------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Access: Rea | ···· | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit | #### 5.2.6 Receive Data/Status Register (RDSR) | Register Nam
Register Des
Default Value
Access: Rea | cription: Status
e: x'00 | | | | | H | lex Address: 62 | |--|-----------------------------|---------|---------|-------|-------|-------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Time-out | SC Det2 | SC Det1 | SC Det0 | Break | PE | FE | OE | The Receive Data and Status Register serves two purposes. During a receiver service acknowledge for good data, the RDSR provides access to the receive FIFO. The number of characters available in the FIFO is indicated by the Receive Data Count Register (RDCR), which is described in the following section. Any number of characters, up to the value in the RDCR, may be read from the FIFO. All internal FIFO pointers are updated by the on-chip processor. During a receive exception service acknowledge, the RDSR provides both the received character and the status that caused the exception condition. By definition, a receive exception service request will have only one character available (multiple receive exceptions will produce multiple service requests). The first read from the RDSR will provide the exception status, and the second read will provide the character. It is not necessary to read either of these values. If the service acknowledge is terminated without reading any data from the RDSR, the internal processor will update the FIFO pointers as if the status/character were read. The same is true if only the status is read. Overrun errors are an exception to this (see next page). # Receive Data/Status Register (cont.) | Bit | | | | Description | | | | | | | |----------|-----------------------------|---|----------------|---|-----------------|--|--|--|--|--| | Bit 7
 | in the receive | e time-out pe | e for time-out is set, this bit will indicate that no data
riod set by the Receive Time-out Period Register (f | | | | | | | | | Special Cha | racter Detec | t Encoding | | | | | | | | | | SCDet2 | SCDet1 | SCDet0 | Status | | | | | | | | | 0 | 0 | 0 | None Detected | | | | | | | | | 0 | 0 | 1 | Special Character 1 matched | | | | | | | | | 0 | 0 1 0 Special Character 2 matched | | Special Character 2 matched | | | | | | | | Bits 6:4 | 0 | 1 | 1 | Special Character 3 matched | | | | | | | | | 1 | 0 | 0 | Special Character 4matched | | | | | | | | | 1 | 0 | 1 | Not used | | | | | | | | } | 1 | 1 | 0 | End of Break Detected | | | | | | | | ł | 1 | 1 | 1 | Range Detect | | | | | | | | | | NOTE: No special character matching is performed if either a parity (PE) or framing (FE) error occur unless CMOE is enabled via COR5 (Bit 5). | | | | | | | | | | Bit 3 | Break: Indic | ates that a b | reak was det | ected. | | | | | | | | Bit 2 | Parity Error | : Indicates th | at a characte | er was received with parity other than that programi | med in COR 1. | | | | | | | Bit 1 | Framing Er | ror: Indicates | s that the cha | aracter was received with a bad stop bit. | | | | | | | | Bit 0 | Holding Reg
data receive | ister. In this o | case, the cha | new data is received, but there is no space available aracter data is lost, and the overrun flag is applied to urred. Thus, the character read on the subsequent rediscarded. | o the last good | | | | | | #### 5.2.7 Modem Interrupt Status Register (MISR) | Register Name: MISR Register Description: Modem Interrupt Status Default Value: x'00 Access: Read only | | | | | | | | | | |---|-------|-------|-------|-------|-------|-------|-------|--|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | DSRch | CTSch | Rich | CDch | 0 | 0 | 0 | 0 | | | The MISR provides the status indication of the reason for a modem service request. If either or both of the Modem Change Modes (zero-to-one or one-to-zero transition) are enabled, such a change will cause a service request, and the signal that changed will be flagged in this register. | Bit | Description | | | | | | | | |----------|--|--|--|--|--|--|--|--| | Bit 7 | DSR change: An enabled transition on the Data Set Ready Signal will cause this bit to be set and a modem service request posted. | | | | | | | | | Bit 6 | CTS change: An enabled transition on the Clear To Send Signal will cause this bit to be set and a modem service request posted. | | | | | | | | | Bit 5 | RI change: An enabled transition on the Ring Indicator Signal will cause this bit to be set and a modem service request posted. | | | | | | | | | Bit 4 | CD change: An enabled transition on the Carrier Detect Signal will cause this bit to be set and a modem service request posted. | | | | | | | | | Bits 3:0 | These bits will always return zero. | | | | | | | | ## 5.2.8 End Of Service Request Register (EOSRR) | Register Nam
Register Des
Default Value
Access: Wri | cription: End Of
e: x'00 | Service Reque | est | | | Н | ex Address: 60 | |--|-----------------------------|---------------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | X | x | X | x | x | х | x | х | The EOSRR is a dummy location and is used to signal the end of a hardware service acknowledge procedure, activated via one of the SVCACK* Pins. The data pattern written is a 'don't care' value. The action of writing this location causes the CL-CD1400 to perform its internal switch out of the service acknowledge context. This register is only used during a hardware-activated service acknowledge and must not be written during Poll Mode operation. ### 5.3 Channel Registers Each of the four channels has a set of registers that control aspects of its operation. In the information below, the register contents and offsets apply to any of the channels; the channel being accessed at any given time is controlled by the CAR. This holds true even during a service acknowledge context; the CAR points to the channel be serviced, whether it was loaded by the host (during Poll Mode operations) or by the CL-CD1400 itself (during hardware-activated service acknowledge cycles). In a few of the following cases, some of the registers show two formats, one for serial and one for parallel. In these cases, the parallel register format applies only to Channel 0, and only when the GCR has been programmed to place Channel 0 in Parallel Mode. #### 5.3.1 Local Interrupt Vector Register (LIVR) | Default Value | e: x'00 | nterrupt Vecto | r | | | Н | lex Address: 18 | |---------------|---------|----------------|-------|-------|-------|-------|-----------------| | Access: Rea | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Х | x | x | x | × | IT2 | lT1 | ITO | The LIVR is used only during hardware-activated service acknowledge cycles. Host software loads any information desired into the most significant five bits; the least significant three bits are not used. When the CL-CD1400 is setting up a service request, it overlays the five significant bits of the LIVR into the appropriate Interrupt Vector Register (RIVR, TIVR and MIVR) and sets the least significant three bits as required for the service request vector type. (See the RIVR, TIVR and MIVR descriptions earlier in this section). ## 5.3.2 Channel Command Register (CCR) | Register Name: CCR Register Description: Channel Command Default Value: x'00 Access: Read/Write | | | | | | | ex Address: 05 | |--|---------|---------|----------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Res Chan | COR Chg | Send SC | Chan Ctl | D3 | . D2 | D1 | D0 | The Channel Command Register is used to issue commands directly to the on-chip processor to control or change some channel and, in one case, global functions of the channel selected by the CAR. The upper four bits indicate which of four command types is being issued, and the lower four bits are parameters to those commands. At no time should more than one bit be set in the command type field. When the command has been executed by the CL-CD1400, it will zero-out the CCR. Therefore, two consecutive commands must wait for the CCR to be cleared after the first is issued, before the second is issued. #### 5.3.2.1 Format 1: Reset Channel Command | Register Name: CCR Register Description: Format 1: Reset Channel Command Default Value: x'00 Access: Read/Write | | | | | | | | | |---|-------|-------|-------|-------|-------|-------|-------|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | Res Chan | 0 | 0 | 0 | 0 | 0 | FTF | Туре | | #### Format 1 — Reset Channel Command When Bit 7 is set, one of three types of reset operations are initiated, based on the value of the least significant two bits. Bit 0 sets the type of reset, either channel-only or full-chip, and Bit 1 causes the FIFO of the selected channel to be flushed. The two types of reset selected by Bit 0 cause very different results. When Bit 0 is a zero, the reset command effects only the selected channel. Resetting a channel disables both the receiver and transmitter, and all FIFOs are flushed (cleared). If Bit 0 is a one, a full-chip reset is initiated. This reset will have the exact same results as a hardware reset caused by activation of the RESET* Input Pin. All channels are disabled, all FIFOs are flushed and all Control Registers set to their power-on reset state. The completion of the reset operation can be detected in the same manner as if a power-on or hardware reset had occurred; the GFRCR will change from zero to the value of the firmware revision. It should be noted that, at the beginning of the reset operation, the GFRCR will be cleared, but it may take some time for this to happen. Host software should wait for the GFRCR to go to zero, and then wait for it to go non-zero to indicate that the reset operation is complete. The FTF (Flush Transmit FIFO) command, Bit 1, will cause the transmit FIFO of the selected channel to be cleared. Any data in the FIFO will be lost. The encoding of the bits for the reset channel command is: | Bit | Description | | | | | |----------|--------------|------|--|--|--| | Bit 7 | Must be '1'. | | | | | | Bits 6:2 | Must be '0'. | | | | | | | Encoded as: | | | | | | | FTF | Туре | Function | | | | | 0 | 0 | Reset current channel | | | | Bits 1:0 | 0 | 1 | Full CL-CD1400 reset | | | | | 1 | 0 | Flush transmit FIFO of current channel | | | | | . 1 | 1 | Not used | | | ## 5.3.2.2 Format 2: Channel Option Register Change Command | Register Na
Register De
