Messrs.					
Product Specification M	Model	Model: MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	Widder.		В	March.13, 09	1/33

LIQUID CRYSTAL DISPLAY MODULE MODEL: MTF-T057AMSLP-V4 Customer's No.:

Microtips Technology Inc. 12F. No.31 Lane 169, Kang Ning St., His-Chih, Taipei Hsien, Taiwan FAX: 886-2-26958625

Approved and Checked by

Approved by	Check	Made by	
微端	微端	微端	微端
2009/03/13	2009/03/13	2009/03/13	2009/03/13
李剛	蔡宜夢	陳世文	許瓊窈

Messrs.					
Product Specification M	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	WIUUCI.	MIF-IUS/AMSLP-V4	В	March.13, 09	2/33

Revise Records

Rev.	Date	Contents	Written	Approved
А	2008/06/18	Specification released	Sherry Chen	Steele Lee
В	2009/03/13	See Note2.	Jill Hsu	Steele Lee

Special Notes

Note1.	The LCD module is compliant with RoHS.
Note2.	Modified power circuit to eliminate flicker. (IC: AIC1896)
Note3.	
Note4.	
Note5.	

Messrs.					
Product Specification M	Madal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	widdei.		В	March.13, 09	3/33

Contents

1.	GEN	ERAL DESCRIPTION AND FEATURES	5
	1.1	Features	5
	1.2	General Specifications	5
2.	INPU	JT TERMINAL PIN ASSIGNMENT	6
	2.1	Pin Assignment	6
	2.2	Back-light Unit (BLU)	7
	2.3	Touch Panel Pin Assignment	7
3.		CK DIAGRAM	
4.		ICAL CHARACTERISTICS	
5.	ABS	OLUTE MAXIMUM RATINGS	.12
	5.1	Absolute Ratings of Environment	.12
	5.2	Electrical Absolute Maximum Rating	.13
6.	ELE	CTRICAL CHARACTERISTICS	.14
	6.1	DC Electrical Characteristics	.14
	6.2	AC Timing Characteristic of The LCD	
7.		KLIGHT SPECIFICATIONS	
8.		LAYED COLOR AND INPUT DATA	
9.	INSP	ECTION PROVISION	.20
	9.1	Purpose	.20
	9.2	Applicable Scope	.20
	9.3	Technical Terms	.20
	9.4	Outgoing Inspection	.20
	9.5	Specification for qualitycheck	
10	. REL	IABILITY CONDITION	.28
	10.1	LCM Reliability Test	.28
	10.2	Touch panel Reliability	.28
11	. PRE	CAUTIONS	.29
	11.1	Operation	.29
	11.2	Safety	.29
	11.3	Handling	.29
	11.4	Static electricity	.31
	11.5	Storage	.31

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Froduct Specification	Model.		В	March.13, 09	4 / 33
11.6 Cleaning					
117 Waste					31

11.7 Waste	
12. WARRANTY	
13. DIMENSIONAL OUTLINES	

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	Model.	MIF-105/AMSLP-V4	В	March.13, 09	5/33

1. GENERAL DESCRIPTION AND FEATURES

MTF-T057AMSLP-V4 is a TM (Transmissive) type color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT-LCD module, a driver circuit and a back-light unit. The resolution of a 5.7" contains 320RGB×240 dots and can display up to 262K colors. The following table described the features of MTF-T057AMSLP-V4.

- 1.1 Features
 - Transmissive type with LED back-light.
 - TN (Twisted Nematic) mode.
 - Digital RGB (6bits/color) Data Transfer
 - Backlight-driving DC/AC inverter is not built in this module.
 - clock setting, like sharp compatible (data will be stable on the falling edge)
- 1.2 General Specifications

Item	Specification		
Screen Size	5.7 inches diagonal		
Display Resolution	320 x RGB x 240		
Pixel Pitch	0.36 (H) ×0.36 (V)		
Active Area	115.2 (W) x 86.4 (H)		
Outline Dimension	144.0 (W) x 104.6 (H) x 11.0 (T), without FPCB tail and connector cable	mm	
Weight	175g (MTF-T057AMSLN-V4)		
Weight	212g (MTF-T057AMSLP-V4)		
Display Mode	Normally White/Transmissive/Wide view		
Pixel Arrangement	RGB-Vertical Stripe		
Surface Treatment	Anti-Glare(3H)		
Viewing Direction	6 o'clock		
Input Interface	Digital RGB (6bits/color) Data Transfer		
TFT Driver	Source: Himax HX8218A, Gate: Himax HX8615A		
Color Garmut	NTSC 58%		

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	Model.	WIIF-IUS/AMISLP-V4	В	March.13, 09	6/33

