CCS C Compiler Manual

PCD

AP % i
Ny

May 2015

inc

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2015

Table of Contents

OVBIVIBW .. e
(O @701 11] o 11 P UP P PSPP
PCD..oooiiiieeeiiieens
Technical Support...
Directories
File FOrmats.......ccoooeeiiiiiiieieceieccccceee e
Invoking the Command Line Compiler
PCW Overview

Debugging Windows.................
Status Bar.......cccccovcvveeiiciiiennne,
Output Messages....

Program Syntaxccccecvveveennn.
Overall Structure.........cccccvveens
Comment.........oeeeveeeiiiiiiiiiiiiennns
Trigraph Sequences
Multiple Project Files.................
Multiple Compilation Units
FUIl EXGMPIE PrOGIAM ..ottt ettt e e e e et et e e e e e e annbbb e e e e e e e eeaanees

Statements
Statements
] PSPPSR P PRPPRPR

Expressions
Constants
Identifiers
Operators
Operator Precedence

Data Definitions..........coccuvveeeeenn.
Data Definitions
Type Specifiers

Table of Contents

Y L O U= 111 1= £ P RTRUOSPRRRN 30
S a1 =T = (=T B Y L= PP UURRRN 31
SUCTUIES AN UNIONSeeiiiiiiiiiiteiee ettt e e e e ettt e e e e e s e abb e e e e e e e s annsaeeeeaaeeaannneeeeeas 31

Using Program Memory fOr DAtalc.cuveiiiiieiiiiiiiiee et e e st a e e e st an e e e e e e 35
Named REeQIStersccceevviiiiivieeeeeiiiciiiieeeean, . 37

PreProCessor38
PRE-PROCESSOR DIRECTORY
AOAIESS_ i
_attribute_X.....ooooeiiiiiiieieees

#asm #endasm #asm asis

#device
device
H#if expr #else Helif #ENIf ...
#error
#export (options)
R {1 PRSP
__filename___......
#ill_rom..............
#fuses.....ccceeeus
#hexcomment.....

#ifdef #ifndef #else #elif #endif
#ignore_warningscccecevveennnee ... 67
#import (options)

2] Tor 11 o [T USROS 68
] o] 1] [TSP 69

PCD_May 2015

Built-in Functions

0] (o T 78
2 oL T T=] [T o AP RUR SR SPRRRN 80
__pcd__
#pragma
220 (0] 11U POPPPRPN
2 (Tl] (5] PR OTPRP TP

#separate............
#serialize

B0 01170 To [T PRSP PPPRPRN
#use capture
#use delaycccocvvieriiiieiiinn
#use dynamic_memory
#use fast_io

#use fixed_io
#use i2C..............
#use profile()
#use pwm

#use rs232..........

U Tl (0 1 T TR PUPTR
T o OSSP PP PP OUPPPPTPI
#use standard_io
UL S U] o 0= TP PP PP URPPPPPPPN
#use touchpad
#warning
#Word ..o
#zero_ram

BUILT-IN FUNCTIONS

ADS() v

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()

F=To (oo [o] o T IF=To [oo (o] g 1= 21) P PO PRPPR

oS o { () PRSP URPT PR
= (0 1 SRR

atof() atof48() atof64()
L 1 (0] 1] I OO PP PP PPPPPPPRROt
ST TT=1 (=Tt PSP PP PP PUPR
atoi() atol() atoi32()cccveeen..

atol32() atoi48() atoi64()
at_clear_interrupts()......ccccee....
at_disable_interrupts().............
at_enable_interrupts()..............
at_get_capture()occevveeeeennn.

Table of Contents

at_get_miSSiNG_PUISE_AEIAY() --.uvrreeieeeeiiiiiii ettt e e e e e e e e e e e e e e e e nneaeeeas 135
Ee Lo [o= g To T [() TSP PP PP PPPRP PRI 135
= o [l o] o YT oo 1U [(= { () TR 136
= o [T (=151 (U110 o T PP 137
= Ao [T Al oL 101 { () PP URPR 137
Lo [T Al Lo a1 =14 o () I PRSP UR 138
Lo <11 £= LU Y () TR PRSP URPR S 138
= U = 0 o A= ot Y= () TR 139
At SEL_COMPAIE_LIME([) .ereeiieeeiiiiiie i e e e e ettt e e e e e ettt e e e e e s et bbe e eeea e e e e nabeeeeeeeesannneeeeaaeeeaannnsaneeas 140
at_set_MISSING_PUISE_AEIAY() ---uvvrerieeeeiiiiiiii et et e e e e e e e e e e e e e e nneaeeeas 141
e ST A £ T0] (V11T] o (I OO PP PP PUPRP PRI 141
o Ty A= T= A o101 (PRSP UUPT 142
Lo ST (0 o T oo () PRSPPI 143
o) ol LT T () TR SRR 144
DIE_FIFSE() ettt ettt 144
0TI = U (O PO P PP PUPP 145
0TI (O TP PP UP PP PPPPR 145
oL (=21 () P PP PP UP PP PUPPR 146
DSEAICI() it 147
(o= 1] [Lo () S PRSPPI 148
(071 [() PSPPSRI 148
(o L= L 11 (= € (U] o] { () I SRRSO 149
(oo o JES] v= LU L= () PRSPPI 149
(olo o I (=151 7= Ly { () I TP PP PP PPPPPPPRRTN 150
(o (ol or- | o1 () I PP PP PP PP PPPPP PRSI 150
(o (o or- o1 () I PP PP P PP PPPPP PRSP 150
(o (o or- | o3 3 G PP P P PP PPPPPPPRRTN 150
(o (o oF=1 (02 12 (O I PP UPPT PP 150
(o (ol a1 (gL o [=) NPT URPT PP 151
LoV Yo Y =1 (01T () TP UPPT PO 152
LoV o I (=21 c= L () TP PR P PP UPPT PO 153
(oo oY 1 (=T T PP P PP PP PPPPPPPRRTN 153
(o (oo = L e I (=T oT =T LY=o [OO PP PP PPPPPPPRRTN 154
(o (oI (=T Vo [I PP PP PP PP PPPPPPPRRTN 154
(o (oY =V 1 [() P PP PP P PP PPPPPPPRRN 155
(o (oI i = g TS 14 T (== Vo | () I OO PP P R PPPPPPPRRN 156
Lo (o I 41 Y () I PP URPT PP 157
Lo L= F= Y oY (=] (O TP URPT PP 157
(o= F= Y 1 Y (O PP PPURPT PP 158
(o= F= YT] () TP URPT PP 159
(ol IS= o Lo L0 (=T 0] o) T () OO TP PP PPPPP PPN 160
(oY T OO P PP PP PPPPP PPN 161
[0 Y T P OO PP PUPP 161
(000 F= Y T () PRSP P PP PPPPPPPRROt 162
Lo [a g Fo] = LLE K] () TP PP URRT TP 163
LTa = o] Lo T o (=T (U] o)] () PP PP URPT TP 163
€rASE_PrOGIAIM_IMEMIONY ..eeeieteiettieieeeeeeeeeteeeteeeeeeeeeeeeeeeeeeeeeesesesseeeeeseeeesseeessseeeeseeseseensesesnsssnsnnnnne 164
L LA =T (o =T (0 TP 165

PCD_May 2015

Vi

L= 0] () PP UUPPPRRRRN 166
getc() getch() getChar() fOELC() . eiu et e e e e e neeaeeeas 166
Lo <) ([T () RSP 167
L (0T ¢ (3 PP OUPPPPRPPN: 168
L 100 o [I PP OUPPPPPPPN 168
oL g a1 {0 IR o111 (0 PRSPPI 169
o101 (ot (O T 010 (o] PV T { o1 (o () I PP PSSP 171
101 T T o101 () I PP OPPRR 172
L1 L] () I PP PURRRRN 172
L1200 o1 () ISP UUPPURRRRN 173
L= T | () TSR 174
Lo L o= o1 (U] (=T () PRSP UUPRS 176
(o< o= 1o (8] £ () PP RROPPI 177
get_capture_ccpl() get_capture_ccp2() get_capture_ccp3() get_capture_ccp4(

e (1A= o1 0 | T oo o LT () T USRS 177
get_capture32_ccpl() get_capture32_ccp2() get_capture32_ccp3()

get_capture32_ccpd() get_Capture32_CCPS() . oocrveeerrrreeimrrieririieeiitieeessireeesieeeessineeessnree e e 179
(o= A or= T oL (] (=R =AY o (OO P PP PP PPPPPPPRRTN 180
(o= A or= Yo (8] (= (100 LT T PO P PP PP PPPPPPPRRTN 181
(o< R oT= Yo (8] £ 721 | L PSSP 181
BT NSPWIM_CAPIUIE() ceeiiiiee ettt e ettt e et e e e e sttt e e sttt e e e st e e e entteeesnneeeeanneeeeane 182
BT _MOLOT_PWIM_COUNT() utteeeiuiiieeiiitiee e sttt e e ettt e e s ettt e e sttt e e ettt e e s snteeeesnteeeeeasbeeesanseeeesnneeeeanseeeeane 183
(o< (ot = ot oW 001U = L] (ISP RRPPPI 183
T NCO_TNC_VAIUE() -eeeeiitiieeiiii ettt ettt e e ettt e et e e e sbne e e e anbreeenan 184
(o= A (o3 T () I PP P P PP PPPPP PRSP 184
(o= A LT 7 () O PP P PP PP PPPPPPPRRTN 185
(o= A LT =T () O TP P PP PP PPPPPPPRRTN 185
(o= A (1001 o PP UPPT PP 186
Lo L A (1001 0)Y/ (O TP UPPT PP 187
get_timer_ccpl() get_timer_ccp2() get_timer_ccp3() get_timer_ccp4()

Lo =y A (100 [T G ool o 15T () PP PP URPT TP 187
(o= B (T () I PP PO PP PP PPPPP PRSP 189
getc() getch() getChar() FOEIC() .umeeirrreeeiiiiieiiei ettt 189
(o= (] 01V O TP PP PP PPPPPPPRRTIN 190
(o= 1@ I (0[] £ (O I PO PP PP PPPPPPPRRTN 195
(oo (o T Lo [0 [1=21=] (O TSP U P PP PPPPP PPN 196
Nigh_sSpeed_adC_AONE(() ..o e e e e e ea e e an 197
(24 | 011 () I PP PP PP TSP 198
o [~) c= =T () I PP PP TSP 198
(24 og o o] [() T PP PR SOPPRR 199
(Lo (=T To [I PSP PP PP PUPP 200
[P Eo V=T To o[() P PP PP PP PUPP 201
[PZLoR o TT=To [() TP PSP P PP PUPP 201
(Lo - U () T PSP P PP PTPP 202
(4o =1 (o] o] (O PP TS OPPRR 203
(4o 1 (=T () I PP PP TSP 203
1] o U1 () PP OPPRR 204
1] o0 L o g F= T o [T () I PP TPRR 205