Command
Default Valu
Access: Re | escription: Formatue: x'00 | 2: Channel O _l | otion Register | Change | | Н | ex Address: 05 | |---|----------------------------|---------------------------|----------------|--------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | COR Chg | 0 | 0 | COR3 | COR2 | COR1 | 0 | ## Format 2 — Channel Option Register Change Command Bit 6, in combination with any of Bits 1 through 3, will inform the MPU that a change has occurred in one of the Channel Option Registers, COR1, COR2 and/or COR3, respectively. It is permissible to indicate that more than one COR has changed. This command exists so
that changes in the COR Registers will be noted by the MPU, allowing it to update its internal working register, since it stores copies of the COR Registers in its own shadow registers. | Bit | | | | - | Description | | | | | |----------|---|---------------|------|------|--|---|--|--|--| | Bit 7 | N | fust be '0'. | | | | | | | | | Bit 6 | N | Must be '1'. | | | | | | | | | Bits 5:4 | N | Must be '0'. | | | | | | | | | | E | incoded as: | | | | | | | | | | | COR3 | COR2 | COR1 | Encoding | | | | | | | | 0 | 0 | 0 | Not used | · | | | | | | | 0 | 0 | 1 | COR1 changed. | | | | | | | | 0 | 1 | 0 | COR2 changed. | | | | | | Bits 3:1 | | 0 | 1 | 1 | COR1 and COR2 changed. | | | | | | | | 1 | 0 | 0 | COR3 changed. | | | | | | | | 1 | 0 | 1 | COR3 and COR1 changed. | | | | | | | | 1 | 1 | 0 | COR3 and COR2 changed. | | | | | | | | 1 | 1 | 1 | COR1, COR2, and COR3 changed. | | | | | | | | | | | | | | | | | Bit 0 | N | flust be '0'. | | | The state of s | | | | | #### 5.3.2.3 Format 3: Send Special Character Command | Register Nar
Register Des
Default Value
Access: Rea | scription: Forma
e: x'00 | it 3: Send Speci | al Character C | Command | | h | lex Address: 05 | |--|-----------------------------|------------------|----------------|---------|-------|-------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | 0 | Send SC | 0 | 0 | SSPC2 | SSPC1 | SSPC0 | This command causes one of the pre-programmed characters in the Special Character Registers (SCHR1, SCHR2, SCHR3, SCHR4) to be sent preemptively. The character sent is selected by the settings of Bits 2 through 0. 'Preemptively' means that the special character will be sent immediately following the character in the Transmitter Holding Register; it will not wait until the FIFO empties. Once the special character is sent, transmission of any characters remaining in the FIFO will proceed normally. Also, CTS is ignored regardless of the setting in COR2 (CtsAE). The encoding of the bits is: | Bit | | Description | | | | | | | |----------|--------------|--------------|-------|-------|--------------------------|---|--|--| | Bits 7:6 | ı | Must be '0'. | | | | | | | | Bit 5 | i | Must be '1'. | | | | | | | | Bits 4:3 | Must be '0'. | | | | | | | | | | 1 | Encoded as: | | | | | | | | | | SSPC2 | SSPC1 | SSPCO | Encoding | | | | | | | 0 | 0 | 0 | Not used | | | | | | | 0 | 0 | 1 | Send special character 1 | | | | | | | 0 | 1 | 0 | Send special character 2 | | | | | Bits 2:0 | | 0 | 1 | 1 | Send special character 3 | | | | | | | 1 | 0 | 0 | Send special character 4 | | | | | | | · 1 | 0 | 1 | Not used | | | | | | | 1 | 1 | 0 | Not used | | | | | | | 1 | 1 | 1 | Not used | , | | | #### 5.3.2.4 Format 4: Channel Control Command | Register Nam
Register Des
Default Value
Access: Rea | <i>cription:</i> Format
e: x'00 | t 4: Channel C | ontrol Comman | nd | | Н | lex Address: 05 | |--|------------------------------------|----------------|---------------|--------|---------|--------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | 0 | 0 | Chan Ctl | XMT EN | XMT DIS | RCV EN | RCV DIS | This command is used to activate or deactivate the transmitter and/or receiver of the selected channel, based on the values in Bits 3 through 0. This command must be issued when a channel is being started for the first time. Once a channel is in use, it can be started and stopped using this command, though it is more efficient to use of the appropriate SRER Bit in the Interrupt Enable Register. Multiple control commands can be issued at the same time; for example, both the transmitter and receiver can be enabled by setting both the XMT EN and RCV EN Bits at the same time. Issuing an enable/disable command does not affect any register programming of the selected channel. It does, however, affect the state of transmit flow-control. Issuing a disable or enable command to a channel whose transmitter has been flow-controlled by a remote (see the TxIBE Bit in COR2) will restart transmission and clear the TxFloff Bit in the CCSR. This ability is provided so that the host can override remotegenerated flow control. | Bit | | Description | | | | | | | |----------|---|--------------|----------------|---------------|---------|--------------------------------------|--|--| | Bits 7:5 | N | Must be '0'. | | | | | | | | Bit 4 | Ν | Must be '1'. | | | | | | | | | S | elect channe | el enable/disa | ble activity: | - 115- | | | | | | | XMT EN | XMT DIS | RCV EN | RCV DIS | Encoding | | | | | | 0 | 0 | 0 | 1 | Disable receiver | | | | | | 0 | 0 | 1 | 0 | Enable receiver | | | | | | 0 | 1 | 0 | 0 | Disable transmitter | | | | Bits 3:0 | | 1 | 0 | 0 | 0 | Enable transmitter | | | | | | 0 | 1 | 0 | 0 | Disable transmitter and receiver | | | | | | 0 | 1 | 1 | 0 | Disable transmitter, enable receiver | | | | | | 1 | 0 | 0 | 1 | Enable transmitter, disable receiver | | | | | | 1 | 0 | 1 | 0 | Enable transmitter and receiver | | | ## 5.3.3 Service Request Enable Register (SRER) | Register Nam
Register Des
Default Value
Access: Rea | cription: Service: x'00 | e Request Ena | ble | | | F. | dex Address: 06 | |--|-------------------------|---------------|--------|-------|-------|--------|------------------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | MdmCh | 0 | 0 | RxData | 0 | TxRdy | TxMpty | NNDT | This register is used to enable the conditions that will cause the CL-CD1400 to post a service request via the SVRR and the SVCREQ* Output Pins. Each of the individual enable bits controls one type of service request. | Bit | Description | |----------|--| | Bit 7 | MdmCh: This bit enables the Modem Change Service request. When this bit is a one, any selected Modem Signal change conditions (as programmed by the MCOR1 and MCOR2 Registers) will cause a Modem Service Request to be posted. | | Bits 6:5 | Must be '0'. | | Bit 4 | RxData: The RxData Enable Bit enables the posting of receive service requests when characters have been received, and either the FIFO has reached the programmed threshold (as set by COR3), or the receive time-out period has expired. | | Bit 3 | Must be '0'. | | Bits 2:1 | TxRdy and TxMpty: The transmitter can be enabled to post service requests on one of two conditions: either the FIFO is empty, or the Transmitter Shift Register is empty. The TxRdy Bit enables the service request on the condition that the FIFO is empty. In this case, there are still two characters available for transmission before the transmitter underruns, one in the Shift Register and one in the Holding Register. The TxMpty Bit enables the service request on the condition that the Shift Register is empty. The transmitter will underrun in this situation due to the latency that will be experienced
between the time the service request is posted, and the time that the host is able to load the FIFO. Under normal operating conditions, this bit will be set and the TxRdy reset, when there is no more data to be transmitted, and the host wants to know when the last character has been sent before disabling the transmitter. | | Bit 0 | NNDT: The No New Data Time-out Enable Bit activates the optional exception service request when all data has been removed from the FIFO, and no new data has arrived after a pre-programmed delay period set by the value in the Receive Time-out Period Register (RTPR). The LIVR (or RIVR) will indicate a receive exception in the IT2-IT0 Vector Bits. There will be no data associated with this exception service request. A status bit in the RDSR (Bit 7) will indicate that the service request is for an NNDT condition. | # 5.4 Channel Option Registers The following five Channel Option Registers are used to control many aspects of CL-CD1400 channel operation and enable special character processing features. COR4 and COR5 are used specifically for enabling the UNIX line discipline character-handling functions. #### 5.4.1 Channel Option Register 1 (COR1) | Register Nam
Register Des
Default Value
Access: Rea | cription: Channer: x'00 | el Option Regis | ster 1 | | | H | lex Address: 08 | |--|-------------------------|-----------------|--------|-------|-------|-------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Parity | ParM1 | ParM0 | Ignore | Stop1 | Stop0 | ChL1 | ChL0 | | Bit | | | Description | | |----------|--------------------------------------|------------------------------------|---|---| | Bit 7 | Parity Type:
selects odd p | This bit select | ets the type of parity that is generated and ch'
o' selects even parity. | ecked if parity is enabled. A '1' | | | Parity Mode and receiver. | | Mode 0: The Parity Mode Bits define the parg is: | rity operation for both the transmitter | | | ParM1 | ParM0 | Function | | | | 0 | 0 | No parity | | | Bits 6:5 | 0 | 1 | Force parity (odd parity = force 1, even parity = force 0) | | | | 1 | 0 | Normal parity | | | | 1 | 1 | Not used | | | Bit 4 | Ignore Parity receive exceevaluated. | y: If this bit is
ption service | s set, the CL-CD1400 will ignore the parity or
requests will be generated if the parity is in or | n all incoming characters, thus no
error. If the bit is cleared, parity is | | | | | | | | | Stop Bit Ler | ngth: These t | two bits set the length, in bit times, of the sto | p bit for each character. | | | Stop Bit Ler | Stop0 | Number of Stop Bits | p bit for each character. | | Div. o o | - | | | p bit for each character. | | Bits 3:2 | Stop1 | Stop0 | Number of Stop Bits | p bit for each character. | | Bits 3:2 | Stop1 | Stop0 | Number of Stop Bits 1 Stop Bit | p bit for each character. | | Bit | Description (cont.) | | | | | |----------|-----------------------------|-----------------------------|---|---|--| | | Character L
receives and | ength: ChL1