2. INPUT TERMINAL PIN ASSIGNMENT

2.1 Pin Assignment

Pin No.	Symbol	I/O	Function	Remark
1	DGND		GND	
2	DCLK	Ι	Clock signal for sampling each data signal	
3	Hsync	Ι	Horizontal synchronous signal (Negative)	
4	Vsync	Ι	Vertical synchronous signal (Negative)	
5	GND	Ι	GND	
6	R0	Ι	RED data signal (LSB)	
7	R1	Ι	RED data signal	
8	R2	Ι	RED data signal	
9	R3	Ι	RED data signal	
10	R4	Ι	RED data signal	
11	R5	Ι	RED data signal (MSB)	
12	GND		GND	
13	G0	Ι	GREEN data signal (LSB)	
14	G1	Ι	GREEN data signal	
15	G2	Ι	GREEN data signal	
16	G3	Ι	GREEN data signal	
17	G4	Ι	GREEN data signal	
18	G5	Ι	GREEN data signal (MSB)	
19	GND		GND	
20	В0	Ι	BLUE data signal(LSB)	
21	B1	Ι	BLUE data signal	
22	B2	Ι	BLUE data signal	
23	В3	Ι	BLUE data signal	
24	B4	Ι	BLUE data signal	
25	В5	Ι	BLUE data signal(MSB)	
26	GND		GND	
27	DEN	Ι	Signal to settle the horizontal display position (Positive)	Note5-1
28	V _{DD}		+3.3V power supply	
29	V _{DD}		+3.3V power supply	

Messrs.							
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.		
	Model		В	March.13, 09	7/33		

30	LRC	Ι	Horizontal display mode select signal L: Normal H: Left / Right reverse mode	Note5-2
31	UDC	Ι	Vertical display mode select signal H: Normal L: Up / Down reverse mode	Note5-3
32	NC		No Connection	
33	GND	Ι	GND	

Note5-1 The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined. Don't keep ENAB "High" during operation.

Note5-2,3

2.2 Back-light Unit (BLU)

Pin No.	Symbol	Function	Remark
1	LEDA	Power Supply for LED backlight	
2	LEDK	GND for LED backlight	

2.3 Touch Panel Pin Assignment

Pin No.	Designation
1	YU
2	XR
3	YD
4	XL

Messrs.								
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.			
Product Specification			В	March.13, 09	8/33			

3. <u>BLOCK DIAGRAM</u>

Messrs.					
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
			В	March.13, 09	9/33

4. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (1). Measuring equipment: LCD-5000, BM-5A, BM-7, PR-650, EZ-Contrast $(T_0-25^{\circ}C_{-1}L=300mA)$

				-		-	(Ta=25°C)	, I _F =300mA)
	Item	Symbol	Condition	Min	Туре	Max	Unit	Note
Drichtnass	MTF- T057AMSLN-V4	Br	300mA/6.6V	500	550		cd/m ²	Note 1
Brightness	MTF- T057AMSLP-V4	DI	300mA/0.0V	400	440		cd/m ²	Note 1
Decrease tim	2	Tr	θ=0°		15	20	ms	Note 2
Response tim	e	T _f	0-0		35	50	ms	Note 2
Contrast ratio		CR	At optimized viewing angle	150	250			Note 3
	Red	R _X	θ=0° Normal Viewing Angle	0.610	0.640	0.670		- <u></u>
	Keu	R _Y		0.314	0.344	0.374		
	Green	G _X		0.268	0.298	0.328		
Color	Green	G _Y		0.553	0.583	0.613		
Chromaticity	Blue	B _X		0.107	0.137	0.167		
	Diue	B _Y		0.139	0.159	0.179		
	White	Wx		0.282	0.312	0.342		
	white	Wy		0.319	0.349	0.379		
	Han	θ_R			65			
Viewing Ang	gle Hor.	$\theta_{\rm L}$	CR≥10		65		Deemee	Note 4
(6H)	Ver.	$\theta_{\rm B}$	CK≥10		50		Degree	Note 4
	vei.	$\theta_{\rm F}$			65			
LED Life time	25°C	LL	I _F =300mA V _F =6.6V		50k		Hours	Note 5

Note 1: Test Equipment Setup

After stabilizing and leaving the panel alone at a given temperature for 30 min., the measurement should be executed. Measurement should be executed in a stable, windless, and dark room, 30 min. after turning the back light on. This should be measured in the center of screen.

Back-Light current: 300mA Environment condition: 1. Ta=25±2°C 2. Illuminations≤1 lux

Messrs.							
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.		
	widder:	MIF-103/AMSLP-V4	В	March.13, 09	10/33		

Note 2: Definition of response time: Tr and Tf The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Note 3: Definition of contrast ratio:

Contrast Ratio (CR) = Brightness measured when LCD is at "white state" Brightness measured when LCD is at "black state"

MIJJI

Messrs.							
Product Specification	Model	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.		
	Model:		В	March.13, 09	11/33		

Note 4: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

View Angle

Note 5: This is the reference value. The white-LED life time is defined as a time when brightness not to become under 50% of the original value (at Ta=25°C)

Messrs.					
Product Specification	Madalı	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification	Model.		В	March.13, 09	12/33

5. <u>ABSOLUTE MAXIMUM RATINGS</u>

5.1 Absolute Ratings of Environment

If the operating condition exceeds the following absolute maximum ratings, the TFT LCD module may be damaged permanently.