Table of Contents

1] o U] = L= () T PR PSSP 206
1] o UL () PP TPRT 206
101G (0 oL A= Tod 1) () TP PP SO 207
isalnum(char) iSalpha(Char)cooiiiiii e 208
ISCNLFI(X) ISAIGIE(CRAI)cii e e e e e e e e s araeeaeeeean 208
isgraph(x) islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x)

157 o181 (o1 14 I PP PP S SPPRPP 208
(15720 p (o] oo [() TR PP PP UT PP PPR 209
10 =T () PP OPPRR 210
(0] 171 () T PSP P P UPPTRTR 211
[F= T o= = To (o [=TS () PP PPRR 212
1= 1 o] (3 PRSPPI 212
[0 C o PSP 213
oo (O P P T P T O OSSP PP PP P PP UPPRTRRYN 213
oo 0 G T O T P T T PP P PSP RPTUPPRTRRT 214
(o] oo 1141 o1 () AP OUPPP PRSP PUPPR 215
0F TS () P PSP PP PPPPUPPR 215
0E N T () I PO P PP PP PPPP I 216
0E L () TP PP P PP PP PPPPR 216
L0 0T=] oo () T PSP 217
MEMCPY() MEMMIOVE() .eteeeiueiieeitieeeeeitieeeateeeesstteeeaasteeeestteeesaseeeeeasteeeeaasseeesasseeesanseeeeannseeessnnees 218
L001=] 0 01T () PSPPSR 218
000 o) { (O T SRR 219
001U][T PP PP PP PP PPPPPPPPRPIN 220
[T 100 < () TP PSP PP PP PUPPR 220
OffSetof() OFFSELOMDIT().reei e e 221
(010110101 () ISP P PP PPPPPPPRRTN 222
(o011 o] U1 A o 1Y () TP PO PP UPPT PP 223
Lo TULi o1 U1 o [1)Y= (PP URPT PP 224
Lo T01 i o] U1 iy 1 (o = L () PP UPPT PP 224
(o101 o101 o TTo | o1 PR URPT PP 225
(o101 10101 [0,V () TP PP PP PP PPPPPPPRRTN 226
(o101 101U Y (oo [o] [T (0 FE T PO P P PP PPPPP PRSP 227
(LT £ (o] (O TP P TP PPPPUPPR P 227
o]0 I o0 ISV () PP PP PP PPPPR 228
o]0 I o =1 A (TS L P PP P PP PUPP 228
o1 o I £=T=To [) T PP PP OPPPRR 229
1[0 I 1 (= () PP PP TSP 230
PMP_AdArESS(AAUIESS) . e ittt e e e et e e e e e e st b bt e e e e e e s e bbbt e e e e e e e e ananrreeaaeeean 231
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout(
... 232
o101 I (=T Lo [PSP PP PUPP 233
o100 11T (O P P OO P PP PUPP 234
POIE_X_PUITUDS (1) 1 etteee ittt ettt ettt e st e st e e et e e e bt e e e anb b e e e enbe e e e nnnes 235
[L01Y T o1 () TP P PR SOPPRP 236
PN) FPIINEF() oot e et e e e e e e st e e e e e e e s e naneeeeaeeeean 236
o] o) 11T o 11) T PRSP 238
psp_output_full() psp_input_full() pSp_overflow()ccueeeiiriiiie e 239

Vil

PCD_May 2015

01T o (== Vo [() T PP OPPRR 240
0] oL 1 (=1 () PSPPSR 241
o101 (ot @ T 010 (o] o PV () T o1 (o () I PP 241
101 oY =T oo () PRSP 242
L] 010 (o =T=Ta o [() PP OUPPPPPPPN: 242
L0 LY T 0101 1 (0 IR 243
0111 0 o (PSPPSR 244
111V 0 o o PP PPER 244
L3110 oY= A o L1 10/) I PSPPSR 245
O30 Y= Ao (11 A =T o =T o | PRSP 245
L3N Y= A =T U1 o on U PRSP 246
(o LTI o =] T 1U 1 (0 TS PP URPT S 247
Lo e ST A oo 10) (SRRSO 247
(o e] = LU () PRSPPI 248
[0 Yo o () I SRRSO 248
=10 Lo [() T P PSP PP PUPPR 249
FCV_DUTTEI _DYLES() .eeeeeiiiie ettt e e e et e e e 250
FOV_DUTFEI _TUII() oot e et e e e 250
[=T=To J=To [of QI == Vo[- Vo (o3 (O I TP SO P PP PP PPPP 251
read_configuration_MEMOTY()ueeeiiiiee et et e st e e e st e e et e e e et e e e ennteeeennnees 252
(=TT J=T=T 0] 7] 2 1T () I PSR PR 253
(=T I =) A =T oo [=To I = 4o T SRR 253
[=r-To I o] ol =V o I 14 1=T 0010) Y/ () SRR 254
(=TT I 1o | TES] o =T To [E= To (o] (O P PO PP PP R PUPP 255
(== To I £ 0 00 L=T 0 1o oY/ (O O TP PP PP U PP PUPPR O 257
(=TT JETo [E= To (o] (O T PP OO P PP PP P PPPPP 257
[T [o o] (8 T PP PP PP PPPP 258
=] (ST T T (o T PP PPT TS PPTPPPPTS 259
LTS T] o] o TU T PP PP PP PPTPPPPS 259
S s L o= U0 L= () T PP PPT TS PPTPPRPTS 260
LS v T Yo | { () PP PP PP PPTPPRPTS 260
o1 1 (=R (=Y () I TP TP P PP PP PPPP 261
11 (=R Ao] 1 () PO PP UP PP PUPPR 262
(o= E= T (T (= o [() I PP PP P PP PP PUPP 263
(o= =T] (= () O TP P PP PUPP 263
(o (== Vo [() T PSP PP PUPP 264
L (o 11 (T () T PP PP PP TS OPPPRP 265
(0TI = 1 { () PP PPT SO PRP 265
(0TI o [SF=] [T (O PP PP TSP 266
(0TSt = o] L= (O PP PP TS OPPRR 266
(o T 141w T o To [() P PP P PP PUPP 267
(o T 4 1o T =7 To [P OO PP PUPP O 267
(o T 14 1o T =T o To [P PP P PP PUPP 268
TEOS_OVEITUN() wettetitteee ettt e ettt ettt ettt ettt s bttt e ekt e e eab et e s b e e e e bbbt e e eabe et e e et e e anb b e e e anbeeeennnes 268
L0 LT 10 o 1 I PP PP PPT S OPPRT 269
(0TI To [o= L[() PP PPT SO 270
(0TS = L] () T PP TPRT 270
(0TI (=10 010 F= L L= () PP TPRR 271

viii

Table of Contents

L0 TRV V1 { (PP PPRR 271
L0 LT/ =1 (o [PP OPPRR 272
(S A= Vo [l ol T T 0 1= [ISR 273
= A= o [l ol T U 0 1= 12 (O I PRSP URPTS 273
= - LaE 1o Lo T o1 1Y () I PR URPT 273
Lor- 1| { () TP URPR P 274
set_ccpl_compare_time() set_ccp2_compare_time() set_ccp3_compare_time()
set_ccpd_compare_time() set_ccp5_compare_tiMe()ooocueeiieeeeeiiiiiiiiee e 277
S s oo To [l o] F= Va1 (T T | () PR 278
1= oo To [l [ST=To [o= T o [TP PERRT T 279
S oo o [l o] g = T=1=T (O TSR R 280
S _COMPATE_LIME() eiririeiiee e ieiie et e et e e e e e e e e st e e e e e e s et b b e e e e e e e e s aesabaaeeeeeesaannrreeeas 280
SEL NSPWITI_AULY() +neeeeeeiitieeeeiti ettt ettt et e e ettt e e e snb e e e st e e e e sbeeeeentseeesanneeeeanneeeeann 281
SEL NSPWITI_EVENT() eeeieiiitiie et e ettt ettt e ettt e ettt e e ettt e e e este e e e sbbeeeeasbeeeeantteeesanneeeeanseeeeane 282
SEL_NSPWITI_OVEITIAE() 1o vveeeeeiiieesiitie e ettt e e ettt e e sttt e e ettt e e s sst et e e s nbbeeeeasbeeeeentseeesnneeeeanneeeeane 283
SEL_NSPWINI_PRASE() +reeeiirrieeiiiie ittt e et e et e e s b e e e e bt e et e e e e a e e e e anbr e e e e 283
SEt_MOTOT_PWIT_AULY() ceteeeeiiiieeiitee ettt ettt a bttt et e e skt e st e e e snneeeeannneeenae 284
SEL_MOTOT_PWITI_EVEINT() .veeeiiutiiteiiieee ettt ee e sttt e et e sttt e e sttt e s st e e e s bb e e e e st esanbe e e e snneeesannneeenan 285
(1A o1 (o] SN] 11 { () T PSP PP PP PPPPPPPPRN 285
Y= A (ot o T (oY= 11U 1= () T PSPPSRI 286
L= A 01011 U] o () I PP PRSPPI 287
set_pwml_duty() set_pwm2_duty() set_pwm3_duty() set pwm4_duty()

SEL_PWIMS _AULY() 1eeutteeeiitieeeeiit e e st ee e e sttt e e ettt e e ettt e e ssb et eeante e e e amteeeesnbbeeeeasbeeeeanteeeesanneeeeanneeeeanns 288
set_rtcc() set_timerO() set timerl() set timer2() set timer3() set_timer4()
set_timerS() coovvveeviiieeeieees

= A (101 () PP PP PP PPPPPPPRR
setup_sd_adc_calibration()

Set_SA_AdC_CRANNEI() ..eeiiiiie it e e e e e e e e e s eas

ST 0 0= o () TP UPPT PP

SIS R 00 =T 1 =T (O T PP P PP UPPT PP

ST A 0 0= () T PP UPPT PP

S A (11 0=T 1A (O OO PPPPPPPPPPPPRRTN
set_rtcc() set_timerO() set_timerl() set timer2() set timer3() set_timer4()