transmits th | and ChL0 select the length of each character, e same length character, on a given channel, ir | in number of bits. The CL-D
n the range of five to eight bit | | | | ChL1 | ChL0 | Character Length | | | | Bits 1:0 | 0 | 0 | 5 bits | | | | | 0 | 1 | 6 bits | *************************************** | | | | 1 | 0 | 7 bits | | | | | | 1 | 8 bits | | | ### 5.4.2 Channel Option Register 2 (COR2) | Register Name: COR2 Register Description: Channel Option Register 2 Default Value: x'00 Access: Read/Write | | | | | | | ex Address: 09 | |--|-------|-------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | IXM | TxIBE | ETC | LLM | RLM | RtsAO | CtsAE | DsrAE | | Bit | Description | |-------|---| | Bit 7 | Implied X-ON Mode: The IXM Bit enables the automatic resumption of character transmission upon the reception of any character. This bit only has meaning if the transmitter is in Automatic In-band Flow Control Mode as programmed by the TxIBE Control Bit. If this bit is reset and TxIBE is enabled, the reception of any character will restart character transmission. | | Bit 6 | Enable Automatic In-band Transmit Flow Control: This bit enables the CL-CD1400 capability to examine error-free incoming characters looking for an X-OFF character (as programmed by SCHR2), if the special character match function is enabled (COR3, Bit 4). If a match occurs, transmission will cease after the current characters in the Transmitter Shift Register and Transmitter Holding Register have been sent. Transmission will resume when an X-ON character (or any character, depending on the value of the IXM Bit) is received or if a channel-enable command is issued via the CCR. | | Bit 5 | Embedded Transmit Command Enable: If the ETC Bit is set, the CL-CD1400 will examine characters in the transmit FIFO. If an embedded command is detected, it will be processed. See the embedded-transmit command description in Section 3 on page 29 for details of valid commands. | | Bit 4 | Local Loopback Mode: The LLM Bit enables local loopback of the channel. This mode is generally used during system diagnostics. If this bit is set, the transmitter is internally 'looped' back to the receiver. The TxD Pin is set to the marking state. Data sent will be immediately received by the receiver. No data will appear on the TxD Pin, and data on the RxD Pin will be ignored. | | Bit 3 | Remote Loopback Mode: Remote loopback allows a remote system to test its serial data stream. If this function is enabled, the CL-CD1400 internally connects its receiver to the transmitter. Any data received is immediately echoed back. This mode is enabled by setting the RLM Bit and disabled by clearing the bit. | | Bit 2 | Request To Send Automatic Output: The CL-CD1400 can automatically assert RTS when a channel is enabled (via transmit/receive enable command in the CCR) and there is data in the FIFO. When the channel is disabled or there is no more data to send (FIFO, Holding Register and Shift Register), RTS* will be negated. Setting RtsAO enables the function. | | Bit 1 | Clear To Send Automatic Enable: This bit enables the CTS* Input to control transmitter operation. If CtsAE is set, and CTS* is not asserted, character transmission will not proceed. | | Bit 0 | Data Set Ready Automatic Enable: DsrAE allows the DSR* Input to control receiver operation. Setting DsrAE enables the function. When enabled, if DSR* is deasserted, the CL-CD1400 discards all received characters. | ### 5.4.3 Channel Option Register 3 (COR3) Serial Format | Register Nan
Register Des
Default Value
Access: Rea | <i>cription:</i> Chann
e: x'00 | | H | ex Address: 0A | | | | |--|-----------------------------------|-------|-------|-----------------------|-------|-------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | SCDRNG | SCD34 | FCT | SCD12 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | ### 5.4.4 Channel Option Register 3 (COR3) Parallel Format | Register De
Default Valu | Register Name: COR3 Register Description: Channel Option Register 3 — Parallel Default Value: x'00 Access: Read/Write | | | | | | | | |-----------------------------|---|-------|-------|-------|-------|-------|-------|--| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | 0 | 0 | 0 | RxTh4 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | | COR3 for Channel 0 has two formats, one for serial and one for parallel. Channels 3-1 have only the serial format. Both formats are described as follows: ### Channel Option Register 3 - Serial | Bit | Description | |-------|--| | Bit 7 | Special Character Detect Range: This bit enables range checking on received characters. If the character falls between a lower range set by the value stored in the SCRL Register and an upper range set by the value stored in the SCRH Register, inclusive, a receive exception service request will be posted with the status indicating a range detect (RDSR Bits SCDet2-SCDet0 = 111). | | Bit 6 | Enable Special Character Detect on SCHR4-SCHR3: This bit controls whether or not the CL-CD1400 performs comparison on received characters against the values stored in Registers SCHR4 and SCHR3.
The comparison is enabled by a '1' in this location. | | Bit 5 | Flow Control Transparency: The FCT Bit enables and disables transparent response to flow control characters received by the CL-CD1400. If FCT is set, received XON and XOFF characters will not be placed in the FIFO for the host. If in-band flow control is enabled, the characters will be acted upon. If FCT is not set, flow control characters will be acted upon, placed in the receive FIFO, and the host will be notified via a receive exception service request. | | Bit 4 | Enable Special Character Detect on SCHR2-SCHR1: This bit controls whether or not the CL-CD1400 compares received characters with the values stored in Registers SCHR2 and SCHR1. A '1' enables compare. This bit must be set to enable automatic in-band flow control. | | Bit | | | | Descri | otion (cont.) | |----------|-------------|-------------|-------|--------|-------------------------| | | Receive FIF | O Threshold | | | | | | RxTh3 | RxTh2 | RxTh1 | RxTh0 | Receiver FIFO Threshold | | | 0 | 0 | 0 | 0 | Not used | | | 0 | 0 | 0 | 1 | 1 Character | | , | 0 | 0 | 1 | 0 | 2 Characters | | | 0 | 0 | 1 | 1 | 3 Characters | | 3its 3:0 | • | • | • | • | • | | | • | • | • | • | • | | | 1 | 0 | 1 | 1 | 11 Characters | | | 1 | 1 | 0 | 0 | 12 Characters | | | 1 | 1 | 0 | 1 | Not used | | | 1 | 1 | 1 | 0 | Not used | | | 1 | 1 | 1 | 1 | Not used | ### Channel Option Register 3 - Parallel | Bit | | Description | | | | | | | | | |----------|-------------|-------------|-------|-------|-------|-------------------------|--|--|--|--| | Bits 7:5 | Not used | | | | | | | | | | | | Receive FIF | O Threshold | i | , | | | | | | | | | RxTh4 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | Receiver FIFO Threshold | | | | | | | 0 | 0 | 0 | 0 | 0 | Not used | | | | | | | 0 | 0 | 0 | 0 | 1 | 1 Character | | | | | | | 0 | 0 | 0 | 1 | 0 | 2 Characters | | | | | | Bits 4:0 | • | • | • | • | • | • | | | | | | | • | • | • | • | • | • | | | | | | | • | • | • | • | • | • | | | | | | | 1 | 1 | 1 | 0 | 1 | 29 Characters | | | | | | | 1 | 1 | 1 | 1 | 0 | 30 Characters | | | | | | | 1 | 1 | 1 | 1 | 1 | Not used | | | | | Hex Address: 1E ### 5.4.5 Channel Option Register 4 (COR4) Register Name: COR4 Register Description: Channel Option Register 4 Default Value: x'00 Access: Read/Write | , | - · · · · · · · | | | | | | | |-------|-----------------|-------|--------|---------|--------|--------|--------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | IGNCR | ICRNL | INLCR | IGNBRK | -BRKINT | PEH[2] | PEH[1] | PEH[0] | | Bit | Description | | | | | | | | | |----------|---------------------------|-----------------|-------------------|--|-------------------|--|--|--|--| | | These three | bits define the | manner in | (NL) Processing
which the CL-CD1400 will process received CR a
s the actions performed: | and NL characters | | | | | | | IGNCR | ICRNL | INLCR | Action | | | | | | | | 0 | 0 | 0 | No action | - | | | | | | Bits 7:5 | 0 | 0 | 1 | Received NL changed to CR | | | | | | | | 0 | 1 | 0 | Received CR changed to NL | | | | | | | | 0 | 0 1 | | Received CR changed to NL; NL changed to CR | | | | | | | | 1 0 | | 0 | Received CR discarded | | | | | | | | 1 | 0 | 1 | Received CR discarded; NL changed to CR | | | | | | | | 1 | 1 | 0 | Received CR discarded | | | | | | | | 1 | 1 | 1 | Received CR discarded; NL changed to CR | | | | | | | | Break Proce
The CL-CD1 | 400 can handl | e received | break characters in three ways: Break Action | | | | | | | Bits 4:3 | 0 | 0 | request | ed break generates an exception service
. End-of-Break also generates an
on service request if EBD is enabled in | | | | | | | | 0 | 1 | Receive
acter. | ed break treated as a good NULL char- | | | | | | | | 1 | 0 | Not use | ed. | | | | | | | | 1 | 1 | Receive | | | | | | | | Bit | Description (cont.) | | | | | | | | | | | |----------|---------------------|--------|--------|--|--|--|--|--|--|--|--| | | | | | (O) Error Special Processing
he CL-CD1400 can treat errored characters in several differen | | | | | | | | | | PEH[2] | PEH[1] | PEH[0] | Action | | | | | | | | | | О | 0 | 0 | Received P/F/O errored characters treated as exception data. | | | | | | | | | | 0 | 0 | 1 | Received P/F/O errored characters treated as good data. | | | | | | | | | | 0 | 1 | 0 | Received P/F/O errored characters discarded. | | | | | | | | | Bits 2:0 | 0 | 1 | 1 | Received P/F/O errored characters replaced with good NULL characters. | | | | | | | | | | 1 | 0 | o | Received P/F/O errored characters are replaced with the two character sequence x'FF-NULL-character. Good x'FF characters are replaced with the two character sequence x'FF-x'FF. | | | | | | | | | | 1 | 0 | 1 | Not used. | | | | | | | | | | 1 | 1 | 0 | Not used. | | | | | | | | | | 1 | 1 | 1 | Not used. | | | | | | | | ### 5.4.6 Channel Option Register 5 (COR5) | Register Name: COR5 Register Description: Channel Option Register 5 Default Value: x'00 Access: Read/Write | | | | | | H | ex Address: 1F | |--|-------|-------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | ISTRIP | LNE | СМОЕ | 0 | 0 | EBD | ONLCR | OCRNL | | Bit | | Description | | | | | | | | | | |----------|--------|--|---|--|----------------|--|--|--|--|--|--| | Bit 7 | J. | ISTRIP: The ISTRIP Bit enables stripping of the most significant bit (Bit 7) on all received characters. A '1' in this position enables the function. | | | | | | | | | | | Bit 6 | L