$(Ta=25^{\circ}C, V_{SS}=GND=0)$						
Item	Symbol	Min.	Max.	Unit	Note	
Storage temperature	T _{STG}	-30	80	°C	(1)	
Operating temperature (Ambient temperature)	T _{OPR}	-20	70	°C	(1), (2)	

Note (1) 95 % RH Max. ($40 \degree C \ge Ta$)

Maximum wet-bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

(2) In case of below 0°, the response time of liquid crystal (LC) becomes slower and the color of panel becomes darker than normal one. Level of retardation depends on temperature, because of LC's character

Messrs.					
Product Specification	raduat Spacification Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Fibration	widdel.	WITF-105/AWISEF-V4	В	March.13, 09	13/33

5.2 Electrical Absolute Maximum Rating

(Ta=25°C, V_{SS}=GND=0)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Power Supply Voltage	V _{DD}	-0.3		+7.0	V	Note 1
Permissive input ripple voltage	V _{RF}			100	mVp-p	$V_{DD} = +3.3V$
Input voltage (Low)	V _{IL}	0		$0.3 V_{DD}$	V	Note 2
Input voltage (High)	V _{IH}	$0.7 \ V_{DD}$		+5.5	V	Note 2
Input current (Low)	I _{OL1}			10	μΑ	V _I =0V, Note 2
Innut ourrout (High)	I _{OH1}			10	μΑ	V _I =3.3~5.0V, Note 3
Input current (High)	I _{OH2}			100	μΑ	V _I =3.3~5.0V, Note 4

Note1:

Note2: CLK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, DE, R/L, U/D Note3: CLK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, R/L, U/D Note4: DE

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	Widden.	MIF-103/AMSLP-V4	В	March.13, 09	14 / 33

6. ELECTRICAL CHARACTERISTICS

6.1 DC Electrical Characteristics

(Ta=25±2°C, V_{SS}=GND=0)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Supply Voltage		V_{DD}	3.0	3.3	3.6	V	
Supply Current		I _{DD}	40	50	60	mA	Note 2
Input Voltage for	L Level	V_{IH}	$0.7 V_{DD}$		V_{DD}	V	Note 1
logic	H Level	V _{IL}	0		0.3 V _{DD}	V	

Note1: Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5 Note2: fV =60Hz , Ta=25°C , Display pattern : All Black

Messrs.					
Product Specification	Model	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Fioduct Specification	Model.	WITF-105/AWISEF-V4	В	March.13, 09	15/33