A (110 1=T €T () T PP PP PP PP PPPPP PRSI 295
set_timer_ccpl() set_timer_ccp2() set_timer_ccp3() set_timer_ccp4()

L (4= A oto] o 15T () ISP PP P PP PPPPP PPNt 296
set_timer_period_ccpl() set_timer_period_ccp2() set_timer_period_ccp3()
set_timer_period_ccp4() set_timer_period_CCP5(). . uuuaaaiuumeiieeeeeiiiiiiiee et 297
S R (TS () PRSPPSO 299
S S U T] o1=T=To [TP URPT PP 299
=11 00] o] (O TP TP PP P PP PPPPP PPN 300
U0 oI Vo (o (4 aToTo =) B OO PP PP PPPPP PPN 301
=10 o J=To (92 (g Lo To 1=) TP PP PP PPPPPPPRRN 301
=10 oI Vo (o oo] T () O P PP PPPPP PPN 302
S (U o = To (o o To T4 £ 724 () PR URPT PP 302
S (o= To (o (=] (=] €= oot () TR PP URPT PP 303
(ST (U] = L () PR 303
ST Lo o= o (1 1 (=T () TP ERRT 304

PCD_May 2015
setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5()

(S (U] o I oled o1 () PSRRI 305
setup_clcl() setup_clc2() setup_clc3() SEtUP_CICA() .uumrieiiiiiiiiiiee e 307
= Lo elo] 1] oF= 1= Lo () P PRSP URPT 308
= Lo wlo] 1] o F- 1 =T () T PRSP URPT P 309
= Lo ool (100 (=) PRSP UUPT 309
=00 o T oo o [() P PRSP UUPT 310
(S (U] o T o o () T PR 311
(S (U] o T o1 () I PR 312
(S (U] o I = Tod () PR 313
(S (U] o T (o T PR 314
=10 oI [1 F= Y (0 PP URPT S 315
=00 oI a1l | Y o =TT = Lo [od () TSP SR PRI 315
setup_high_SPeed_adC_PAIN()cooeeeeiiiiie ettt e e e e e ann 316
Setup_NSPWM_BIANKING() -+veeeiiiiieiitiie ettt et e e et tee e e et e e e s nneeessnneeeeane 317
SetUP_NSPWM_ChOP_CIOCK() c..veeieiiieie ittt e et 318
SELUP_NSPWM_TFIGGEI() 1 tteeeeiiiit ettt ettt ettt e et e e e et et e e st e e e snne e e e annneeenae 319
SELUP_NSPWIM_UNIT() +reeeiitiee ettt e st e e s bt e s e e e e s bne e e e annree e e 320
SELUP_NSPWIMI() ettt e ket e e st e e s b e e e et et e e e st e e e e e e e 321
setup_hSpPWM_UNIt_ChOP_CIOCK()...uveeeiiiiee ettt s e e e ene 321
=00 oI (oL VY o] | Ao (=3 =T ox { () ISP RRTPPPI 323
=00 o T aaTo (o] gl o1V 4T PSPPSRI 323
=10 oo LT 1 = 1o () SRRSO 324
=110 oI oo [() TR PP PP P PP PPPPPPPRRTN 325
setup_pmp(option,addreSS_MASK)......coouriiiiiiiieiiiiee ettt 326
SELUP_POWET_PWIM_PINS()+ttt eutrrteiuteeeenitteeeatteee st e e st e e aaste e e s st e s s abne e e s asbr e e e snbnreesnnnneeeannreeenan 327
setup_psp(option,addreSS_MASK).......coiuiiiiiiiieiie e 328
setup_pwm1() setup_pwm2() setup_pwm3() Setup_PWMA() ..coooriiiiirrieiiiieeee e 329
ST LU o I o [T () PP UPPT PP 330
ST LU o I 1 (o] () I PP UPPT PP 331
ST o I g (o= 1 F= T [TP P PP URPT PP 331
=10 o T To = Lo (ol () O PSP P PP PP PPPPPPPRRTN 332
U0 T 011 v () TP PP P PP PPPPPPPRRTN 333
SELUP_SPI() SEIUP_SPIZ2(1) rveeeiurrrteiiuteeeesitt e e ettt ettt ettt e et e e st e e e ettt e st e e e e s e e e e e e e 333
U0 T 1011 o () TP P PP PP PPPPPPPRRTO 334
SEUUP_IMET_A() ettt ettt ettt e bt e bt e e e h e e e ekttt e ekt et e e s bb e e e ek b e e e nb e e e e et e e e e nnbr e e e e 336
SIS oI (100 T G =T TP URRT PP 336
ST (U o (100 1T G O () TP URPT R RTP 337
ST (U] o (100 1T G () TP URPT TP 338
ST (U o (100 1T 2 () TP URPT PP 338
U0 oI U101 1T S (O OO PP PP PPPPP PPN 339
SEUUP _LIMET_ ([).erte ittt ettt ettt et e e ekt e e a et e e s bt e e ekt e e e e hne e et e e e e 340
U0 oI (1001 S Y (O O PO PP PP PPPPPPPPRNt 341
=110 oV E- U () IR OO PP PP PPPPPPPPRN 341
SIS L T 1= (O TP PO URPT PP 342
ST L o L { (PP URPT TP 343
(ST (U] o T o] (PR 344
] 11 1= 1 O TP TR OT P PPPOTRN 344

Table of Contents

£ 01 o |0 (TP EERT 345
LS =TT o TR 346
L] 410G (=T To [TR 347
S (1 O (ST B[1 1= T () T PP URPTP 348
L] 11101 €= L () PSRRI 349
] 1110 £= L L0 Y () I PP UUPR 349
L] 11101 (o] o (0 PRSP URPT S 350
L] 1o 1 (=T PR 350
L] 1o QU] o Lo F= L= () TR 351
spi_data_is_in() SPi_data _iS_IN2() ..eeeeiiiiieiiieee e e e 352
L] 0TI L1 P RO EERTP 352
S oTIN LA L =T (o Eo =) PRSP UUPR P 353
L OJI == Vo [Y o H (Y= Lo 2 (O T PRSPPI 353
L] oI (== Vo 1 (PP PPPI 353
L] 0TI (== Vo L ST OPRI 353
LS o TI =TT T PO PP P PP PPPPP PRSI 354
S oJI(=T=To A T I PO O PP PP PPPPPPPRRPO 354
S oI (== Vo Lo T T I PSP P PP PP PPPPPPPRRO 354
LS o TI (== Vo Z B T IO P PP PP PPPPPPPRRTO 354
LS LI <= PRSPPI 355
SPI_WIILE(() SPI_WITEEZ2(() uteeeeetiieeiiitiee ettt e e ettt e ettt e e sttt e e ettt e e e ente e e e sttt e e easbeeeeanteeeesnneeeeanneeeeane 356
LTI L1 (=T (PP RROPRI 356
LS LI L= (PRSPPI 356
S oTI L= (3 P PP PP P PP PPPPP PRSP 357
SPHLUXFER _IN() ettt ettt ettt ettt ettt ettt et e st e et e st e e nbe e e beeebee et 357
LS o101 (0 P PP PP PP PP PPPPP PRSI 358
Lo (0 I PP PP PP PP PPPPPPPRRTN 359
L] = Vo[[() IR PP P PP URRT PO 359

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr()
stremp() streoll() strespn() strerror() stricmp() strlen() striwr() strncat()

strnecmp() strncpy() strpbrk() strrehr() strspn() strstr() StXFrm() .ooeeeeeeeeeeiiiiie e, 360
1o o)V @ I oTo] o) Y/ () F O PSP PP PPPPPPPPPPPRRTN 362
Strtod() SrtOf(1) SEOFAB() .eeiiiiiiiiiiiie e 362
LS 11 (0] () TP PP PP P PP PPPPPPPPRTN 363
LS 11 (0] [(O T PP PP PP PPPPPPPRRTN 364
LS 11 (o 10| PP PP PP PPPPPPPRRNt 365
V1= o] () PP URPT R RTP 366
(0] (01N =T (IR (o1 0T o] o 1= () [P PP UPPPPRPPN 366
(o8 {ed o o T=To I o= (o] (0 TR PP PP URPPPPRPPN 367
L1 18 {ed oo = To I 1 { () PSP P URPPPPRPPN 368
[CoT0 el gl o= o JES] c= Y =T () TSP PP PP OTPPP PP 369
X_DUffer_available()ooo s 370
Lo o101 £=T o) (] I ST O PP P OTPPPTPP 371
Lo o111 =T UL PP O PP PP OTPPPTPP 371
(2 - L | () I T PPP T UPPPPRPPN 372
A2 = (o [TP TP URPPPPRPPN 373
{22 1 €= 374
write_CoNfIQUIration_MEMIOIY(() ..ooieeeiieieie ettt ettt e e e e e et e e e e e e e s enneeeeeeaeeeeannees 374

Xi

PCD_May 2015

VgL CR=T=T o] (o] 1 0T () PP UUPPURRRRN 375
gL G (=TT (=T I = T o TP UUPPURRRRN 376
WHtE_PrOgram_MEMOIY() c.veeeeiereeeeireeeesteee e sttt e e st e e s e e s as et e s snre e e s s ee e e asnre e e asne e e s nnnreeesnneeenn 377
o (o) v= L0] () ISP URPR 378
Standard C INCIUAE FlEScoiiiiiiiiiieet et 379
BITNOLE o 379
FIOBE N . 379
1T 0T £ PRSP 380
[oTox= 11N o [PPSR 381
(=101 o1 o RSP RT 381
L] 1o [0 {3 11 o ORI 381
SEAIOL N e 381
SN e 382
SOftWAre LICENSE AQIEEMENL ...c.itiie ettt e itiee e ettt e e ettt e e st eeeestt e e e steeeesasaeeeeanteeeesseeeesanneeeeantneeeanns 383
SOFTWARE LICENSE AGREEMENT ...ttt 383

Xii

OVERVIEW

C Compiler

PCD Overview
Technical Support
Directories

File Formats

Invoking the Command Line Compiler

PCD

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which include the
dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed to meet the unique
needs of the dsPIC® microcontroller. This allows developers to quickly design applications
software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and bit
twiddling operations. All normal C data types are supported along with special built in functions to
perform common functions in the MPU with ease.