F | LNext Enable: When this bit is set, characters following an LNext Character (as programmed by the LNC Register) will not be processed as a special character. | | | | | | | | | | | Bit 5 | (| Character M
characters. If | atching on E
the bit is clea | Error: If this bit is set, character matching will occur on both goo
ared, matching will occur on good characters only. | od and errored | | | | | | | | Bits 4:3 | ١ | Must be '0'. | | | , | | | | | | | | Bit 2 | t | End of Break Detect: If this bit is set, the CL-CD1400 will, after detecting and reporting a line-break condition, search for the end of a break and report it via an exception service request with the End of Break status in the RDSR (see the RDSR description). | | | | | | | | | | | | (| Carriage Ret
These two bit | t urn (CR) and
ts define acti | d New Line (NL) Processing – Transmit ons, if any, taken on characters in the transmit data stream. | | | | | | | | | | | ONLCR | OCRNL | Action | | | | | | | | | Bits 1:0 | | 0 | 0 | No action | | | | | | | | | | | 0 | 1 | Transmit CR changed to NL | | | | | | | | | | | 1 | 0 | 0 Transmit NL changed to CRNL | | | | | | | | | | | 1 | 1 | Transmit CR changed to NL, NL changed to CRNL | | | | | | | | | | | | | | . | | | | | | | ### 5.4.7 Channel Control Status Register (CCSR) Serial Format | Register Nam
Register Des
Default Value
Access: Rea | <i>cription:</i> Chann
e: x'00 | el Control Stat | us — Serial | | | Н | ex Address: 0B | |--|-----------------------------------|-----------------|-------------|-------|---------|--------|-----------------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | RxEN | RxFloff | RxFlon | 0 | TxEN | TxFloff | TxFlon | 0 | ### 5.4.8 Channel Control Status Register (CCSR) Parallel Format | Register Nar
Register Des
Default Value
Access: Rea | <i>cription:</i> Channer: x'00 | el Control State | us — Parallel | | | H | ex Address: 0B | |--|--------------------------------|------------------|---------------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | RxEN | 0 | 0 | 0 | TxEN | 0 | 0 | 0 | The CCSR provides current status of the selected channel. The CCSR for Channel 0 has two formats, one for serial operation and another for parallel operation. ## Channel Control Status Register - Serial | Bit | Description | |-------|---| | Bit 7 | Receiver Enabled: The RxEN Bit is set when the receiver is enabled and cleared when it is disabled. | | Bit 6 | Receiver Flow Off: This bit indicates that the receiver has requested the remote to stop transmitting through the use of a send XOFF character via a send special character two command in the CCR. The bit will be cleared when a Send Special Character 1 (XON) command is issued; the channel is either enabled or disabled or the channel is reset. | | Bit 5 | Receiver Flow On: When a send special character one (XON) command is issued via the CCR, this bit will be set. It will be cleared when one of three events has occurred: the first non-flow control character is received, the receiver is either enabled or disabled or the
channel is reset. | | Bit 4 | Not used, will return '0' when read. | | Bit 3 | Transmitter Enabled: This bit is set when the transmitter is enabled and cleared when it is disabled. | | Bit 2 | Transmitter Flow Off: This bit indicates that the CL-CD1400 has been requested to stop transmission by the remote (received in-band flow control character XOFF). The bit is cleared when the CL-CD1400 requested to restart transmission (receives an XON character), the channel is either enabled or disabled or the channel is reset. | | Bit 1 | Transmitter Flow On: TxFlon is set when the CL-CD1400 has been requested to restart transmission (received an XON character). It is reset when transmission actually begins, when the channel is either enabled or disabled or when the channel is reset. | | Bit 0 | Not used, will return '0' when read. | ### Channel Control Status Register - Parallel | Bit | Description | | | | | | | |----------|---|--|--|--|--|--|--| | Bit 7 | Receiver Enabled: The RxEN Bit is set when the receiver is enabled and cleared when it is disabled. | | | | | | | | Bits 6:4 | Not used, will return '0' when read. | | | | | | | | Bit 3 | Transmitter Enabled: This bit is set when the transmitter is enabled and cleared when it is disabled. | | | | | | | | Bits 2:0 | Not used, will return '0' when read. | | | | | | | #### 5.4.9 Received Data Count Register (RDCR) Serial Format | Register De.
Default Valu | Register Name: RDCR Register Description: Receive Data Count — Serial Default Value: x'00 Access: Read Only | | | | | | | |------------------------------|---|-------|-------|-------|-------|-------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | 0 | 0 | 0 | СТЗ | CT2 | CT1 | СТ0 | ### 5.4.10 Received Data Count Register (RDCR) Parallel Format | Register Na
Register De
Default Valu
Access: Re | scription: Receiv
ve: x'00 | ve Data Count - | – Paraliei | | | Н | ex Address: 0E | |--|-------------------------------|-----------------|------------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 0 | o | 0 | CT4 | СТЗ | CT2 | CT1 | СТО | The RDCR indicates the number of good characters currently in the received data FIFO. Host software can use this value as a loop counter when taking characters out of the FIFO. The value in this register is only valid during the context of a service request acknowledge. At other times, it may or may not provide a true indication of the number of characters in the FIFO. The register has two formats for Channel 0, one for serial and one for parallel. Channels 1-3 have only the serial format. ### Received Data Count Register - Serial | Bit | Description | | |----------|-------------|--| | Bits 7:4 | Always '0' | | | Bit | | | | Descri | ption (cont.) | |----------|--------------|-------------|-----|--------|------------------------------| | | Character co | unt CT3-CT0 |) | • | | | | СТЗ | CT2 | CT1 | СТО | Number of characters in FIFO | | | 0 | 0 | 0 | 0 | Not used | | | 0 | 0 | 0 | 1 | 1 Character | | | 0 | 0 | 1 | 0 | 2 Characters | | | • | • | • | • | • | | Bits 3:0 | • | • | • | • | • | | | • | • | • | • | • | | | 1 | 0 | 1 | 1 | 11 Characters | | | 1 | 1 | 0 | 0 | 12 Characters | | | 1 | 1 | 0 | 1 | Not used | | | 1 | 1 | 1 | 0 | Not used | | | 1 | 1 | 1 | 1 | Not used | ### Received Data Count Register - Parallel | Bit | | Description | | | | | | | | | | | |----------|--------------|-------------|-----|-------|-----|------------------------------|--|--|--|--|--|--| | Bits 7:5 | Always '0' | | | ····· | | | | | | | | | | | Character co | unt CT4-CT0 |) | | | | | | | | | | | | CT4 | СТЗ | CT2 | CT1 | СТО | Number of Characters in FIFO | | | | | | | | | 0 | 0 | 0 | 0 | 0 | Not used | | | | | | | | | 0 | 0 | 0 | 0 | 1 | 1 Character | | | | | | | | | 0 | 0 | 0 | 1 | 0 | 2 Characters | | | | | | | | Bits 4:0 | • | • | • | • | • | • | | | | | | | | | • | • | • | • | • | • | | | | | | | | | • | • | • | • | • | • | | | | | | | | | 1 | 1 | 1 | 0 | 1 | 29 Characters | | | | | | | | | 1 | 1 | 1 | 1 | 0 | 30 Characters | | | | | | | | | 1 | 1 | 1 | 1 | 1 | Not used | | | | | | | ### 5.5 Special Character Registers The four Special Character Registers, SCHR4-SCHR1, hold the character patterns that are used for various character matching and flow control functions. Each 8-bit character is right-justified, that is, comparison takes place from right to left, and all bits are compared. Any unused bits must be zero. SCHR1 and SCHR2 serve the additional function of defining the XON and XOFF characters, respectively, used for inband flow control. ### 5.5.1 Special Character Register 1 (SCHR1) | Register Descrip | · SCHR1
iption: Specia | I Character Re | gister 1 | | | He | ex Address: 14 | |------------------------------------|---------------------------|----------------|----------|-------|-------|-------|----------------| | Default Value: x
Access: Read/N | x'00 | · | • | | | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | SCHR1 defines the XON Character ### 5.5.2 Special Character Register 2 (SCHR2) | | | gister 2 | l Character Re | cription: Specia
x'00 | Register Nam
Register Desc
Default Value
Iccess: Rea c | |-------|-------|----------|----------------|--------------------------|--| | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | | Bit 2 | Bit 3 | Bit 4 | Bit 5 | | | SCHR2 defines the XOFF Character #### 5.5.3 Special Character Register 3 (SCHR3) | Register Nam
Register Des
Default Value
Access: Rea | <i>cription:</i> Specla
e: x'00 | l Character Re | gister 3 | | | H | ex Address: 10 | |--|------------------------------------|----------------|-----------|------------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | Special C | haracter 3 | | | | 120 # 5.5.4 Special Character Register 4 (SCHR4) | eciai Character ne | gister 4 | | | | | |--------------------|----------|---|-------|-------|-------| | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 6 | | Special Character Register 4 6 Bit 5 Bit 4 | | | | #### **Received Character Range Detection** If enabled (through Bit 7 of COR3), the CL-CD1400 will check received characters to see if they fall within a range of values. Two registers set the range: SCRL and SCRH. Range checking occurs inclusive of the values programmed into these registers. If a received character is determined to be within the range, a special character detect exception service request will be posted. Bits 6-4 of the RDSR will indicate a range detect by being set to 111. It should be noted that this range checking is performed in addition to normal special character detection on SCHR4-SCHR1. ### 5.5.5 Special Character Range Low (SCRL) | Register Nam
Register Desc | Н | ex Address: 2: | | | | | | |---------------------------------------|-------|----------------|-------|-------|-------|-------|-------| | Default Value.
Access: Reac | x'00 | | | | | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | SCRL set the lower inclusive value for range detection. ### 5.5.6 Special Character Range High (SCRH) | Register Nam
Reaister Desc | | I Character Ra | nae Hiah | | | H | ex Address: 23 | |--------------------------------|-------|----------------|--|-------|-------|-------|----------------| | Default Value.