6.2 AC Timing Characteristic of The LCD

SignalParameterSymbolMin.Typ.Max.Unit.RemarkDCLK periodTosc70156156186FrequencyFosc76.4MHzDCLK High plus withTcH778185DCLK Low plus withTcH1278185DCLK Low plus withTgH12185Data setup timeTgH12185Data setup timeTH408ToscHsync periodTH30ToscHsync pulse widthTHF20ToscHsync rising timeTGC18ToscHsync falling timeTGC30018Hsync parke widthTGC312.5THHsync parke widthTvBTvB1135THVsync pulse widthTvBTvB1135THVsync pulse widthTvBTvB246.5THVsync falling timeTvBTvB1135THVsync falling timeTvBTvBTvB700THVsync falling timeTvFTv	6.2.1	Timing Condition							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Signal	Parameter		Symbol	Min.	Тур.	Max.	Unit.	Remark
$\begin{array}{ c c c c c c c c c } \hline DCLK \ High plus width & T_{CH} & & 78 & & ns & \\ \hline DCLK \ Low plus width & T_{CL} & & 78 & & ns & \\ \hline DCLK \ Low plus width & T_{CL} & & 78 & & ns & \\ \hline DCLK \ Low plus width & T_{HD} & 12 & & & ns & \\ \hline Data \ hold time & T_{HD} & 12 & & & ns & \\ \hline Data \ hold time & T_{HB} & 12 & & & ns & \\ \hline Data \ hold time & T_{HB} & 5 & 30 & & T_{OSC} & \\ \hline Hsync pulse width & T_{HS} & 5 & 30 & & T_{OSC} & \\ \hline Hsync pulse width & T_{HB} & & 38 & & T_{OSC} & \\ \hline Hsync rising time & T_{Cr} & & & 700 & ns & \\ \hline Hsync rising time & T_{Cr} & & & 300 & ns & \\ \hline Hsync falling time & T_{Cr} & & & 312.5 & & T_{H} & \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Display \ Period & T_{VD} & & 240 & & T_{H} & \\ \hline Vsync \ Pront \ Pach & T_{VF} & & & 700 & ns & \\ \hline Vsync \ falling time & T_{Vr} & & & 1.5 & \mu s & \\ \hline Vsync \ falling time \ T_{Vr} & T_{Vr} & & & 1.5 & \mu s & \\ \hline Vsync \ falling time \ F_{VT} & T_{HVO} & 1 & & T_{OSC} & \\ \hline Sync \ falling time \ for \ evert \ field & T_{VSE} & & 18 & & T_{H} & \\ \hline Hsync \ DEN \ \hline \hline PAL & T_{VSE} & & 266 & & T_{H} & \\ \hline \hline Hsync \ DEN \ \hline \hline T_{HVO} \ T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \hline \end{array}$		DCLK period		T _{OSC}		156		ns	
$ \begin{array}{ c c c c c } \hline \mbox{DCLK High plus width} & T_{CH} & & 78 & & ns & \\ \hline \mbox{DCLK Low plus width} & T_{CL} & & 78 & & ns & \\ \hline \mbox{DCLK Low plus width} & T_{CL} & & 78 & & ns & \\ \hline \mbox{Data setup time} & T_{SU} & 12 & & & ns & \\ \hline \mbox{Data hold time} & T_{HD} & 12 & & & ns & \\ \hline \mbox{Data hold time} & T_{HD} & 12 & & & ns & \\ \hline \mbox{Data hold time} & T_{HD} & 12 & & & ns & \\ \hline \mbox{Hsyne pulse width} & T_{HB} & & 408 & & T_{OSC} & \\ \hline \mbox{Hsyne pulse width} & T_{HB} & & 38 & & T_{OSC} & \\ \hline \mbox{Hsyne rising time} & T_{CI} & & 38 & & T_{OSC} & \\ \hline \mbox{Hsyne rising time} & T_{CI} & & & 300 & ns & \\ \hline \mbox{Hsyne falling time} & T_{CI} & & & 300 & ns & \\ \hline \mbox{Hsyne pulse width} & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline \mbox{Hsyne pulse width} & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline \mbox{Vsyne pulse width} & T_{VB} & & 15 & & T_{H} & \\ \hline \mbox{Vsyne pulse width} & T_{VD} & & 240 & & T_{H} & \\ \hline \mbox{Usyne priod} & \hline \mbox{NTSC} & T_{VF} & & 4.5 & & T_{H} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{VF} & & 4.5 & & T_{H} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{VF} & & 4.5 & & T_{H} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HVO} & 1 & & T_{OSC} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HVO} & 1 & & & T_{OSC} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HVO} & 1 & & & T_{OSC} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HVO} & 1 & & & T_{OSC} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HVE} & & 18 & & T_{H} & \\ \hline \mbox{Vsyne falling to HSv-r} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \mbox{Hsyne-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \mbox{Hsyne-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \mbox{Hsyne-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \mbox{Hsyne-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \mbox{Hsyne-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline Hsyne-DEN ti$	DCLK	Frequency		F _{OSC}		6.4		MHz	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DCLK	DCLK High plus w	ridth	T _{CH}		78		ns	
$\begin{array}{ c c c c c c c } \mbox{DATA} & \hline T_{HS} & T_{HD} & 12 & & & ns & \\ \mbox{Hsync period} & T_{H} & & 408 & & T_{OSC} & \\ \mbox{Hsync pulse widh} & T_{HS} & 5 & 30 & & T_{OSC} & \\ \mbox{Back-Parch} & T_{HB} & & 38 & & T_{OSC} & \\ \mbox{Back-Parch} & T_{HF} & & 20 & & T_{OSC} & \\ \mbox{Hsync rising time} & T_{Cr} & & & 700 & ns & \\ \mbox{Hsync rising time} & T_{Cr} & & & 300 & ns & \\ \mbox{Hsync falling time} & T_{Cr} & & & 300 & ns & \\ \mbox{Hsync period} & \underline{NTSC} & & & 312.5 & & T_{H} & \\ \mbox{Vsync pulse width} & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \mbox{Vsync pulse width} & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \mbox{Back-Porch} & \underline{NTSC} & & & 312.5 & & T_{H} & \\ \mbox{Display Period} & \underline{NTSC} & T_{VB} & & 15 & & T_{H} & \\ \mbox{Display Period} & T_{VD} & & 240 & & T_{H} & \\ \mbox{Display Period} & \underline{NTSC} & T_{VF} & & 4.5 & & T_{H} & \\ \mbox{Vsync falling time} & T_{VF} & T_{VF} & & 4.5 & & T_{H} & \\ \mbox{Vsync falling time} & T_{VF} & & & 700 & ns & \\ \mbox{Vsync falling time} & T_{VF} & & & 700 & ns & \\ \mbox{Vsync falling time} & T_{VF} & & & 700 & ns & \\ \mbox{Vsync falling to H}_{SVC} & T_{HVO} & 1 & & T_{OSC} & \\ \mbox{Vsync falling time for odd field} & T_{HVO} & 1 & & T_{OSC} & \\ \mbox{Vsync falling to H}_{SVC} & T_{HVE} & T_{HVE} & 1 & & T_{OSC} & \\ \mbox{Vsync-DEN time} & \hline \mbox{NTSC} & T_{VSE} & & 18 & & T_{H} & \\ \mbox{Vsync-DEN time} & \hline \mbox{Vsync-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \mbox{Vsync-DEN time} & T_{HE} & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ Vs$		DCLK Low plus wi		T _{CL}		78		ns	
$\begin{tabular}{ c c c c c c c c c c c } \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Data setup time		T_{SU}	12			ns	
$ Hsyne pulse width \ \ \ \ \ \ \ \ \ \ \ \ \ $	DATA	Data hold time		T_{HD}	12			ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Hsync period		$T_{\rm H}$		408		T _{OSC}	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hsync pulse width		$T_{\rm HS}$	5	30		T _{OSC}	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Harmo	Back-Parch		T_{HB}		38		T _{OSC}	
	risync	Front-Parch		T_{HF}		20		T _{OSC}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Hsync rising time		T _{Cr}			700	ns	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hsync falling time		T _{Cf}			300	ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Vsync period	NTSC			262.5		T _H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			PAL			312.5		T _H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Vsync pulse width		T_{VS}	1	3	5	T _H	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Pools Dorah	NTSC	т		15		T _H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dack-Polch	PAL	1_{VB}		23		T _H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Display Period		T_{VD}		240		T _H	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vsvnc	Enout Dough	NTSC	т		4.5		T _H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	Front Porch	PAL	$1_{\rm VF}$		46.5		T _H	
$\begin{array}{c c c c c c c c c } \hline V sync falling to Hsync rising time for odd field & T_{HVO} & 1 & & T_{OSC} & \\ \hline V sync falling to Hsync field & T_{HVE} & 1 & & T_{OSC} & \\ \hline V sync falling time for even field & T_{HVE} & 1 & & T_{OSC} & \\ \hline V sync-DEN time & NTSC & T_{VSE} & & 18 & & T_{H} & \\ \hline PAL & T_{VSE} & & 26 & & T_{H} & \\ \hline H sync-DEN time & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \end{array}$		Vsync rising time		T _{Vr}			700	ns	
$\frac{\text{rising time for odd field}}{\text{Vsync falling to Hsync}} \frac{\text{I}_{\text{HVO}}}{\text{falling time for even field}} \frac{\text{I}_{\text{HVO}}}{\text{T}_{\text{HVE}}} \frac{1}{1} \frac{\text{I}_{\text{C}}}{\text{I}_{\text{C}}} \frac{\text{I}_{\text{OSC}}}{\text{I}_{\text{OSC}}} \frac{\text{I}_{\text{C}}}{\text{I}_{\text{OSC}}} \frac{1}{\text{I}_{\text{OSC}}} \frac{1}{I$		Vsync falling time		$T_{\rm Vf}$			1.5	μs	
$\frac{\text{falling time for even field}}{\text{falling time for even field}} = \frac{T_{\text{HVE}}}{T_{\text{HVE}}} = \frac{1}{1} $				T _{HVO}	1			T _{OSC}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Vsync falling to Hsync		1			T _{OSC}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			NTSC	T _{VSE}		18		T _H	
Hsync-DEN time T_{HE} 36 68 88 T_{OSC}	DEM	v sync-DEN time	PAL	T _{VSE}		26		T _H	
DEN plus width TEP 320 Tosc	DEN	Hsync-DEN time		T _{HE}	36	68	88	T _{OSC}	
		DEN plus width		T _{EP}		320		T _{OSC}	