Extended constructs like bit arrays, multiple address space handling and effective implementation
of constant data in Rom make code generation very effective.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

PCD_May 2015

The intent of new releases is to provide up-to-date support with greater ease of use and minimal, if
any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to
send an email to: support@ccsinfo.com or use the Technical Support Wizard in PCW. Include the
version of the compiler, an outline of the problem and attach any files with the email request. CCS
strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
. Directories listed on the command line
. Directories specified in the .CCSPJT file
. The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs are in \PICC\EXAMPLES. The include files are in PICC\drivers. The
device header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in \PICC\DLL.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was tested
with a specific version, but newer projects use a newer version. When installing the compiler you
are prompted for what version to keep on the PC. IDE users can change versions using
Help>about and clicking "other versions." Command Line users use start>all programs>PIC-
C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all programs >
PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in %APPDATA%\PICC

File Formats

.c This is the source file containing user C source code.
.h These are standard or custom header files used to define pins, register, register hits,

.pjt

.ccspjt

st

.sym

.Sta

.tre

.hex

.cof

.cod
rtf
rvf
.dgr
.esym

Xsym

.osym

Overview

functions and preprocessor directives.

This is the older pre- Version 5 project file which contains information related to the
project.

This is the project file which contains information related to the project.

This is the listing file which shows each C source line and the associated assembly code
generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project>Output
Files

Mach code Includes the HEX opcode for each instruction

SFR names Instead of an address a name is used. For example instead
of 044 is will show CORCON

Symbols Shows variable names instead of addresses

Interpret Adds a pseudo code interpretation to the right of assembly

instruction to help
understand the operation.

For example:
LSR W4, #8,WS : W5=W4>>8

This is the symbol map which shows each register location and what program variables
are stored in each location.

The statistics file shows the RAM, ROM, and STACK usage. It provides information on
the source codes structural and textual complexities using Halstead and McCabe
metrics.

The tree file shows the call tree. It details each function and what functions it calls along
with the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all programmers.

The compiler can output 8-bet hex, 16-bit hex, and binary files.
This is a binary containing machine code and debugging information.

The debug files may be output as Microchip .COD file for MPLAB 1-5, Advanced
Transdata .MAP file, expanded .COD file for CCS debugging or MPLAB 6 and up .xx
.COF file. Al file formats and extensions may be selected via Options File Associations
option in Windows IDE.

This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File format which
can be viewed using the RTF editor or Wordpad.

The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text
File.

The .DGR file is the output of the flowchart maker.

These files are generated for the IDE users. The file contains Identifiers and Comment
information. This data can be used for automatic documentation generation and for the
IDE helpers.

Relocatable object file
This file is generated when the compiler is set to export a relocatable object file. This file

3

PCD_May 2015

is a .sym file for just the one unit.
.err Compiler error file
.ccsload used to link Windows 8 apps to CCSLoad
.ccssiow used to link Windows 8 apps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCSC [options] [cfilename]
Valid options:
+FB Select PCB (12 bit) -D ate debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file

+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+YxX Optimization level x (0-9) +DC Expanded .COD format debug file

+FD Select PCD +DF Enables the output of an COFF debug file.
(dsPIC30/dsPIC33/PIC24)
+FS Select SXC (SX) +EO Old error file format
+ES Standard error file -T Do not generate a tree file
+T Create call tree (.TRE) -A Do not create stats file (.STA)
+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error
+EA Show all error messages +EX Error/warning message format uses GCC's "brief
and all warnings format" (compatible with GCC editor environments)

The xxx in the following are optional. If included it sets the file extension:

+LNxXxX Normal list file +0O8xxx 8-bit Intel HEX output file
+LSxxx MPASM format list file +OWxxx 16-bit Intel HEX output file
+LOXxXX Old MPASM list file +OBxxx Binary output file

+LY XXX Symbolic list file -0 Do not create object file
-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

[+=".." Same as I="..." Except the path list is appended to the current list

=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used to supply the

Overview

include file paths.

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#XXX="yyy" Set a global #define for id xxx with a value of yyy, example:

#debug="true"

+GxXxx="yyy Same as #xxx="yyy"

+? Brings up a help file
-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)

+SETUP Install CCSC into MPLAB (no compile is done)

sourceline= Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline="#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are
read from that file before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

PCD_May 2015

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for
developing microcontroller applications. The IDE comprises of many components,
which are summarized below. For more information and details, use the Help>PCW
in the compiler..

Many of these windows can be re-arranged and docked into different positions.

Il i o0 comee coope Ver Tien Cobw Socment s tostie oW
et bnier = @ 2ecod
AN e r & e from Ple ™ sy :-:i_' u et
Unte fez | Pome .,.~' aa roe? B A
L) Al Sieler Fami Sees Pasas H o

Mooy

L.

J Tneading (It
e 49 Alous 3
{ 8 /] IF sverytaing i3 werking, the souse cirser will wove in o { nnhm Ltq »-
i} 10 Lrle vhan cormmited to 4 K Wosie vt v Tow E
1 / : o Twad Mosteovw | Tiw
12 This file i3 gert of CC5'3 FIT USE driver code Se= 23N
13 /1 Mot mmre dix » Liat of evemples Uowrs ovm vade [Oelnd
1 e
= Tae
18 5
i /1 WBTE ABOUT ENCPOINT SUFFER SIZE i S LOGEIR
18 /i D o082 -
13 Altberegh this application senis 4 bytes te the K, this dem When TRUE he tast al b seicaded sher aves
0 Uefines \SE 51 TN SIZF tx 8 tx allocate & Wytes for this —_—
- =g : Ll Al s b ey | sty | vl |
. - ' ——— ———)
[h\ Tzen ﬁtqum mose | (L zarsietiels noaec J FC=0000 <00
=~ o 00 - d worn s Low T31T) Nowinds Teewe |13 e e 50 Bw u
245 Wiannn 16 s _poste ¢” i Z1H1.3Y Imgts ceabied dung cal s proverd ierkancy ub) Wb
) W 216" i ul poce L 2181 21 Ierngt: cleabied 4. cal 13 provert seartiancy ot el
395 W 216w uid_powec” Ln"ma Wenupt deabind d.rg cal s peverd yearoncy e R
Merop sage NG5S AAMLIY -1 . 12
0B, 3Warmgx .
Fud Suczenhd

Memory Use
F :

Overview

Menu

All of the IDE's functions are on the main menu. The main
menu is divided into separate sections, click on a section title
('Edit', 'Search’, etc) to change the section. Double clicking on
the section, or clicking on the chevron on the right, will cause
the menu to minimize and take less space.

m Edit| Search Options Compile View Tools Debug Document Usertoolbar

p Cut) Fram File = @ fecond
| I A F . = 4—
Cop E LV
U R Paste 7o File =
[] Select All 300 Selection FormatSource | Playback fef Save
History Edit Indent Macro

Editor Tabs

All of the open files are listed here. The active file, which is the
file currently being edited, is given a different highlight than the
other files. Clicking on the X on the right closes the active file.
Right clicking on a tab gives a menu of useful actions for that
file.

[Zcex_ush_mouse) ’fiti,ex_usb_common.h [= 24FJ256GB206.h .'i

Slide Out Windows

I

'Files' shows all the active files in the current project. 'Projects’ af

shows all the recent projects worked on. 'ldentifiers’ shows all

the variables, definitions, prototypes and identifiers in your

current project. ‘4
)
3
o
N
@

-

Siauapr

(A} \@‘I

X

PCD_May 2015

Editor

The editor is the main work area of the IDE and the place
where the user enters and edits source code. Right clicking in
this area gives a menu of useful actions for the code being
edited.

d']#if defined(USB_HW_CCS_PIC18F4550)

#include <18F4550.h>

#fuses HSPLL,NOWDT,NOPROTECT,NOLVP,NODEBUG, USBDIV,PLLS, CPUDIV1, VREGEN
#use delay(clock=48000000)

//leds ordered from bottom to top
#DEFINE LED1 PIN A5 //green

X Debugging Windows

Debug
O’ ’ f w @‘ Debugger control

is done in the

RéM | ROM | DataEE | Breaks | Stack | debugging

Waiches | Perpherals | Eval | Monitor | Windows. These
- windows allow

Break Log l RTOS Tasks you set

Debug Configure breakpoints,
single step, watch

. SR
E]E]@[ICD'USB v \r;a(;irit.nles and

Compile Reload True XA

Mouse over eval True |_|

Timeout Mouse over True

Mause over radix Default

Userstream enabled False

Echo on Monitor True

Manitor Font Size 3

ICD FAw CCS 296 v

‘When TRUE the target will be reloaded after every

Apply Cancel

PC=0001 K W=00

Overview

Status Bar

The status bar gives the user helpful information like the cursor
position, project open and file being edited.

[(hial] et Madhfet A DO $00S C Progects \ MG o sx i DODG 2

Output Messages

Output messages are displayed here. This includes messages
from the compiler during a build, messages from the
programmer tool during programming or the results from find
and searching.

TE ¢ e 11016.29

Output

2 Coopbe | ewFrd

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
Statements
Expressions

Every C program must contain a main function which is the starting point of the program execution.
The program can be split into multiple functions according to the their purpose and the functions
could be called from main or the sub-functions. In a large project functions can also be placed in
different C files or header files that can be included in the main C file to group the related functions
by their category. CCS C also requires to include the appropriate device file using #include
directive to include the device specific functionality. There are also some preprocessor directives
like #fuses to specify the fuses for the chip and #use delay to specify the clock speed. The
functions contain the data declarations,definitions,statements and expressions. The compiler also
provides a large number of standard C libraries as well as other device drivers that can be included
and used in the programs. CCS also provides a large number of built-in functions to access the
various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters between /*
and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The compiler
recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template to
export these comments and create a formatted output document in Rich Text File Format. This
utility is only available in the IDE version of the compiler. The source code markups are as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment names are
case sensitive and they must match the case used in the documentation template.

For example:

10

Program Syntax

/IPURPOSE This program implements a Bootloader.
/*AUTHOR John Doe

A''ll' followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the documentation
generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration. For
example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For example:
/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global Comments.
These comments appear before the function, and the names are exported as-is to the
documentation generator.

For example:

/I*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

{

display_routine();

11

PCD_May 2015

Trigraph Sequences

The compiler accepts three character sequences instead of some special
characters not available on all keyboards as follows:
Sequence Same as
?7=
?22(
??/
??)
??'
?2?<
27!
?2?7>
??-

| = — > — — 1t

Multiple Project Files

When there are multiple files in a project they can all be included using the
#include in the main file or the sub-files to use the automatic linker included in the
compiler. All the header files, standard libraries and driver files can be included
using this method to automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your
project, you can say in:

#include <device header file>
#include<x.c>

main.c #include<y.c>
#include <z.c>

X.C #include <x.h>

y.c #include <y.h>

z.C .
#include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the symbol in
that file.