Access: Read | x'00 | | 3 • • • • • • • • • • • • • • • • • • • | | | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | SCRH sets the upper inclusive value for range detection. ### 5.5.7 LNext Character (LNC) | _ | | Character | | | | H | ex Address: 24 | |-------|-------|-----------|-------|-------|-------|-------|-----------------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | This register defines the LNext Character. If the LNext function is enabled (Bit 6 of COR5), the CL-CD1400 will examine received characters and compare them against this value. If a match occurs, this character and the following will be placed in the FIFO without any special processing. In effect, the LNext function causes the CL-CD1400 to ignore characters with special meaning, such as flow control characters. There are two exceptions. If the character following the LNext Character is either a break or an errored character, LNext will be placed in the FIFO, and the following character will be treated as it normally would for these error conditions. ### 5.6 Modem Change Option Registers The CL-CD1400 has two registers that control its response to changes on the Modem Input Pins. It can be programmed to respond to the low-to-high transition, the high-to-low transition or both. In addition, the threshold at which the DTR Signal will be negated can be set by the DTRth3-DTRth0 Bits in MCOR1. #### 5.6.1 Modem Change Option Register 1 (MCOR1) Serial Format | Register Nar
Register Des
Default Value
Access: Rea | <i>scription:</i> Moden
e: x'00 | n Change Optic | on Register 1 | - Serial | | H | lex Address: 15 | |--|------------------------------------|----------------|---------------|----------|--------|--------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | DSRzd | CTSzd | Rizd | CDzd | DTRth3 | DTRth2 | DTRth1 | DTRth0 | ### 5.6.2 Modem Change Option Register 1 (MCOR1) Parallel Format | Register
Nan
Register Des
Default Value
Access: Rea | cription: Moder
e: x'00 | n Change Optic | on Register 1 — | - Parallel | *** | Н | lex Address: 15 | |--|----------------------------|----------------|-----------------|------------|-------|-------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | PBUSYzd | PSLCTzd | RIzdPPEzd | PERRORzd | 0 | 0 | 0 | 0 | Channel 0 has two formats for MCOR1: one applies when the channel is in Serial Mode and the other applies in Parallel Mode, as set by the GCR. Channels 3-1 have only the Serial Mode format. ## Modem Change Option Register 1 - Serial | Bit | | | | Des | cription | |----------|-------------------------------|-------------------------------|---|--------------------------------|---| | Bit 7 | DSRzd | | · | | | | Bit 6 | CTSzd | | *************************************** | | | | Bit 5 | Rizd | | | - 1 , | | | Bit 4 | CDzd: Each
transitions fro | of these bits
om one-to-ze | controls its c
ro will genera | orresponding
ate an SVCR | input pin. If the bit is set, the function is enabled and EQM* service request. | | | based on the value, DTR v | number of c
vill be negate | haracters in
d, informing t | the receive F
the remote th | at determines when the DTR Output will be negated, IFO. When the FIFO holds more characters than this at it should stop transmission. This value must be set to receive FIFO threshold in COR3. Number of characters in FIFO | | | | | | | | | | 0 | 0 | 0 | 0 | Automatic DTR Mode disabled | | | 0 | 0 | 0 | 1 | 1 Character | | | 0 | 0 | 1 | 0 | 2 Characters | | Bits 3:0 | • | • | • | • | • | | | • | • | • | • | • | | | • | • | • | • | • | | | 1 1 | | | | | | | 1 | 0 | 1 | 1 | 11 Characters | | | 1 | 0 | 0 | 0 | 11 Characters 12 Characters | | | | | · | | | | | 1 | 1 | 0 | 0 | 12 Characters | ### Modem Change Option Register 1 - Parallel | Bit | Description | |----------|--| | Bit 7 | PBUSYzd: When BUSY in an input (Parallel Transmit Mode). | | Bit 6 | PSLCTzd | | Bit 5 | PPEzd | | Bit 4 | PERRORzd : Effectively, these four bits are identical to the equivalent bits in the serial format above. The only difference is in the signal names. These inputs are renamed for convenience in working with the register when Channel 0 is programmed to be a parallel port. Setting any of these bits will enable the detection of a one-to-'0' transition on the corresponding input. | | Bits 3:0 | Not used; must be '0'. | ### 5.6.3 Modem Change Option Register 2 (MCOR2) Serial Format | Register Nar
Register Des
Default Value
Access: Rea | <i>scription:</i> Moden
e: x'00 | n Change Optic | on Register 2 – | - Serial | | Н | lex Address: 16 | |--|------------------------------------|----------------|-----------------|----------|-------|-------|-----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | DSRod | CTSod | Rlod | CDod | 0 | 0 | 0 | o | ### 5.6.4 Modem Change Option Register 2 (MCOR2) Parallel Format | Register Nam
Register Des
Default Value
Access: Rea | <i>cription:</i> Modem
e: x'00 | n Change Opti | ion Register 2 — | Paraliel | | Н | ex Address: 16 | |--|-----------------------------------|---------------|------------------|----------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | PBUSYod | PSLCTod | PPEod | PERRORod | 0 | 0 | o | 0 | Channel 0 has two formats for MCOR2: one applies when the channel is in Serial Mode and the other applies in Parallel Mode, as set by the GCR. Channels 3-1 have only the Serial Mode format. ### Modem Change Option Register 2 - Serial | Bit | Description | |----------|---| | Bit 7 | DSRod | | Bit 6 | CTSod | | Bit 5 | Riod | | Bit 4 | CDod: Each of these bits controls its corresponding input pin. If the bit is set, the function is enabled and transitions from zero-to-one will generate an SVCREQM* service request. | | Bits 3:0 | These bits are not used and must be programmed to '0'. | ### Modem Change Option Register 2 - Parallel | Bit | Description | |----------|---| | Bit 7 | PBUSYod: When BUSY in an input (Parallel Transmit Mode). | | Bit 6 | PSLCTod | | Bit 5 | PPEod | | Bit 4 | PERRORod : Effectively, these four bits are identical to the equivalent bits in the serial format. The only difference is in the signal names. As with the parallel format of MCOR1, these inputs are renamed for convenience in working with the register when Channel 0 is programmed to be a parallel port. Setting any of these bits will enable the detection of a zero-to-one transition on the corresponding input. | | Bits 3:0 | Not used; must be programmed to '0'. | 126 **DETAILED REGISTER DESCRIPTIONS** March 1997 ### 5.6.5 Receive Time-out Period Register (RTPR) | Register Name: RTPR Register Description: Receive Time-out Period Default Value: x'00 Access: Read/Write | | | | | | | ex Address: 21 | |--|-------|-------|-------|-------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | The RTPR determines the time period that will be used for the No New Data Time-out (NNDT) and the stale data time-out. The Time-out Counter is loaded from this register whenever a new character is placed in, or the last character is removed from, the receive FIFO. The counter is decremented on each 'tick' of the prescaler counter (PPR). A service request will be generated if the count reaches zero; either an NNDT if the FIFO is empty and the NNDT is enabled, or a good data service request if there is data in the FIFO, but the time-out period has expired before the FIFO reaches the programmed threshold (the data has become stale). #### 5.6.6 Modem Signal Value Register 1 (MSVR1) | Register Nar
Register Des
Default Value
Access: Rea | <i>scription:</i> Moden
e: x'00 | n Signal Value | Register 1 | | | H | ex Address: 6C | |--|------------------------------------|----------------|------------|----------|-------|-------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | DSR | стѕ | RI | CD | PSTROBE* | 0 | 0 | RTS | ### 5.6.7 Modem Signal Value Register 2 (MSVR2) | Register Nai
Register Des
Default Valu
Access: Rea | scription: Moden
e: x'00 | | Н | ex Address: 6D | | | | |---|-----------------------------|-------|-------|----------------|-------|-------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | DSR | стѕ | RI | CD | PSTROBE* | 0 | DTR | o | The MSVR1 and MSVR2 Registers provide information regarding the state of the Modem Input Pins (DSR*, CTS*, RI* and CD*), the current state of Printer Strobe Output Pin (PSTROBE*) and allows control of the Modem Output Pins (DTR* and RTS*). The PSTROBE* Bit is only valid for Channel 0; on all other channels it is not used. Writing to any of the input bits has no effect. With the exception of the least significant two bits, the registers reflect identical data. The two are provided as a convenience for control of the Modem Output Pins. Host software need not keep a copy of the current state of either when controlling the other. The actual signal level on the output is the inverse of the value placed in this register: setting the DTR Bit, for example, will cause the DTR Output to become active-low. The state of the Modem Input Pins are also the inverse of the value in the corresponding bit in the registers. ### 5.6.8 Printer Signal Value Register (PSVR) | Register Nar
Register Des
Default Value
Access: Rea | H | lex Address: 6F | | | | | | |--|--------|-----------------|---------|-------|----------|--------|--------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | PBUSY | PSLCT* | PPE* | PERROR* | PACK* | PAUTOFD* | PINIT* | PSLIN* | This register groups all of the Modem Signals for Channel 0 into one register. The PSVR is only valid for Channel 0. The most significant five bits reflect the current signal value on the Input Pins PBUSY, PSLCT*, PPE*, PERROR* and PACK*. The values in these bits reflect the inverse of the actual values on the input pins. A logic '0' on the input pin will be shown as a '1' in the corresponding bits; a logic '1' on the pin will be a '0' in the register. The least significant three