Note: If DEN is fixed to low, the SYNC mode is used. Otherwise DE mode is used. When SYNC mode is used, 1st data start from 68th CLK after Hsync falling

Messrs.					
Product Specification Model:	MTF-T057AMSLP-V4	Rev. No.	Rev. No. Issued Date. Pag		
	Model.	MIF-103/AMSLF-V4	В	March.13, 09	16/33

6.2.2 Horizontal Display Timing

6.2.3 Vertical Display Timing

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification N	Widdel.	WIT-105/AWSEF-V4	B	March.13, 09	17/33

6.2.4 Hsync and Vsyne Timing

Messrs.							
Product Specification M	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.			
	Widdel.	WIT-105/AWSEF-V4	В	March.13, 09	18/33		

7. BACKLIGHT SPECIFICATIONS

7.1 Absolute Maximum Ratings

				Ta=25°C
Item	Symbol	Maximum rating	Unit	Note
Peak Forward Current	I_{FM}	450	mA	(1)
Reverse Voltage	V_R	10	V	
Power Dissipation	P _D	3300	mW	
Operating Temperature	T _{OP}	-20~70	°C	
Storage Temperature	T _{ST}	-30~80	°C	

Note (1): Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded.

Functional operation should be restricted to the conditions described under normal operating conditions.