To separately compile your files see the section "multiple compilation units".

12

Program Syntax

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH,
PCHWD and PCDIDE. When using multiple compilation units, care must be given
that pre-processor commands that control the compilation are compatible across all
units. It is recommended that directives such as #FUSES, #USE and the device
header file all put in an include file included by all units. When a unit is compiled it
will output a relocatable object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these
methods and example projects are included in the MCU.zip in the examples
directory of the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over rs232:

L1770 7777077777777 7777777777777 777
L1777 7777777777777777

/// This program displays the min
and max of 30, ///

/// comments that explains what
the program does, ///

/// and A/D samples over the RS-
232 interface. /7

L1177 77777777777777777777777777777
L1177 777777777777777

#include <16F887.h>
//

preprocessor directive that

// selects the chip PIC16F887
#fuses NOPROTECT
// Code
protection turned off
#use delay(crystal=20mhz)
// preprocessor
directive that

// specifies the clock type
and speed

13

PCD_May 2015

#use rs232(baud=9600, xmit=PIN C6,
rcv=PIN C7) // preprocessor directive
that

// includes the rs232
libraries

void main () {
// main

function

int i, value, min, max;

// local variable

declaration

printf ("Sampling:");

// printf

function included in the

// RS232 library
setup port a(ALL ANALOG) ;
// A/D setup functions-
built-in
setup adc(ADC CLOCK INTERNAL);
// Internal clock always
works
set adc channel(0);
// Set channel to

ANO
do {
/
/ do forever statement
min=255;
max=0;

for (1=0; 1<=30; ++1) {
// Take 30 samples
delay ms(100);
// Wait for a
tenth of a second
value = read adc();
// A/D read functions-
built-in
if (value<min)
// Find smallest
sample

14

Program Syntax

min=value;
if (value>max)
// Find largest
sample
max=value;
}
printf ("\n\rMin: %2X Max:
%2X\n\r",min, max) ;
} while (TRUE) ;
}

15

STATEMENTS

Statements

STATEMENT

if (expr) stmt; [else stmt;]

while (expr) stmt;

do stmt while (expr);

for (exprl;expr2;expr3)
stmt;

switch (expr) {
case cexpr: stmt; //one or
more case [default:stmt]

2}

return [expr];
goto label;
label: stmt;
break;
continue;
expr;
{[stmt]}
Zero or more
declaration;

Note: Itemsin[] are optional

Example

if (x==25)
x=0;

else
x=x+1;

while (get rtcc() !=0)
putc('n’);

do {
putc (c=getc());

} while (c!=0);

for (i=1;1i<=10;++1)
printf (“su\r\n”,i);

switch (cmd) {
case 0: printf(“cmd 0”);break;
case 1l: printf(“cmd 1”);break;
default: printf (“bad cmd”) ;break;

}

return (5);

goto loop;

loop: i++;

break;

continue;

i=1;

{a=1;

b=1;}

int 1i;

16

Statements
if
if-else

The if-else statement is used to make decisions.
The syntax is:

if (expr)
stmt-1;

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:

if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement associated with it is

executed and it terminates the chain. If none of the conditions are satisfied the last else part is
executed.

Example:

1if (x==25)
x=1;

else
x=x+1;

Also See: Statements

while

While is used as a loop/iteration statement.
The syntax is:

while (expr)
statement

17

PCD_May 2015

The expression is evaluated and the statement is executed until it becomes false in which case the
execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the
termination condition is checked at the bottom of the loop
rather than at the top and so the body of the loop is always
executed at least once. The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the
same is repeated and when it becomes false the loop
terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is:

for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the
initialization, expr2 is the termination check and expr3 is re-
initialization. Any of them can be omitted.
Example:
for (i=1;1i<=10;++1)

printf ("Su\r\n",1i);

Also See: Statements

18

Statements

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

[d efault:stmt]

This tests whether the expression matches one of the constant values and branches accordingly.
If none of the cases are satisfied the default case is executed. The break causes an immediate exit,
otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd") ;
break; }

Also See: Statements

return

return

A return statement allows an immediate exit from a switch or a loop or function and also returns a
value.

The syntax is:

return(expr);

Example:
return (5);

Also See: Statements

19

PCD_May 2015

goto

goto
The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's
are used sparingly, if at all.

Example:
goto loop;

Also See: Statements
\

label

label

The label a goto jumps to.
The syntax is:

label: stmnt;

Example:
loop: i++;

Also See: Statements

break

break.
The break statement is used to exit out of a control loop. It provides an early exit from
while, for ,do and switch.
The syntax is
break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

20

Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For,
Do) to begin.

The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the
control passes the

re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

Statement: ;

Example:

’

Also See: Statements

21

PCD_May 2015

stmt

Zero or more semi-colon separated.
The syntax is:

{[stmt]}

Example:
{a=1;
b=1;}

Also See: Statements

22

EXPRESSIONS

Constants

123

123L
123LL
0123
0x123
0b010010
123.456
123F
123.4E-5

1

X
\010'
"\XAS’

Decimal

Forces type to & long (UL also allowed)
Forces type to &; 64 for PCD
Octal

Hex

Binary

Floating Point

Floating Point (FL also allowed)
Floating Point in scientific notation
Character

Octal Character

Hex Character

Special Character. Where c is one of:
\n Line Feed - Same as \x0a
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07

23

PCD_May 2015

"abcdef"

Identifiers

ABCDE

ID[X]
IDIX]X]
ID.ID
ID->ID

Operators

+

+=

24

\v Vertical Space - Same as \x0b

\? Question Mark - Same as \x3f

\' Single Quote - Same as \x22

\" Double Quote - Same as \x22

\\ A Single Backslash - Same as \x5¢

String (null is added to the end)

Up to 32 characters beginning with a non-
numeric. Valid characters are A-Z, 0-9 and _
(underscore). By default not case sensitive Use
#CASE to turn on.

Single Subscript

Multiple Subscripts
Structure or union reference
Structure or union reference

Addition Operator

Addition assignment operator, x+=y, is the
same as x=x+y

Array subscrip operator

Bitwise and assignment operator, x&=y, is the
same as X=x&y

Address operator
Bitwise and operator

Bitwise exclusive or assignment operator,
x"=y, is the same as x=x"y

Expressions

Bitwise exclusive or operator

Bitwise inclusive or assignment operator, xI=y,
is the same as x=xly

Bitwise inclusive or operator

Conditional Expression operator

Decrement

Division assignment operator, x/=y, is the
same as x=x/y

Division operator

Equality

Greater than operator

Greater than or equal to operator
Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the
same as X=x<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Member operator for structures and unions
Modules assignment operator x%-=y, is the
same as x=x%y

Modules operator

Multiplication assignment operator, x*=y, is the
same as x=x*y

Multiplication operator
One's complement operator

Right shift assignment, x>>=y, is the same as
X=X>>Y

25

PCD_May 2015

>>
->

sizeof

Operator Precedence

Right shift operator

Structure Pointer operation

Subtraction assignment operator, X-=y, is the
same as X=x-y

Subtraction operator
Determines size in bytes of operand

See also: Operator Precedence

PIN DESCENDING PRECEDENCE

(expr)
++expr

lexpr

(type)expr

expr*expr
expr+expr
expr<<expr
expr<expr
expr==expr
expr&expr
exprexpr
expr | expr
expr&é& expr
expr || expr

expr ? expr: expr

Ivalue = expr
Ivalue*=expr

26

exor++
expr++

~expr
*expr

exprl/expr
expr-expr
expr>>expr
expr<=expr
exprl=expr

Ivalue+=expr Ivalue-=expr

Ivalue/=expr

expr->expr
- -expr
+expr

&value

exprdoexpr

expr>expr

Ivalue%=expr

expr.expr
expr - -
-expr

sizeof(type)

expr>=expr

Associativity
Left to Right
Left to Right
Right to Left
Right

to Left

Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Right

to Left
Right

to Left
Right

to Left

Expressions

_ Ivalue<<=exp - Right
Ivalue>>=expr . Ivalue &=expr to Left
Right

A=]
Ivalue=expr Ivalue|=expr to Left

expr, expr Left to Right

(Operators on the same line are equal in precedence)

27

DATA DEFINITIONS

Data Definitions

This section describes what the basic data types and specifiers are and how variables
can be declared using those types. In C all the variables should be declared before
they are used. They can be defined inside a function (local) or outside all functions
(global). This will affect the visibility and life of the variables.

A declaration consists of a type qualifier and a type specifier, and is followed by a list
of one or more variables of that type.
For example:
int a,b,c,d;
mybit e, f£;
mybyte g[3][2];
char *h;
colors j;
struct data record data[1l0];
static int i;
extern long j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,j,k; // colors is the enum
type and i,73,k
//are variables of
that type

SEE ALSO:

Type Specifiers/ Basic Types
Type Qualifiers

Enumerated Types
Structures & Unions

typedef

Named Registers

28

Data Definitions

Type Specifiers

Basic Types

Type- Range

Specifier Size Unsigned Signed Digits

intl 1 bit number Oto1l N/A 1/2

int8 8 bit number 0to 255 -1281t0 127 2-3

int16 16 bit number 0 to 65535 ~32768 to 32767 45

int32 32 bit number 0104204967295 2147483648102147483647 ¢ 1

. . 0to -140737488355328 to

Int48 48 bit number 281474976710655 140737488355327 14-15

. . -9223372036854775808 to

int64 64 bit number N/A 0223372036854775807 18-19

floatsz 32 bit float 15x10% to 3.4 x 10% 7.8

float48 48 b!t _float (higher 29x10% to 1.7x10 % 11-12
precision)

floate4 64 bit float 5.0%x10% to 1.7 x 10 % 15-16

C Standard Type Default Type

short signed int8

char signed int8

int signed int16

long signed int32

long long signed int64

float float32

double

Note: All types by default are signed; however, may be preceded by unsigned or
signed (Except int64 may only be signed) . Short and long may have the keyword INT
following them with no effect. Also see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations
and I/O. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to
bits are not permitted. The device header files contain defines for BYTE as an int8
and BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float
formats are described in common questions.