bits can be used by the host software to control the Modem Output Pins PAUTOFD*, PINIT* and PSLIN*. These bits directly control the outputs, and the values are inverted. | Bit | Description | | |-------|--|---| | Bit 7 | Printer Busy – the current state of the Printer Busy Input (Parallel Transmit Mode). | • | | Bit 6 | Printer Select – the current state of the Printer Select Input. | | | Bit 5 | Printer Paper Empty – the current state of the Printer Paper Empty Input. | | | Bit 4 | Printer Error – the current state of the Printer Error Input. | - | | Bit 3 | Printer Acknowledge the current state of the Printer Acknowledge Input. | | | Bit 2 | Printer Autofeed – the current state of the Printer Autofeed Output. | | | Bit 1 | Printer Initialize – the current state of the Printer Initialize Output. | | | Bit 0 | Printer Selection – the current state of the Printer Selection Output. | | #### 5.6.9 Receive Baud Rate Period Register (RBPR) | Register Name: RBPR Register Description: Receive Baud Rate Period Default Value: x'41 Access: Read/Write | | | | | | | ex Address: 78 | |---|-------|-------|-------|-------|-------|-------|-----------------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | This register holds the baud rate divisor for the receiver. It is used in conjunction with the Receive Clock Option Register (RCOR) that provides the clock that will be divided by this value. The time period produced must equal the value for one bit time of the receive data. When Channel Zero is programmed in the Parallel Mode, the RCOR/RBPR pair should be programmed to produce an effective baud rate whose bit time is equal to twice the expected PSTROBE* pulse width (see Section 2 for detailed parallel port programming parameters). ## 5.6.10 Receive Clock Option Register (RCOR) | Register Na
Register De
Default Valu
Access: Re | scription: Receive: x'01 | re Clock Option | 1 | | | H | ex Address: 7C | |---|--------------------------|-----------------|-------|-------|---------|---------|----------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | Х | x | × | × | x | ClkSel2 | ClkSel1 | ClkSel0 | The RCOR selects the clock source which will drive the Baud Rate Period Register (RBPR). The value in ClkSel2-ClkSel0 selects one of five possible clocks generated from the master clock (CLK). | Bit | Description | | | | | | | |----------|-------------|---------|---------|----------------------------|--|--|--| | Bits 7:3 | Not used | | | | | | | | | | | | | | | | | | ClkSel2 | ClkSel1 | ClkSel0 | Clock Selected | | | | | | 0 | 0 | 0 | clk0 (CLK divided by 8) | | | | | | 0 | 0 | 1 | clk1 (CLK divided by 32) | | | | | Bits 2:0 | 0 | 1 | 0 | clk2 (CLK divided by 128) | | | | | Dits 2.0 | 0 | 1 | 1 | clk3 (CLK divided by 512) | | | | | | 1 | 0 | 0 | clk4 (CLK divided by 2048) | | | | | | 1 | 0 | 1 | Not used | | | | | | 1 | 1 | 0 | Not used | | | | | | 1 | 1 | 1 | Not used | | | | ### 5.6.11 Transmit Baud Rate Period Register (TBPR) | Register Nam
Register Desc
Default Value
Access: Rea | <i>cription:</i> Transn
: x'41 | | Intel H | ex Address: 72 | | | | |---|-----------------------------------|-------|------------|----------------|-----------|-------|-------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | Binary Div | visor Value | 1. | | L | This register holds the baud rate divisor for the transmitter. It is used in conjunction with the Transmit Clock Option Register (TCOR), which provides the clock that will be divided by this value. The time period produced must equal the value for one bit time of the transmit data. When Channel 0 is programmed to be a parallel port, the TBPR Register determines the pulse width of the PSTROBE* Output; the value in TCOR is not used. The least significant five (5) bits of the register set the binary value for a counter that is decremented by the system clock (CLK \div 2). The range of acceptable values is 1 through 32 inclusive, which will produce pulses in the range of 100 ns to 3.2 μ s for a 20-MHz clock. For example, if the TBPR is loaded with a value of 10 (hex A) and the system clock is 20 MHz, the resulting PSTROBE* pulse width will be 1.0 μ s (100 ns times 10). NOTE: During parallel operation, if the TBPR value is changed to produce a different PSTROBE* width, a channel re-enable *must* be performed for the change to take affect. This is due to the manner in which the value is used internally by the MPU. It stores a copy of the TBPR in an internal register allowing it faster access during foreground routines when a new PSTROBE* is to be generated. A channel re-enable is performed by writing a hex 18 (transmit) or hex 12 (receive) command to the Channel Command Register (CCR). ### 5.6.12 Transmit Clock Option Register (TCOR) | Register Nai
Register Des
Default Valu
Access: Rea | scription: Transn
e: x'81 | nit Clock Optio | n | | | Н | lex Address: 76 | |---|------------------------------|-----------------|-------|-------|---------|---------|------------------------| | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | х | x | х | × | x | ClkSel2 | ClkSel1 | ClkSel0 | The TCOR selects the clock source that will drive the Baud Rate Period Register (TBPR). The value in ClkSel2-ClkSel0 selects one of five possible clocks generated from the master clock (CLK). | Bit | Description | | | | | | | | |----------|-------------|---------|---------|----------------------------|--|--|--|--| | Bits 7:3 | Not used | | | | | | | | | | ClkSel2 | ClkSel1 | CIkSel0 | Clock Selected | | | | | | | 0 | 0 | 0 | clk0 (CLK divided by 8) | | | | | | | 0 | 0 | 1 | clk1 (CLK divided by 32) | | | | | | Bits 2:0 | 0 | 1 | 0 | clk2 (CLK divided by 128) | | | | | | DIG 2.0 | 0 | 1 | 1 | clk3 (CLK divided by 512) | | | | | | | 1 | 0 | 0 | clk4 (CLK divided by 2048) | | | | | | | 1 | 0 | 1 | Not used | | | | | | | 1 | 1 | 0 | Not used | | | | | | | 1 | 1 | 1 | Not used | | | | | NOTE: The TCOR has no effect when Channel 0 is programmed as a parallel port. Notes PAGE(S) INTENTIONALLY BLANK. ### 6. ELECTRICAL SPECIFICATIONS Before beginning any new design with this device, please contact Cirrus Logic Inc. for the latest errata information. See the back cover of this document for sales office locations and phone numbers. These characteristics and timing specifications apply to CL-CD1400 Revision J or later devices. ### 6.1 Absolute Maximum Ratings | Supply voltage (V _{CC}) | +7.0Volts | |---|---| | Input voltages, with respect to ground | 0.5 Volts to V _{CC} +0.5 Volts | | Operating temperature (T _A) | 0° C to 70° C | | Storage temperature | 65° C to 150° C | | Power dissipation | 0.25Watt | | | | NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any conditions above those indicated in the recommended operating conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **6.2 Recommended Operating Conditions** | Supply voltage (V _{CC}) | 5V± 5% | |--|-------------------------------| | Operating free air ambient temperature | 0° C < T _A < 70° C | | System clock | 60MHz | #### 6.3 DC Electrical Characteristics $(V_{CC} = 5V \pm 5\%, T_A = 0^{\circ} C \text{ to } 70^{\circ} C)$ | Symbol | Parameter | MIN | MAX | Units | Test Conditions | |------------------|--------------------------------------|------|-----------------|-------|---| | V _{IL} | Input Low Voltage | -0.5 | 0.8 | ٧ | | | V _{IH} | Input High Voltage | 2.0 | V _{CC} | ٧ | (See Note 2 on page 136) | | V _{OL} | Output Low Voltage | | 0.4 | ٧ | I _{OL} = 2.4 mA (see Note 1 on page 136) | | V _{OH} | Output High Voltage | 2.4 | | V | I _{OH} = -400 μA | | I _{IL} | Input Leakage Current | -10 | 10 | μА | 0 < V _{IN} < V _{CC} | | I _{LL} | Data Bus 3-State
Leakage current | -10 | 10 | μА | 0 < V _{OUT} < V _{CC} | | loc | Open-Drain Output
Leakage Current | -10 | 10 | μΑ | 0 < V _{OUT} < V _{CC} | | Icc | Power Supply Current | | 50 | mA | CLK = 60 MHz | | C _{IN} | Input Capacitance | 3100 | 10 | рF | | | C _{OUT} | Output Capacitance | *** | 10 | pF | | March 1997 DATA BOOK v1.0 ELECTRICAL SPECIFICATIONS ### 6.3 DC Electrical Characteristics (cont.) #### NOTES: - 1) V_{OL} for open-drain signals is 0.5V @ 16 mA sinking. - 2) VIH is 2.7 V minimum on RESET* and CLK. - 3) While the CL-CD1400 is a highly dependable device, there are a few guidelines that will help to ensure that the maximum possible level of overall system reliability is achieved. First, the PC board should be designed to provide maximum isolation of noise. A four-layer board is preferable, but a two-layer board will work if proper power and ground distribution is implemented. In either case, decoupling capacitors mounted close to the CL-CD1400 are strongly recommended. Noise typically occurs when either the CL-CD1400 data bus drivers come out of tristate to drive the bus during a read, or when an external bus buffer turns on during a write cycle. This noise, a rapid rate-of-change of supply current, causes ground bounce in the power distribution traces. This ground bounce, a rise in the voltage of the ground pins, effectively raises the input logic thresholds of all devices in the vicinity, resulting in the