7.2 Electrical/Operating Characteristics

						$Ta = 25^{\circ}C$
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
Forward Voltage	\mathbf{V}_{F}		6.6		V	
LED Current	$I_{\rm F}$		300		mA	T 0.5 %
Uniformity*		80			%	Ta=25℃ IF=300mA
Chromaticity Coordinates	Х	0.26	0.29	0.32		
	Y	0.26	0.29	0.32		

*: Uniformity = (Min./Max.) x 100%

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification M	widdei.	MIT-103/AMSLP-V4	В	March.13, 09	19/33

8. DISPLAYED COLOR AND INPUT DATA

	Color									Data	Signal								
	& Gray							r –	r	r	-								
	Scale	R	R	R	R	R	R	G5	G4	G3	G2	G1	G0	В	В	В	В	В	В
		5	4	3	2	1	0							5	4	3	2	1	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(61)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Keu	Red(31)	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:
	Red(1)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(61)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
6	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	:	:	:	:
Green	Green(31)	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(1)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	 Blue(31)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Froduct Specification	Widdel.	WIT-105/AWSEF-V4	В	March.13, 09	20/33

9. INSPECTION PROVISION

9.1 Purpose

The Microtips inspection provision provides outgoing inspection provision and its expected quality levelbased on our outgoing inspection of Microtips LCD produces.

9.2 Applicable Scope

The Microtip inspection provision is applicable to the arrangement in regard to outgoing inspection and quality assurance after outgoing.

9.3 Technical Terms

9.3.1 Microtips Technical Terms

- 9.4 Outgoing Inspection
 - 9.4.1 Inspection Method

MIL-STD-105E Level II Regular inspection

9.4.2 Inspection Standard

	Item			Remarks
		Opens	0.4	faults which
	Dots	Shorts		substantially
Maine Defect		Erroneous operation		lower the
Major Defect	Saldar apparance	Shorts		practicality and
	Solder appearance	Loose		the initial purpose
	Cracks	Display surface cracks		difficult to achieve

Messrs.					
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Floduct Specification	widdel.	WITF-105/AWISEF-V4	В	March.13, 09	21/33

	Dimensions	External from Dimensions	0.4	
	Inside the glass	Black spots	0.65	faults which
		Scratches, foreign		appear to pose
	Polarizing plate	Matter, air bubbles,		almost no
Minor Defect		and peeling		obstacle to the
Minor Defect	Dots	Pinhole, deformation		practicality,
	Color tone	Color unevenness		effective use,
	Saldar apparance	Cold solder		and operation.
	Solder appearance	Solder projections		

9.4.3 Inspection Provisions *Viewing Area Definition

Fig. 1

*Inspection place to be 500 to 1000 lux illuminance uniformly without glaring. The distance between luminous source(daylight fluorescent lamp and cool white fluorescentlamp) and sample to be 30 cm to 50 cm.

Messrs.					
Draduat Specification	Model	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification	Model.	WITF-105/AWBLF-V4	В	March.13, 09	22/33

*Test and measurement are performed under the following conditions, unless otherwise specified.

Temperature	$20 \pm 15^{\circ}C$
Humidity	$65 \pm 20\%$ R.H.
Pressure	860~1060hPa(mmbar)
In case of doubtful judgment, it	is performed under the following conditions.
Temperature	$20 \pm 2^{\circ}C$
Humidity	$65 \pm 5\%$ R.H.
Pressure	860~1060hPa(mmbar)

9.5 Specification for qualitycheck

9.5.1 Electrical characteristics :

NO.	Item	Criterion
1	Non operational	Fail
2	Miss operating	Fail
3	Contrast irregular	Fail
4	Response time	Within Specified value

9.5.2 Components soldering :

Should be no defective soldering such as shorting, loose terminal cold solder, peeling of printed circuit board pattern, improper mounting position, etc.

9.5.3 Inspection Standard for TFT panel

The environmental condition of inspection :

The environmental condition and visual inspection shall be conducted as below.

- (1) Ambient temperature : $25\pm5^{\circ}C$
- (2) Humidity : 25~75% RH
- (3) External appearance inspection shall be conducted by using a single 20W fluorescent lamp or equivalent illumination.
- (4) Visual inspection on the operation condition for cosmetic shall be conducted at the distance 30cm or more between the LCD panels and eyes of inspector. The viewing angle shall be 90 degree to the front surface of display panel.
- (5) Ambient Illumination: 300~500 Lux for external appearance inspection.
- (6) Ambient Illumination: 100~200 Lux for light on inspection.