29

PCD_May 2015

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,
typedef, Named Registers

Type Qualifiers

Type-Qualifier
Variable is globally active and initialized to 0. Only accessible from
static this compilation unit.

Variable exists only while the procedure is active. This is the default
auto and AUTO need not be used.

double Is a reserved word but is not a supported data type.

External variable used with multiple compilation units. No storage is
allocated. Is used to make otherwise out of scope data accessible.

extern there must be a non-extern definition at the global level in some
compilation unit.

register If possible a CPU register instead of a RAM location.

Creates a fixed point decimal number where n is how many decimal

—fixed(n) places to implement.
unsigned Data is always positive.
Data can be negative or positive. This is the default data type if not
signed specified.
Tells the compiler optimizer that this variable can be changed at any
volatile point during execution.
Data is read-only. Depending on compiler configuration, this qualifier
const may just make the data read-only -AND/OR- it may place the data
into program memory to save space. (see #DEVICE const=)
rom Forces data into program memory. Pointers may be used to this data
but they can not be mixed with RAM pointers.
Same as rom except only the even program memory locations are
roml used.

30

Data Definitions

Built-in basic type. Type void is used to indicate no specific type in

void places where a type is required.

readonly Writes to this variable should be dis-allowed

bif Used for compiler built in function prototypes on the same line
__attribute__

Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions, typedef,
Named Registers

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum lid] {[id [= cexpr]] }

T

One or more comma separated

The id after enum is created as a type large enough to the
largest constant in the list. The ids in the list are each created
as a constant. By default the first id is set to zero and they
increment by one. If a = cexpr follows an id that id will have
the value of the constant expression an d the following list will
increment by one.

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be 2

// and blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, typedef, Named
Registers

Structures and Unions

Struct structure type: creates a collection of one or more

variables, possibly of different types, grouped together as a

single unit.

struct[*] [id] { type-qualifier [*] id [:bits]; } [id]

31

PCD_May 2015

T T

One or more, Zero
semi-colon or more
separated

For example:
struct data record {
int al21;
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data var; //data _record is a structure type

//data_var is a variable

Field Allocation

- Fields are allocated in the order they appear.

- The low bits of a byte are filled first.

- Fields 16 bits and up are aligned to a even byte boundary. Some Bits may by unused.

- No Field will span from an odd byte to an even byte unless the field width is a multiple of 16 bits.

Union type: holds objects of different types and sizes, with
the compiler keeping track of size and alignment
requirements. They provide a way to manipulate different
kinds of data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; 1 [id]
T L
One or more, Zero
semi-colon or more
separated
For example:

union u_tab {
int ival;
long 1lval;
float fwval;

//u_tag is a union type that can

bi hold a float

32

Data Definitions

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types,
typedef, Named Registers

typedef

If typedef is used with any of the basic or special types it
creates a new type name that can be used in declarations. The
identifier does not allocate space but rather may be used as a
type specifier in other data definitions.

typedef [type-qualifier] [type-specifier] [declarator];

For example:

// mybyte can be used in declaration
to

// specify the int type
// mybyte can be used in declaration
to

// specify the int type

typedef int mybyte;

typedef short mybit;

typedef enum {red,

//colors can be used to declare
green=2,blue}colors;

//variable of this enum type

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions,
Enumerated Types, Named Registers

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which
can be used to define a memory region that can be RAM, program
eeprom, data eeprom or external memory. Addressmod replaces the
older typemod (with a different syntax).

The usage is :

addressmod

(name, read function,write function,start address,end
_address, share);

33

PCD_May 2015

Where the read_function and write_function should be blank for RAM,
or for other memory should be the following prototype:

// read procedure for reading n bytes from the memory
starting at location addr

void read function(int32 addr,int8 *ram, int nbytes) {
}

//write procedure for writing n bytes to the memory
starting at location addr
void write function(int32 addr,int8 *ram, int nbytes) {

}

For RAM the share argument may be true if unused RAM in this area can
be used by the compiler for standard variables.

Example:
void DataEE Read(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

}

void DataEE Write (int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write_eeprom(addr,*ram);

}
addressmod (DataEE,DataEE read,DatakEE write,5,0xff);

// would define a region called DataEE between
// 0x5 and 0xff in the chip data EEprom.

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are
not required, the variables assigned in the memory region defined by
the addressmod can be treated as a regular variable in all valid
expressions. Any structure or data type can be used with an

34

Data Definitions

addressmod. Pointers can also be made to an addressmod data type.
The #type directive can be used to make this memory region as default
for variable allocations.

The syntax is :
#type default=addressmodname // all the variable
declarations that

// follow will use
this memory region
#type default= // goes back to the
default mode

For example:

Type default=emi //emi is the
addressmod name defined

char buffer([8192];

#include <memoryhog.h>

#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different ways
are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is used
before the identifier, the identifier is treated as a constant. Constants should be initialized and may
not be changed at run-time. This is an easy way to create lookup tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The address
used for ROM data is not a physical address but rather a true byte address. The & operator can be
used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table[l6]={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:

The constant ID will be at 1C00.
#ORG 0x1C00, O0x1COF
CONST CHAR ID[10]= {"123456789"};

35

PCD_May 2015
Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant variable
can be accessed in the code. This is a great way of storing constant data in large programs.
Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code at
the start of the structure as does constant.

For example:
char rom commands|[] = {“put|get|status|shutdown”};

ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable length
strings.
The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.
For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
[]
o write program memory(address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.
- Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement the
functionality.

The data placed in program memory using the methods listed above can be read from width the
following functions:

® read program memory ((address, dataptr, count)

36

Data Definitions

- Reads count bytes from program memory at address to RAM at dataptr. Every
fourth byte of data is read as 0x00

® read rom memory ((address, dataptr, count)

- Reads count bytes from program memory at the logical address to RAM at
dataptr.

These functions can be used only on chips that allow reads from program memory. The compiler
uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a
processor register. This syntax is being proposed as a C extension for embedded
use. The same functionality is provided with the non-standard #byte, #word, #bit
and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

37

PREPROCESSOR

PRE-PROCESSOR DIRECTORY

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is
dependent on the command. Many commands do not allow other syntactical elements on the
remainder of the line. A table of commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-processor
directive that compilers will accept and ignore or act upon the following data. This implementation
will allow any pre-processor directives to begin with #PRAGMA. To be compatible with other
compilers, this may be used before non-standard features.

Examples:

Both of the following are valid
#INLINE

#PRAGMA INLINE

E200 (Y 10TV
definedinc
#device
device

#if expr #else #elif #endif
FEITON wvvvvvveieieieieieieieveveveveveeeeeeees
#export (options).

11T

11 0 =T OOt
#fill_rom .
2 (V1Y T R
2 1SN (o010 01101=] 1 R

PreProcessor

2210 DUUUU OO PRSP PP UPRTRRRN 65
#ifdef #ifndef #elSe Helif HENAITccoo it e e e e e e eeaea 66
FHONOIE WAITINGS +.eetieeeeiieitieieeeeea ettt ee e e e e e e aetteeeeaaeaaanaeteeeeeaeeaaannteeeeeaaeesannssseaaaaeeaannnsbnneaaaeasannse 67
#import (options)

22 1110] [0 [N
221011101
#int_ xxxx

#locate................
2211010 (1] LR

#separate............
LY (1= | [PPN

#use capture

#use delaycccceeveeeieiiiinnenn,
#use dynamic_memory

#use fast 10cceeeeveeeriiiiininnnnn.
#use fixed_io
#usei2c..............
#use profile

#use rtos
240 1S =) O PP OUPPPRRRRN
#use standard_io
#use timer...............

#use touchpad....

39

PCD_May 2015

__address___

A predefined symbol __address__ may be used to indicate a
type that must hold a program memory address.

For example:
address testa = 0x1000 //will allocate 16 bits for test a
and
//initialize to 0x1000
_attribute x
Syntax: __attribute__x
Elements: X is the attribute you want to apply. Valid values for x are as follows:

((packed))
By default each element in a struct or union are padded to be evenly
spaced by the size of 'int'. This is to prevent an address fault when
accessing an element of struct. See the following example:
struct
{
int8 a;
int16 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24
PICmicrocontrollers), ‘test' would take 4 bytes even though it is
comprised of3 bytes. By applying the 'packed' attribute to this struct
then it would take 3 bytes as originally intended:
struct __attribute__ ((packed))
{

int8 a;

intl6 b;

} test;

Care should be taken by the user when accessing individual
elements of a packed struct — creating a pointer to 'b' in 'test' and
attempting to dereference that pointer would cause an address fault.
Any attempts to read/write 'b' should be done in context of 'test' so
the compiler knows it is packed:

test.b =5;

((aligned(y))
By default the compiler will alocate a variable in the first free

memory location. The aligned attribute will force the compiler to

40

PreProcessor

Purpose
Examples:

Example Files:

allocate a location for the specified variable at a location that is
modulus of the y parameter. For example:
int8 array[256] __attribute__((aligned(0x1000)));
This will tell the compiler to try to place ‘array' at either 0x0, 0x1000,
0x2000, 0x3000, 0x4000, etc.
To alter some specifics as to how the compiler operates
struct __attribute__ ((packed))
{
int8 a;
int8 b;
} test;
int8 array[256] __attribute__ ((aligned(0x1000)));
None

#asm #endasm #asm asis

Syntax: #ASM or #ASM ASIS code #ENDASM
Elements: code is a list of assembly language instructions
Examples: int find parity(int data) {

Example Files:

int count;
#asm

MOV #0x08, WO
MOV WO, count
CLR WO

loop:

XOR.B data, W0
RRC data,WO0
DEC count, F
BRA NZ, loop
MOV #0x01,WO0
ADD count, F
MOV count, WO
MOV WO. RETURN
#endasm