possibility of a 1 being interpreted as a 0. To reduce the possibility of ground bounce affecting the operation of the CL-CD1400, we have specified the input-high voltage (V_{IH}) of the CLOCK and RESET Pins at 2.7 volts, instead of the TTL-standard 2.0 volts. This eliminates any sensitivity to ground bounce, even in very noisy systems. Although 2.7 volts is higher than the industry-standard 2.4-volt output (V_{OH}) specified for TTL, there are several simple ways to meet this specification. One choice is to use any of the available advanced-CMOS logic families (FACT, ACL, etc.). These CMOS output buffers will pull up close to V_{CC} when not heavily loaded. In addition, AS and ALS TTL may be used if the output of the TTL device is only driving one or two CMOS loads. As noted in the Texas Instruments $^{(B)}$ ALS/AS Logic Data Book (1986), pages 4-18 and 4-19, the V_{OH} output of these families exceeds 3.0 volts at low-current loading. Other manufacturers publish similar data. Cirrus Logic recommends the use of one of these two options for the CLK input, to ensure fast, clean edges. Note that the RESET Pin may, if desired, be pulled up passively with a 1K ohm (or less) resistor. 136 ### 6.4 AC Electrical Characteristics ### 6.4.1 Index of Timing Information | Figure | Title | Page Number | |------------------|---|-------------| | Asynchronous | Timing | 138 | | 6-1 | Reset Timing | 139 | | 6-2 | Clock Timing | 139 | | 6-3 | Asynchronous Read Cycle Timing | 140 | | 6-4 | Asynchronous Write Cycle Timing | 141 | | 6-5 | Asynchronous Service Acknowledge Cycle Timing | 142 | | Synchronous | Timing | 143 | | 6-6 | Synchronous Read Cycle Timing | 144 | | 6-7 | Synchronous Write Cycle Timing | 145 | | 6-8 | Synchronous Service Acknowledge Cycle Timing | 146 | | Parallel Port Ti | iming | 147 | | 6-9 | Parallel Port Transmit Timing | 149 | | 6-10 | Parallel Port Receive Timing | 149 | #### 6.4.2 Asynchronous Timing Refer to the Figures 6-1 through 6-5 on the following pages for the reference numbers in the following table. The timing parameters shown on these pages apply to Revision H or later devices. $(V_{CC} = 5V \pm 5\%, T_A = 0^{\circ} C \text{ to } 70^{\circ} C)$ | Ref. # | Fig. | Parameter | MIN | MAX | Unit | |-----------------|------|--|---------------------|-----------------------|------------------| | t ₁ | 6-1 | RESET* Low pulse width | 10 | | T _{CLK} | | t ₂ | 6-3 | Address setup time to CS* or DS* | | 0 | ns | | t ₃ | 6-3 | R/W* setup time to CS* or DS* | | 0 | n | | t ₄ | 6-3 | Address hold time after CS* | 0 | | ns | | t ₅ | 6-3 | R/W* hold time after CS* | 0 | | n | | t ₆ | 6-3 | DTACK* low to read data valid | | 10 | ns | | t ₇ | 6-3 | DTACK* low from CS* or DS ² | 3 T _{CLK} | 5T _{CLK} +40 | ns | | t ₈ | 6-3 | Data Bus tristate after CS* or DS* high | 0 | 25 | ns | | t ₉ | 6-3 | CS* or DGRANT* high from DTACK* low | 0 | | ns | | t ₁₀ | 6-3 | DTACK* inactive from CS* or DGRANT* and DS* high | | 30 | ns | | t ₁₁ | 6-3 | DS* high pulse width | 10 | | ns | | t ₁₂ | 6-4 | Write data valid from CS* and DS* low | | 2T _{CLK} | ns | | t ₁₃ | 6-4 | Write data hold time after DS* high | 0 | | ns | | t ₁₄ | 6-2 | Clock period (TCLK) ^{1, 3} | 30 | 200 | ns | | t ₁₅ | 6-2 | Clock low time ¹ | 0.4T _{CLK} | 0.6T _{CLK} | ns | | t ₁₆ | 6-2 | Clock high time ¹ | 0.4T _{CLK} | 0.6T _{CLK} | ns | | t ₁₇ | 6-5 | Propagation delay, DGRANT* and DS* to DPASS* | | 30 | ns | | t ₁₈ | 6-5 | Setup time, SVCACK* to DS* and DGRANT* | 10 | | ns | #### **NOTES:** - Timing numbers for RESET* and CLK in the table above are valid for both asynchronous and synchronous specifications. - 2) On host I/O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* will be delayed by 1 μs. On systems that do not use DTACK* to signal the end of the I/O cycle, wait states or some other form of delay generation must be used to assure that the CL-CD1400 will not be accessed until after this time period. - 3) As TCLK increases, device performance decreases. A minimum clock frequency of 60 MHz is required to guarantee performance as specified. The recommended maximum TCLK is 1000 ns. 138 **ELECTRICAL SPECIFICATIONS** DATA BOOK v1.0 March 1997 Figure 6-1. Reset Timing **NOTE**: For synchronous systems, it is necessary to know the clock cycle number so that interface circuitry can stay in lock-step with the device. CLK numbers can be determined if RESET* is released within the range t_a - t_b ; t_a is defined as 10 ns minimum after the falling edge of the clock; t_b is defined as 5 ns minimum before the next falling edge of the clock. If these conditions are met, the cycle starting after the second falling edge will be known to be C1. See the synchronous timing diagrams for additional information. Asynchronous systems need not be concerned with clock numbers. Figure 6-2. Clock Timing March 1997 DATA BOOK v1.0 **ELECTRICAL SPECIFICATIONS** Figure 6-3. Asynchronous Read Cycle Timing 140 **ELECTRICAL SPECIFICATIONS** DATA BOOK v1.0 Figure 6-4. Asynchronous Write Cycle Timing March 1997 DATA BOOK v1.0 **ELECTRICAL SPECIFICATIONS** Figure 6-5. Asynchronous Service Acknowledge Cycle Timing 142 ELECTRICAL SPECIFICATIONS DATA BOOK v1.0 March 1997 ### 6.4.3 Synchronous Timing Refer to Figures 6-6 through 6-8 on the following pages for the reference numbers in the table below. | Ref. # | Fig. | Parameter | MIN | MAX | Unit | |-----------------|------|--|-----|-----|------| | t ₁ | 6-6 | Setup time, CS* and DS* to C1 falling edge | 5 | | ns | | t ₂ | 6-6 | Setup time, R/W* to C1 falling edge | | 0 | ns | | t ₃ | 6-6 | Setup time, address valid to C1 falling edge | | 0 | ns | | t ₄ | 6-6 | C3 falling edge to data valid | | 40 | ns | | t ₅ | 6-6 | DTACK* low from C4 falling edge | | 30 | ns | | t ₆ | 6-6 | CS* and DS* trailing edge to data bus high-impedance | | 25 | ns | | t ₇ | 6-6 | CS* and DS* inactive between host accesses | 10 | | ns | | t ₈ | 6-6 | Hold time, R/W* after C4 falling edge | 20 | | ns | | t ₉ | 6-6 | Hold time, address valid after C4 falling edge | 0 | | ns | | t ₁₀ | 6-7 | Setup time, write data valid to C3 falling edge | 0 | | ns | | t ₁₁ | 6-8 | Setup time, DS* and DGRANT* to C1 falling edge | 20 | | ns | | t ₁₂ | 6-8 | Setup time, SVCACK* to DS* and DGRANT* | 10 | | ns | | t ₁₃ | 6-8 | Hold time, write data valid after C4 falling edge | 0 | | n | | t ₁₄ | 6-8 | Propagation delay, DS* and DGRANT* to DPASS* | | 30 | ns | NOTE: On host I/O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* will be delayed by 1 μs. On systems that do not use DTACK* to signal the end of the I/O cycle, wait states or some other form of delay generation must be used to assure that the CL-CD1400 will not be accessed until after this time period. Figure 6-6. Synchronous Read Cycle Timing 144 ELECTRICAL SPECIFICATIONS DATA BOOK v1.0 March 1997 Figure 6-7. Synchronous Write Cycle Timing March 1997 DATA BOOK v1.0 ELECTRICAL SPECIFICATIONS 145 Figure 6-8. Synchronous Service Acknowledge Cycle Timing 146 ELECTRICAL SPECIFICATIONS DATA BOOK v1.0 March 1997 ### 6.4.4 Parallel Port Timing Specifications Refer to Figures 6-9 and 6-10 for identification of reference numbers in the following table. Note that the functions of PACK* and PSTROBE* are opposite depending on the direction of data movement, however the directions of PSTROBE* and PACK* do not change. The PACK* Signal on the CL-CD1400 is always an input, and the PSTROBE* is always an output. The apparent function is changed by the external signals they are connected to and the direction of data movement. The tables below use the CL-CD1400 pin names for the signals. The following table shows the timing specifications for the parallel port when it is programmed in Transmit Mode (Receive Mode is on the following page). The PSTROBE* Output provides the data strobe function and the PACK* Input is connected to the acknowledge signal from the receiving device. ### **Transmit Timing** (see Figure 6-9) | Ref. # | Fig. | Parameter | MIN | MAX | Unit | |------------------|------|---|-----------------------|---|------| | t _P 1 | 6-9 | Setup time, PD[7:0] to PSTROBE* falling edge | 2T _{CLK} *2 | | , | | t _P 2 | 6-9 | PACK* rising edge to PSTROBE* falling edge ⁵ | | 2T _{CLK} *350 | | | t _P 3 | 6-9 | PSTROBE* pulse width ¹ | 2T _{CLK} | 2T _{CLK} *32 | | | t _P 4 | 6-9 | PACK* pulse width² | 250 | *************************************** | ns | | t _p 5 | 6-9 | PSTROBE* to PACK* time-out ⁵ | 2T _{CLK} *10 | | | #### 6.4.4 Parallel Port Timing Specifications (cont.) The following table shows the timing specifications for the parallel port when it is programmed in the Receive Mode. The transmitting device connects its strobe output to the CL-CD1400 PACK* Input and its acknowledge input to the CL-CD1400 PSTROBE* Output. ### Receive Timing (see Figure 6-10.) | Ref. # | Fig. | Parameter | MIN | MAX | Unit | |-------------------|------|--|-----------------------|-----------------------|------| | t _P 6 | 6-10 | Setup time, PD[7:0] to PACK* rising edge | 15 | | ns | | t _P 7 | 6-10 | Hold time, PD[7:0] after PACK* rising edge | 20 | | ns | | t _P 8 | 6-10 | PSTROBE* pulse width ¹ (ACK function) | 2T _{CLK} | 2T _{CLK} *32 | | | t _P 9 | 6-10 | PACK* to PSTROBE* time-out ³ | | 2T _{CLK} *15 | | | t _P 10 | 6-10 | PACK* pulse width ² (STROBE function) | 250 | | ns | | t _P 11 | 6-10 | PACK* falling edge to PBUSY rising edge | | 30 | ns | | t _P 12 | 6-10 | PSTROBE* falling edge to PACK* falling edge ³ | 2T _{CLK} *10 | | | | t _P 13 | 6-10 | PSTROBE* rising edge to PBUSY falling edge | | 30 | ns | #### NOTES: - 1) The width of the PSTROBE* pulse is set by the programmed value in the TBPR