Messrs.					
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Floduct Specification	Model.	MIF-105/AMSLF-V4	В	March.13, 09	23/33

9.5.4 Inspection Criteria

- (1) Definition of dot defect induced from the panel inside
 - a) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
 - b) Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.
 - c) Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue picture.
 - d) 2 dot adjacent = 1 pair = 2 dots

2 dot adjacent

(2) Display Inspection

2 dot adjacent (vertical)

2 dot adjacent (slant)

NO.		Item Acceptable C						
		Random Random		$N \leq 2$				
		Bright Dot	2 dots adjacent	$N \leq 0$				
	Dot defect	Dark Dat	Random	$N \leq 3$				
1		Dark Dot 2 dots		$N \leq 1$				
		Total bright and dark	$N \leq 4$					
	Functional fail	failure (V-line/ H-line/Cross line etc.) Not allow						
	Mura	-	it's OK if mura is slight visible through 6% ND filter. (Judged by limit sample if it is necessary)					
2	Newton ring	Orbicular of interfere	Orbicular of interference fringes is not allowed in the optimum					
2	(touch panel)	contrast within the active area under viewing angle.						
2	Distance	Minimum Distance	Between Bright Dots	$L \ge 5mm$				
3	Distance	Minimum Distance	e Between Dark Dots	$L \ge 5mm$				

Messrs.					
Product Specification	Madal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Froduct Specification	Model.	WIT-105/AWSEF-V4	В	March.13, 09	24/33

(3) Appearance inspection

NO.	Item	Standards
1	Panel Crack	Not allow. It is shown in Fig.1.
2	Broken CF Non -lead Side of TFT	The broken in the area of W > 2mm is ignored, L is ignored. It is shown in Fig.2.
3	Broken Lead Side of TFT	FPC lead, electrical line or alignment mark can't be damaged. It is shown in Fig.3.
4	Broken Corner of TFT at Lead Side	FPC lead. electrical line or alignment mark can't be damaged. It is shown in Fig.4.
5	Burr of TFT / CF Edge	The distance of burr from the edge of TFT / CF, W \leq 0.3mm. It is shown in Fig.5.
6	Foreign Black / White/Bright Spot	(1) 0.15 < D \leq 0.5 mm, N \leq 4 ; (2) D \leq 0.15mm, Ignore. It is shown in Fig.6.
	E	(1) 0.05 <w <math="" display="inline">\leq 0.1 mm, 0.3<l <math="" display="inline">\leq 2 mm, N \leq 4.</l></w>
7	Foreign Black / White/Bright Line	(2) W \leq 0.05mm and L \leq 0.3mm Ignore.
	This Digit Line	It is shown in Fig.7.
8	Color irregular	Not remarkable color irregular.

Fig.5.

D=(a+b)/2

Fig.7.

Notes

1. W : Width

- 2. L : Length
- 3. D : Average Diameter
- 4. N : Count
- 5. All the angle of the broken must be larger than 90° . It is shown in Fig.8. (R>90°)

Messrs.					
Product Specification	Madal	I: MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
	Model.		В	March.13, 09	25/33

9.5.5 External Appearance Defect

NO.	Item			Criterion		
1	Black spots, foreign matter, and white spots (Including light leakage due to pinholes of polarizing plates,	Spo	Spots			
	etc.)		Average Diameter (mm):D			
			D≤0.2	Ign	ore	
			$0.2 < D \le 0.3$	5	;	
			$0.3 < D \le 0.4$	2	2	
			0.4 <d< td=""><td>(</td><td>)</td></d<>	()	
			Number of total pi	eces is set to w	ithin 5 pieces.	
2	Line	Line	Note that when the are not to be conce diameter = (Long o	entrated. Set as:	Average	
2	Lane				Number of	
			Width(mm):W	Length(mm): L	Number of pieces permitted	
			W≦0.03	Ignore	Ignore	
			$0.03 {<} W {\leq} 0.08$	$L \leq 4$	2	
			$0.08 < W \le 0.1$	$L \leq 1$	1	
			Object exceeding 0.1mm follow the standards of the spots form.			
			Diameter of spots = Length +Width 2			
			or more, they			

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
i iouuci specification	widdel.	WITE-105/AWSLF-V4	В	March.13, 09	26/33

3	Air bubbles polarizing plates, and reflection plates		Average Diameter (mm):D	Number of pieces permitted	Average diameter = (Long diameter	
			D≦0.05	lgnore	+ Short diameter)/2	
			$0.05 < D \le 0.3$	3		
			Note that when the are not to be conce		s or more, they	
4	Poarizer Scratch	Do	t Line			
		Diameter (D) mm Acceptable Number			le Number	
		$\Phi \leq 0.1$ Ignore			ore	
			$0.1{<}\Phi{\leq}0.2$		1	
			$0.2 \leq \oplus$		0	
		Lin	e Defect			
			Width: (W) mm	Length: (L)mm	Acceptable Number	
			$W\!\leq\!0.03$	Ignore	Ignore	
			$0.03 < W \le 0.08$	$L{\leq}4$	4	
		If the width more than 0.08,must follow the criteria of dot defect. Diameter of spots = $\frac{\text{Length +Width}}{2}$ of Line				

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Floduct Specification	Model.	WIIF-103/AWISLP-V4	В	March.13, 09	27/33

NOTICE:

SAFETY

- 1. If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 2. If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

HANDLING

- 1. Avoid static electricity which can damage the CMOS LSI.
- 2. Do not remove the panel or frame from the module.
- 3. The polarizing plate of the display is very fragile. So, please handle it very carefully.
- 4. Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5. Do not use ketone solvent & Aromatic solvent. Use a soft cloth soaked with a cleaning Naphtha solvent.