}

FFT.c

41

PCD_May 2015

Also See: None
ADD Wa,Wb,wd wd

Wa+

Wb
ADD f.w WO = f+Wd
ADD lit1o,wd wd = lit10+wd
ADD Wa,lit5,Wd Wd = lit5+Wa
ADD f,F f = f+wd
ADD acc Acc = AccA+AccB
ADD wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litl0,wd Wd = lit10+Wd (byte)
ADD wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litl0,wd wWd = lit10+Wd (byte)
ADD.B f,F f = f+wd (byte)
ADD.B Wa,Wb,Wd wd = Wa+Wb (byte)
ADD.B Wa,lit5,wd wd = lits+Wa (byte)
ADD.B fW WO = f+Wd (byte)
ADDC fW w

d

f

+

W

a

+

C
ADDC litao,wd wd = lit10+Wd+C
ADDC Wa,lit5,wd Wd = lit5+Wa+C
ADDC f,F wd = f+Wa+C
ADDC Wa,Wb,wd wWd = Wa+Wb+C
ADDC.B lit10,Wd wd = [it10+Wd+C (byte)
ADDC.B Wa,Wb,wWd Wd = Wa+Whb+C (byte)
ADDC.B Wa,lits5,wd Wd = lit5+Wa+C (byte)
ADDC.B fW wd = f+Wa+C (byte)
ADDC.B f,F Wwd = f+Wa+C (byte)
AND Wa,Wwb,wd Wwd =Wa.&Wb
AND 1it10,Wd Wd = 1it10.&.Wd

42

PreProcessor

AND
AND
AND
AND.B
AND.B
AND.B
AND.B
AND.B
ASR
ASR
ASR
ASR
ASR
ASR.B
ASR.B
ASR.B
BCLR
BCLR
BCLR.B
BRA
BRA
BRA BZ
BRAC
BRA GE
BRA GEU
BRA GT
BRA GTU
BRA LE
BRA LEU
BRALT
BRALTU
BRA N
BRA NC
BRA NN
BRA NOV
BRA NZ
BRA OA
BRA OB
BRA OV
BRA SA
BRA SB
BRA Z
BREAK
BSET
BSET
BSET.B
BSW.C
BSW.Z

fW

f,F
Wa,lit5,wd
f,w
Wa,Wb,Wd
lit10,wd

f.F
Wa,lit5,Wd
fW

f,F

Wa,Wwd
Wa,lit4,Wd
Wa,Wb,Wd
f,F

fW

Wa,Wd

f.B

Wd,B
Wd,B

mmmmmmmmmmmmmmmmmmmmmgm
o

WO =f.&Wa
f=f.&Wa
wd = lit5.&Wa

WO = f.&Wa (byte)

Wd =Wa.& Wb (byte)

wd = 1it10.&.Wd (byte)

f = f.& Wa (byte)

wd = lit5.&.Wa (byte)

WO =f>>1 arithmetic

f=f>>1 arithmetic
Wd=Wa>>1 arithmetic

Wd =Wa >> lit4 arithmetic

Wd =Wa >> Wb arithmetic
f=1>>1 arithmetic (byte)

WO =f>>1 arithmetic (byte)
Wd=Wa>>1 arithmetic (byte)
f.bit=0

Wa.bit =0

Wa.bit = 0 (byte)

Branch unconditionally

Branch PC+Wa

Branch if Zero

Branch if Carry (no borrow)
Branch if greater than or equal
Branch if unsigned greater than or equal
Branch if greater than

Branch if unsigned greater than
Branch if less than or equal
Branch if unsigned less than or equal
Branch if less than

Branch if unsigned less than
Branch if negative

Branch if not carry (Borrow)
Branch if not negative

Branch if not Overflow

Branch if not Zero

Branch if Accumulator A overflow
Branch if Accumulator B overflow
Branch if Overflow

Branch if Accumulator A Saturate
Branch if Accumulator B Saturate
Branch if Zero

ICD Break

Wa.bit=1

f.bit=1

Wav.bit = 1 (byte)

WaWb=C

WaWb =27

43

PCD_May 2015

BTG
BTG
BTG.B
BTSC
BTSC
BTSS
BTSS
BTST
BTST.C
BTST.C
BTST.Z
BTST.Z
BTSTS
BTSTS.C
BTSTS.Z
CALL
CALL
CLR
CLR
CLR
CLR
CLR.B
CLR.B
CLR.B
CLRWDT
COM
COM
COM
COM.B
COM.B
COM.B
cP

cP

cP
CP.B
CP.B
CP.B
CPO
CPO
CPO.B
CPO.B
CPB
CPB
CPB
CPB.B
CPB.B
CPB.B
CPSEQ

Wd,B
f.B
Wd,B
f.B
Wd,B
f,B
Wd,B
f,B
Wa,Wd
Wd,B
Wd,B
Wa,wd
f,.B
Wd,B
wd,B

a

wd

f,F
acc,da,dc,pi
W
Wd
W

wd

f,F

f,F

fwW
Wa,Wd
fwW
Wa,Wd
f,F

W, f
Wa,Wd
Wd,lit5
W, f
Wa,Wd
Wd,lit5
Wd
W, f
Wd
W, f
Wd,lit5
Wa,Wd
W, f
Wa,Wd
Wd,lit5
W, f
Wa,Wd

Wa.bit = ~Wa.bit

f.bit = ~f.bit

Wa.bit = ~Wa.hit (byte)

Skip if f.bit=0

Skip if Wa.bit4 =0

Skip if f.bit =1

Skip if Wa.bit =1

Z = f.bit

C =WaWb

C = Wa.hit

Z = Wa.bit

Z =WaWhb

Z =f.bit; f.hit=1

C = Wa.bit; Wa.bit =1

Z =Wa.bit; Wa.bit=1

Call subroutine

Call [Wa]

f=0

Acc = 0; prefetch=0

wo0=0

wd=0

WO = 0 (byte)

Wd =0 (byte)

f =0 (byte)

Clear WDT

f=~f

WO = ~f

wd = ~Wa

WO = ~f (byte)

wWd = ~Wa (byte)

f=~f (byte)

Status set for f - WO

Status set for Wb 4€* Wa
Status set for Wa &€* lits
Status set for f - WO (byte)
Status set for Wb &€ Wa (byte)
Status set for Wa &€" lit5 (byte)
Status set for Wa &€“ 0

Status set for f 4€“ 0

Status set for Wa &€* 0 (byte)
Status set for f 4€“ 0 (byte)
Status set for Wa &€" lit5 4€“ C
Status set for Wb 4€“ Wa a€“ C
Status set for f &€“WO0 - C
Status set for Wb &€ Wa a€“ C (byte)
Status set for Wa &€" lits 4€“ C (byte)
Status set for f 4€“ WO - C (byte)
Skip if Wa = Wb

44

PreProcessor

CPSEQ.B
CPSGT
CPSGT.B
CPSLT
CPSLT.B
CPSNE
CPSNE.B
DAW.B
DEC
DEC
DEC
DEC.B
DEC.B
DEC.B
DEC2
DEC2
DEC2
DEC2.B
DEC2.B
DEC2.B
DISI
DIV.S
DIV.SD
DIV.U
DIV.UD
DIVF
DO

DO

ED
EDAC
EXCH
FBCL
FEX
FF1L
FF1R
GOTO
GOTO
INC
INC
INC
INC.B
INC.B
INC.B
INC2
INC2
INC2
INC2.B
INC2.B

Wa,Wd
Wa,wd
Wa,Wwd
Wa,wd
Wa,Wwd
Wa,Wd
Wa,Wd
Wd
Wa,Wd
W

f,F

f,F

fW
Wa,wd
Wa,Wd
f.W

f,F
Wa,Wd
fW

f,F

lit14
Wa,wd
Wa,Wd
Wa,wWd
Wa,Wd
Wa,Wd
lit14,a
Wd,a
Wd*Wd,acc,da,db
Wd*Wd,acc,da,db
Wa,Wd
Wa,wWd

Wa,Wd
Wa,Wd
a

Wd

fW
Wa,wd
f,F
Wa,wd
f,F

f.wW

fW
Wa,Wd
f,F

f.w

f,F

Skip if Wa = Wb (byte)

Skip if Wa > Wb

Skip if Wa > Wb (byte)

Skip if Wa < Wb

Skip if Wa < Wb (byte)

Skip if Wa 1= Wb

Skip if Wa I= Wb (byte)

Wa = decimal adjust Wa

Wd = Wa &€* 1

WO =fa€“ 1

f=fa€E" 1

f=fa€"“ 1 (byte)

WO = f 3€" 1 (byte)

Wd = Wa a€“ 1 (byte)

Wd = Wa &€" 2

W0 =fa€"2

f=fa€" 2

Wd =Wa &€ 2 (byte)

WO = f 8€" 2 (byte)

f=fa€" 2 (byte)

Disable Interrupts lit14 cycles
Signed 16/16-bit integer divide
Signed 16/16-bit integer divide (dword)
UnSigned 16/16-bit integer divide
UnSigned 16/16-bit integer divide (dword)
Signed 16/16-bit fractional divide
Do block lit14 times

Do block Wa times

Euclidean Distance (No Accumulate)
Euclidean Distance

Swap Wa and Wb

Find bit change from left (Msb) side
ICD Execute

Find first one from left (Msb) side
Find first one from right (Lsb) side
GoTo

GoTo [Wa]

Wo=f+1

Wd=Wa+1

f=f+1

Wd =Wa + 1 (byte)

f=f+1 (byte)

WO =f + 1 (byte)

WOo=f+2

wd=Wa+2

f=f+2

WO =f + 2 (byte)

f=f+ 2 (byte)

45

PCD_May 2015

INC2.B
IOR
IOR
IOR
IOR
IOR
IOR.B
IOR.B
IOR.B
IOR.B
IOR.B
LAC
LNK
LSR
LSR
LSR
LSR
LSR
LSR.B
LSR.B
LSR.B
MAC
MAC
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.D
MOV.D
MOVSAC
MPY
MPY
MPY.N
MSC
MUL
MUL.B

Wa,Wd

lit10,wd

f,F

W

Wa,lit5,Wd
Wa,Wb,Wd
Wa,Wb,Wd

f.W

lit1o,wd
Wa,lit5,Wd

f,F

wd {lit4},acc

lit14

W

Wa,lit4,Wd
Wa,Wd

f,F

Wa,Wb,Wd

fW

f,F

Wa,wd
Wd*Wd,acc,da,dc
Wd*Wc,acc,da,dc,pi
W, f

f.w

f,F

Wd,?