Register and will be equal to the system clock (CLK) divided by two, multiplied by the binary value continued in the least significant five (5) bits. The range of values is 1 to 32 (1 to 1F hex). - 2) For highest performance, the RCOR/RBPR Register pair should be programmed for a baud rate whose half-bit time is slightly greater than the expected length of the STROBE pulse width (see Section 3 for detailed parallel port programming information. - 3) This parameter is guaranteed by design but cannot be measured by ATE. 149 Figure 6-9. Parallel Port Transmit Timing **NOTE**: PBUSY is optional when the parallel port is operating in the Transmit Mode. The CL-CD1400 will not activate PSTROBE* to begin the next data transaction until the receiver has acknowledged the previous transaction via the PACK* Signal; PBUSY is not used as a flow control signal in Transmit Mode. Figure 6-10. Parallel Port Receive Timing March 1997 DATA BOOK v1.0 ELECTRICAL SPECIFICATIONS Notes PAGE(S) INTENTIONALLY BLANK # 7. PACKAGE SPECIFICATIONS ### 7.1 100-Pin PQFP (JEDEC) Package #### NOTES: - 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter. - 2) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information. March 1997 DATA BOOK v1.0 **PACKAGE SPECIFICATIONS** Notes # PAGE(S) INTENTIONALLY BLANK # 8. ORDERING INFORMATION March 1997 [†] Contact Cirrus Logic Inc. for up-to-date information on revisions. ### 8.1 Pin Diagram — 100-Pin PQFP NOTE: N/C means no connection (make no connections to these pins). # 9. QUICK REFERENCE # 9.1 CL-CD1400 Register Map ### 9.1.1 Global Registers | Symbol | Register Name | Access | A[6:0] | Default
Value | Hex
Address | Page | | |--------|-------------------------------|--------|----------|------------------|----------------|------|--| | GFRCR | Global Firmware Revision Code | R/W | 100 0000 | x'48 | 40 | 83 | | | CAR | Channel Access | R/W | 110 1000 | x,C0 | 68 | 84 | | | GCR | Global Configuration | R/W | 100 1011 | x'00 | 4B | 85 | | | SVRR | Service Request | R | 110 0111 | x'00 | 67 | 86 | | | RICR | Receive Interrupting Channel | R/W | 100 0100 | x'00 | 44 | 87 | | | TICR | Transmit Interrupting Channel | R/W | 100 0101 | x'00 | 45 | 87 | | | MICR | Modem Interrupting Channel | R/W | 100 0110 | x'00 | 46 | 89 | | | RIR | Receive Interrupt | R/W | 110 1011 | x'18 | 6B | 89 | | | TIR | Transmit Interrupt | R/W | 110 1010 | x'10 | 6A | 89 | | | MIR | Modem Interrupt | R/W | 110 1001 | x'08 | 69 | 89 | | | PPR | Prescaler Period | R/W | 111 1110 | x'FF | 7E | 91 | | ### 9.1.2 Virtual Registers | Symbol | Register Name | Access | A[6:0] | Default
Value | Hex
Address | Page | | |--------|---------------------------|--------|----------|------------------|----------------|------|--| | RIVR | Receive Interrupt Vector | R | 100 0011 | x'00 | 43 | 93 | | | TIVR | Transmit Interrupt Vector | R | 100 0010 | x'00 | 42 | 93 | | | MIVR | Modem Interrupt Vector | R | 100 0001 | x'00 | 41 | 93 | | | TDR | Transmit Data | W | 110 0011 | x'00 | 63 | 95 | | | RDSR | Receive Data/Status | R | 110 0010 | x'00 | 62 | 96 | | | MISR | Modem Interrupt Status | R | 100 1100 | x'00 | 4C | 98 | | | EOSRR | End Of Service Request | w | 110 0000 | x'00 | 60 | 99 | | **NOTE**: The page numbers shown in these tables indicate the page where the detailed description of the register may be found. March 1997 DATA BOOK v1.0 QUICK REFERENCE # 9.1.3 Channel Registers | Symbol | Register Name | Access | A[6:0] | Default
Value | Hex
Address | Page | |--------|-------------------------------|--------|---------|------------------|----------------|------| | LIVR | Local Interrupt Vector | R/W | 0011000 | x'00 | 18 | 100 | | CCR | Channel Command | R/W | 0000101 | x'00 | 05 | 101 | | SRER | Service Request Enable | R/W | 0000110 | x'00 | 06 | 106 | | COR1 | Channel Option 1 | R/W | 0001000 | x'00 | 08 | 107 | | COR2 | Channel Option 2 | R/W | 0001001 | x'00 | 09 | 109 | | COR3 | Channel Option 3 | R/W | 0001010 | x'00 | 0A | 110 | | COR4 | Channel Option 4 | R/W | 0011110 | x'00 | 1E | 113 | | COR5 | Channel Option 5 | R/W | 0011111 | x'00 | 1F | 115 | | CCSR | Channel Control Status | R | 0001011 | x'00 | 0B | 116 | | RDCR | Received Data Count | R | 0001110 | x'00 | 0E | 118 | | SCHR1 | Special Character 1 | R/W | 0011010 | x'00 | 1A | 120 | | SCHR2 | Special Character 2 | R/W | 0011011 | x'00 | 1B | 120 | | SCHR3 | Special Character 3 | R/W | 0011100 | x'00 | 1C | 120 | | SCHR4 | Special Character 4 | R/W | 0011101 | x'00 | 1D | 121 | | SCRL | Special Character Range, Low | R/W | 0100010 | x'00 | 22 | 122 | | SCRH | Special Character Range, High | R/W | 0100011 | x'00 | 23 | 122 | | LNC | LNext Character | R/W | 0100100 | x'00 | 24 | 123 | | MCOR1 | Modem Change Option 1 | R/W | 0010101 | x'00 | 15 | 124 | | MCOR2 | Modem Change Option 2 | R/W | 0010110 | x'00 | 16 | 126 | | RTPR | Receive Time-out Period | R/W | 0100001 | x'00 | 21 | 127 | | MSVR1 | Modem Signal Value 1 | R/W | 1101100 | x'00 | 6C | 128 | | MSVR2 | Modem Signal Value 2 | R/W | 1101101 | x'00 | 6D | 128 | | PSVR | Printer Signal Value | R/W | 1101111 | x'08 | 6F | 129 | | RBPR | Receive Baud Rate Period | R/W | 1111000 | x'41 | 78 | 130 | | RCOR | Receive Clock Option | R/W | 1111100 | x'01 | 7C | 131 | | TBPR | Transmit Baud Rate Period | R/W | 1110010 | x'41 | 72 | 132 | | TCOR | Transmit Clock Option | R/W | 1110110 | x'81 | 76 | 133 | ### 9.2 Bit Definitions | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | |-----------------|------------------------|---------|---------|----------|-----------|----------|----------|---------|--| | Global Register | rs | | | | | | | | | | GFRCR | Firmware Revision Code | | | | | | | | | | CAR | poll | poll | poll | poll | poli | 0 | C1 | C0 | | | GCR | P/S* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | SVRR | 0 | 0 | 0 | 0 | 0 | SRM | SRT | SRR | | | RICR | Х | X | Х | Х | C1 | C0 | Х | х | | | TICR | Х | Х | Х | X | C1 | C0 | Х | Х | | | MICR | Х | Х | Х | Х | C1 | C0 | Х | Х | | | RIR | rxireq | rbusy | runfair | 1 | 1 | 0 | ch[1] | ch[0] | | | TIR | txireq | tbusy | tunfair | 1 | 0 | 0 | ch[1] | ch[0] | | | MIR | mdireq | mbusy | munfair | 0 | 1 | 0 | ch[1] | ch[0] | | | PPR | | | ····· | Binary | Value | <u>'</u> | <u>'</u> | | | | Virtual Registe | rs | | | | | | | | | | RIVR | Х | Х | Х | Х | Х | IT2 | IT1 | iT0 | | | TIVR | X | Х | Х | Х | Х | IT2 | IT1 | IT0 | | | MIVR | Х | Х | Х | Х | Х | IT2 | IT1 | IT0 | | | TDR | | | | Transmit | Character | | | | | | RDSR(Data) | | | | Received | Character | | | | | | RDSR(Status) | Time-out | SC Det2 | SC Det1 | SC Det0 | Break | PE | FE | OE | | | MISR | DSRch | CTSch | Rich | CDch | 0 | 0 | 0 | 0 | | | EOSRR | Х | Х | Х | Х | Х | Х | Х | Х | | | Channel Regis | ters | | | | | | | | | | LIVR | Х | Х | Х | Х | Х | IT2 | IT1 | IT0 | | | CCR | Res Chan | COR Chg | Send SC | Chan Ctl | D3 | D2 | D1 | D0 | | | CCR(Format1) | Res Chan | 0 | 0 | 0 | 0 | 0 | FTF | Туре | | | CCR(Format2) | 0 | COR Chg | 0 | 0 | COR3 | COR2 | COR1 | 0 | | | CCR(Format3) | 0 | 0 | Send SC | 0 | 0 | SSPC2 | SSPC1 | SSPC0 | | | CCR(Format4) | 0 | 0 | 0 | Chan Ctl | XMT EN | XMT DIS | RCV EN | RCV DIS | | | SRER | MdmCh | 0 | 0 | RxData | 0 | TxRdy | TxMpty | NNDT | | | COR1 | Parity | ParM1 | ParM0 | Ignore | Stop1 | Stop0 | ChL1 | ChL0 | | | COR2 | IXM | TxIBE | ETC | LLM | RLM | RtsAO | CtsAE | DsrAE | | | COR3(Serial) | SCDRNG | SCD34 | FCT | SCD12 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | | | COR3(Parallel) | 0 | 0 | 0 | RxTh4 | RxTh3 | RxTh2 | RxTh1 | RxTh0 | | | COR4 | IGNCR | ICRNL | INLCR | IGNBRK | -BRKINT | PEH[2] | PEH[1] | PEH[0] | | | COR5 | ISTRIP | LNE | CMOE | 0 | 0 | EBD | ONLCR | OCRNL | | | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | |-----------------|---------------------------------------|---------------------|---------------------------------------|------------|------------|----------|----------|---------------------------------------|--| | CCSR(Serial) | RxEn | RxFloff | RxFlon | 0 | TxEn | TxFloff | TxFlon | 0 | | | CCSR(Parallel) | RxEn | 0 | 0 | 0 | TxEn | 0 | 0 | 0 | | | RDCR(Serial) | 0 | 0 | 0 | 0 | СТЗ | CT2 | CT1 | СТО | | | RDCR(Parallel) | 0 | 0 | 0 | CT4 | CT3 | CT2 | CT1 | СТО | | | SCHR1 | | | | Special C | haracter 1 | , | L | · I | | | SCHR2 | | | | Special C | haracter 2 | | | | | | SCHR3 | | | · · · · · · · · · · · · · · · · · · · | Special C | haracter 3 | | | | | | SCHR4 | | Special Character 4 | | | | | | | | | SCRL | Character Range Low | | | | | | | | | | SCRH | Character Range High | | | | | | | | | | LNC | | | | LNext C | haracter | | | · · · · · · · · · · · · · · · · · · · | | | MCOR1(Serial) | DSRzd | CTSzd | Rizd | CDzd | DTRth3 | DTRth2 | DTRth1 | DTRth0 | | | MCOR1(Parallel) | PBUSYzd | PSLCTzd | PPEzd | PERRORzd | 0 | 0 | 0 | 0 | | | MCOR2(Serial) | DSRod | CTSod | Rlod | CDod | 0 | 0 | 0 | 0 | | | MCOR2(Parallel) | PBUSYod | PSLCTod | PPEod | PERRORod | 0 | 0 | 0 | 0 | | | RTPR | | | | Binary Co | ount Value | <u> </u> | <u>L</u> | | | | MSVR1 | DSR | CTS | RI | CD | PSTROBE*† | 0 | 0 | RTS | | | MSVR2 | DSR | CTS | RI | CD | PSTROBE*† | 0 | DTR | 0 | | | PSVR | PBUSY | PSLCT* | PPE* | PERROR* | PACK* | PAUTOFD* | PINIT* | PSLIN* | | | RBPR | | | | Binary Div | isor Value | | | I | | | RCOR | Х | Х | Х | Х | Х | ClkSel2 | ClkSel1 | ClkSel0 | | | TBPR | · · · · · · · · · · · · · · · · · · · | | | Binary Div | isor Value | <u> </u> | <u></u> | I | | | TCOR | Х | Х | Х | Х | Х | ClkSel2 | ClkSel1 | ClkSel0 | | [†] Bit 3 of MSVR1 and MSVR2 show the state of the PSTROBE* output only on Channel 0. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка
более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.