STORAGE

- 1. Store the panel or module in a dark place where the temperature is $25\pm5^\circ\!C$ and the humidity is below 65% RH.
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

TERMS OF WARRANT

- 1. Acceptance inspection period The period is within one month after the arrival of contracted commodity at the buyer's factory site.
- 2. Applicable warrant period

The period is within twelve months since the date of shipping out under normal using and storage conditions.

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification	Model.	MIT-IUJ/AMSLP-V4	В	March.13, 09	28/33

10. RELIABILITY CONDITION

10.1 LCM Reliability Test

No.	Parameter	Condition
1	High Temperature Operating	70°C±2°C, 240 hrs (Operation state)
2	Low Temperature Operating	-20°C±2°C, 240 hrs (Operation state)
3	High Temperature Storage	80°C±2°C, 240 hrs
4	Low Temperature Storage	-30°C±2°C, 240 hrs
5	Damp Proof Test	40°C±2°C, 90~95%, 96hrs
6	Vibration Test	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 direction of X, Y, Z each 15 minutes.
7	Shock Test	To be measured after dropping from 60cm high on the concrete surface in packing state. F Dropping method corner dropping B G D C $Edge droppingB$ B A B C D $edge: once60cm$ $Face droppingE$ F

Notes: 1. No dew condensation to be observed.

2. The function test shall be conducted after 4 hours storage at the normal temperature and humidity after removed from the test chamber.

3. Vibration test will be conducted to the product itself without putting I in a container.

10.2 Touch panel Reliabilit	y
-----------------------------	---

No.	Items	Min.	Тур.	Max.	Unit	Remark
1	Activation Force	100	130	150	g	 within active area. R8.0mm polyacetal pen or f inger.
2	Surface Hardness	3			Н	Judgment ref. JIS-K5600
3	Durability (Writing Life)	100,000			characters	 within active area. R0.8mm polyacetal pen. Load: 150g Speed: 60mm/sec
4	Durability (Hitting Life)	1,000,000			touches	 within active area. R0.8mm polyacetal pen. Load: 250g Frequency: 3 times/sec

Messrs.					
Product Specification	Modal	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
Product Specification	Widdel.	1. MIF-103/AMSLP-V4	В	March.13, 09	29/33

11. PRECAUTIONS

11.1 Operation

Burn-in sometimes happens when the same character was displayed at along time. Therefore, to prevent Burn-in, it is recommended to set up a Screen-saver function.

11.2 Safety

The liquid crystal in the LCD is poisonous, DO NOT put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.

11.3 Handling

a. The LCD module shall be installed flat, without twisting or bending.b. COF or FPC has narrow pattern width, so easily become open circuit by external force. DO NOT apply pressure to COF or FPC especially in bending area.
 c. To avoid damage in appearance or malfunction, DO NOT subject the module to mechanical shock or to excessive force on its surface.
d. The polarizer attached to the display is very easy to be damaged, handle it with care to avoid scratching.
e. To avoid contamination on the display surface, DO NOT touch the display surface with bare hands.f. Provide a space so that the LCD module does not come into contact with other components.

Messrs.							
Product	Specification	Model:	MTE-T05	7AMSLP-V4	Rev. No.	Issued Date.	Page.
TIOUUCU	found specification		WIII-105		В	March.13, 09	30/33
				g. To protect the LCD panel from external pressure, put covering glass (acrylic board or similar board) to keep appropriate space between them.			
				h. Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.			
			 Property of semiconductor devices may be affected when they are exposed to light possibly resulting in malfunctioning of the ICs. To prevent such malfunctioning of the ICs, your design and mounting layout done are so that the IC is not exposed to light in actual use. 				
	2		000		exposure cause t may not reco	es degradation of ver	
	222		 k. DO NOT contact with water to avoid Metal corrosion. l. When it is not in use, the screen must be turned off or the pattern must be frequently changed by a screen saver. If it displays the same pattern for a long period of time, brightness down/image sticking may develop due to the LCD structure. 				
	le le	62		assemble the	es. If unqualifie product after ction or its ope	ed operators or users disassembling it, it	5

Messrs.					
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.
			В	March.13, 09	31/33

11.4 Static electricity

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge.

11.5 Storage

11.6 Cleaning

11.7 Waste

Messrs.								
Product Specification	Model:	MTF-T057AMSLP-V4	Rev. No.	Issued Date.	Page.			
			В	March.13, 09	32/33			

12. WARRANTY

This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement.

- 1 13 months guarantee starts from the date code.
- 2 We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery.
- 3 We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product.
- 4 We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures.
- 5 We cannot accept responsibility for industrial property, which may arise through the use of your product, with exception to those issues relating directly to the structure or method of manufacturing of our product. Microtips-origin longer than one year from Microtips production.

13. <u>DIMENSIONAL OUTLINES</u>

See next page.....

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.