Wa+lit, Wd

?,Wd

lit16,Wd

Wa,Wd
Wa,Wd+lit

lit8,wd

W, f

fwW

f,F

Wa-lit, Wd
Wa,Wd+lit
Wa,wd

Wa,Wd

Wa,wd
acc,da,dc,pi
Wd*Wc,acc,da,dc
Wd*Wd,acc,da,dc
Wd*Wc,acc,da,dc
Wd*Wc,acc,da,dc,pi
W, f

W, f

Wd =Wa + 2 (byte)
wd = lit10 | wd
f=f|Wa

W0 =f| Wa

Wwd =Wa.|.lit

wd = Wa.|.Wb

Wd =Wa.|.Wb (byte)
WO = f | Wa (byte)

wd = lit10 | wd (byte)
wWd = Wa.|.lit5 (byte)
f=f| Wa (byte)

Acc = Wa shifted slit4
Allocate Stack Frame
wWo=f>>1

Wd =Wa >> lit4
Wd=Wa>>1
f=f>>1

Wd = Wb >>Wa

WO =f>> 1 (byte)
f=1>>1 (byte)

Wd = Wa >> 1 (byte)
Acc = Acc + Wa * Wa; {prefetch}
Acc = Acc + Wa * Wb; {{[W13] = Acc}; {prefetch}
f=Wa

Wo = f

f=f

F=Wa

wd = [Wa +SIit10]
wd=f

wd = litl6

Wwd =Wa

[wd + SIit10] = Wa

wd = 1it8 (byte)

f =Wa (byte)

WO = f (byte)

f =f (byte)

Wd = [Wa +SIit10] (byte)
[wd + Slit10] = Wa (byte)
Wd =Wa (byte)
Wd:wWd+1 = Wa:Wa+1
Wd:wWd+1 = Wa:Wa+1
Move ?to ? and ? To ?
Acc = Wa*Wb

Square to Acc

Acc = -(Wa*Wb)

Acc = Acc &€ Wa*Wb
W3:wW2 =f*Wa
W3:W?2 = f * Wa (byte)

46

PreProcessor

MUL.SS
MUL.SU
MUL.SU
MUL.US
MUL.UU
MUL.UU
NEG
PUSH
PUSH.D
PUSH.S
PWRSAV
RCALL
RCALL
REPEAT
REPEAT
RESET
RETFIE
RETLW
RETLW.B
RETURN
RLC
RLC
RLC
RLC.B
RLC.B
RLC.B
RLNC
RLNC
RLNC
RLNC.B
RLNC.B
RLNC.B
RRC
RRC
RRC
RRC.B
RRC.B
RRC.B
RRNC
RRNC
RRNC
RRNC.B
RRNC.B
RRNC.B
SAC
SAC.R
SE
SETM

Wa,Wd
Wa,wd
Wa,lit5,Wd
Wa,wd
Wa,Wwd
Wa,lit5,Wd
f,F

Wd

Wd

litl
a
wd
lit14
wd

lit10,wd
lit10,wd

Wa,wd
f,F

f.w

f,F

f.w
Wa,Wd
Wa,Wd
f,F

fwW

W
Wa,Wd
f,F

f,F
Wa,Wd
fwW

fW

f,F
Wa,Wd
f,F

fwW
Wa,wd
f,F
Wa,Wd
fW
acc,{lit4},wd
acc,{lit4},wd
Wa,Wd
Wd

{Wd+1,wWd}= sign(Wa) * sign(Wb)
{Wd+1,wWd} = sign(Wa) * unsign(Wb)
{Wd+1,wWd}= sign(Wa) * unsign(lit5)
{Wd+1,wWd} = unsign(Wa) * sign(Wb)
{Wd+1,wd} = unsign(Wa) * unsign(Wb)
{wd+1,wd} = unsign(Wa) * unsign(lit5)
f=-f

Push Wa to TOS

PUSH double Wa:Wa + 1 to TOS
PUSH shadow registers

Enter Power-saving mode litl

Call (relative)

Call Wa

Repeat next instruction (lit14 + 1) times
Repeat next instruction (Wa + 1) times
Reset

Return from interrupt enable

Return; Wa = 1it10

Return; Wa = lit10 (byte)

Return

Wd = rotate left through Carry Wa

f = rotate left through Carry f

WO = rotate left through Carry f

f = rotate left through Carry f (byte)

WO = rotate left through Carry f (byte)
Wd = rotate left through Carry Wa (byte)
Wd = rotate left (no Carry) Wa

f = rotate left (no Carry) f

WO = rotate left (no Carry) f

WO = rotate left (no Carry) f (byte)

Wd = rotate left (no Carry) Wa (byte)

f = rotate left (no Carry) f (byte)

f = rotate right through Carry f

Wd = rotate right through Carry Wa
WO = rotate right through Carry f

WO = rotate right through Carry f (byte)
f = rotate right through Carry f (byte)
Wd = rotate right through Carry Wa (byte)
f = rotate right (no Carry) f

WO = rotate right (no Carry) f

Wd = rotate right (no Carry) Wa

f = rotate right (no Carry) f (byte)

Wd = rotate right (no Carry) Wa (byte)
WO = rotate right (no Carry) f (byte)
Wd = Acc slit 4

Wd = Acc slit 4 with rounding

Wd = sign-extended Wa

Wd = OXFFFF

a7

PCD_May 2015

SETM
SETM.B
SETM.B
SETM.B
SFTAC
SFTAC
SL

SL

SL

SL

SL

SL.B
SL.B
SL.B
SSTEP
SUB
SUB
SuUB
SuUB
SuUB
SuUB
SUB.B
SUB.B
SUB.B
SUB.B
SUB.B
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBBR
SUBBR
SUBBR
SUBBR
SUBBR.B
SUBBR.B
SUBBR.B
SUBBR.B
SUBR
SUBR
SUBR
SUBR

f,F

Wd

f,W

f,F

acc,wd
acc,lits
f.w
Wa,Wb,Wd
Wa,lit4,Wd
Wa,wd

f,F

W
Wa,wd

f,F

f.F

fW
Wa,Wb,Wd
Wa,lit5,wd
acc
litio,wd
Wa,lit5,wd
litao,wd
fw
Wa,Wb,Wd
f,F

fW
Wa,Wb,Wd
f,F
Wa,lit5,wd
litao,wd
litlo,wd
Wa,Wb,Wd
f,F
Wa,lit5,wd
fw
Wa,lit5,wd
fw

f,F
Wa,Wb,Wd
f,F

fw
Wa,Wb,Wd
Wa,lit5,wd
Wa,lit5,wd
f,F
Wa,Wb,Wd
f,W

WO = OXFFFF

Wd = OXFFFF (byte)

WO = OxFFFF (byte)

WO = OXFFFF (byte)
Arithmetic shift Acc by (Wa)
Arithmetic shift Acc by Slit6
W0o=f<<1

Wd =Wa << Wb

Wd =Wa <<it4
Wwd=Wa=<<1

f=f<<1

WO = f << 1 (byte)

Wd = Wa << 1 (byte)
f=f<<1 (byte)

ICD Single Step
f=fa€“"Wo

WO = f € WO

Wd = Wa &€“ Wb

Wd = Wa &€ lits

Acc = AccA a€“ AccB

Wd = Wd &€" 1it10

Wd = Wa a€" lit5 (byte)

Wd = Wd &€" it10 (byte)
WO = f a€“ WO (byte)

Wd = Wa &€" Wb (byte)
f=f &€“ WO (byte)

W0 =fa€" W0 a€“ C

Wd =Wa a€“ Wb a€“ C
f=fa€" W0 a€“C
Wd=Wa a€“lits - C

Wd =Wd &€" lit10 4€“ C
Wd = Wd &€" lit10 4€“ C (byte)
Wd = Wa &€“ Wb &4€° C (byte)
f=1fa€" WO a€” C (byte)
Wd =Wa &€" it - C (byte)
WO = f 8€“ W0 a€" C (byte)
Wd = lit5 8€*Wa - C
WO0=W0 &€“fa€“ C
f=WO0a€ fa€“ C
Wd=Waa€“Wb-C
f=WO0 a€" f 3€“ C (byte)
W0 =WO0 &€“ f a€“ C (byte)
Wd =Wa &€“"Wb - C (byte)
Wd = lit5 8€“ Wa - C (byte)
Wd = lit5 8€* Wb

f=WO0 a€" f

Wd =Wa &€"Wb

W0 = W0 &€* f

48

PreProcessor

SUBR.B Wa,Wb,wd Wd = Wa a€“ Wb (byte)
SUBR.B f,F f=WO0 a€“f (byte)
SUBR.B Wa,lits5,wd Wd = lit5 8€“ Wb (byte)
SUBR.B f,W W0 =WO0 a€“f (byte)
SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH WaWd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,Wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B WaWd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,Wd ROM[Wa] = Wd for odd ROM
TBLWTH.B WaWd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,Wd ROM[Wa] = Wd for even ROM
TBLWTL.B WaWd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame
URUN ICD Run
XOR Wa,Wb,wd wd =Wa Wb
XOR f,F f=fAWO0
XOR f,wW W0 =frWO0
XOR Wa,lit5,wd wd =WaAlits
XOR lit1o,wd wd =Wwd A litl0
XOR.B litao,wd wWd =Wd " lit10 (byte)
XOR.B f,W WO =f~WO0 (byte)
XOR.B Wa,lits5,wd Wd = Wa 7 lit5 (byte)
XOR.B Wa,Wb,wd Wd =Wa *Whb (byte)
XOR.B f,F f=f~WO0 (byte)
ZE Wa,Wd Wd=Wa & FF
#bank _dma
Syntax: #BANK_DMA
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array or structure
into DMA bank
Examples: #bank dma
struct {
int r w;
int c:w;

long unused :2;

long data: 4;

}a port; //the data for a port will be forced into memory bank
DMA

Example Files: None

49

PCD_May 2015

Also See: None

#bankx

Syntax: #BANKX
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array, or structure
into Bank X.
Examples: #bankx
struct {
int r w;
int c_d;

long unused : 2;

long data : 4;

} a_port;

// The data for a port will be forced into memory bank x.

Example Files: None

Also See: None

#banky

Syntax: #BANKY

Elements: None

Purpose: Tells the compiler to assign the data for the next variable, array, or structure
into Bank Y.

50

PreProcessor

Examples:

#banky

struct {

int r w;

int c d;

long unused : 2;

long data : 4;

} a port;

// The data for a port will be forced into memory bank y.

Example Files: None
Also See: None
#bit
Syntax: #BIT id =x.y
Elements: id is a valid C identifier,
X is a constant or a C variable,
y is a constant 0-7 (for 8-bit PICs)
y is a constant 0-15 (for 16-bit PICs)
Purpose: A new C variable (one bit) is created and is placed in memory at byte x and bit
y. This is useful to gain access in C directly to a bit in the processors special
function register map. It may also be used to easily access a bit of a standard C
variable.
Examples: #bit TIIF = 0x 84.3
fiiF = 0; // Clear Timer 0 interrupt flag
int result;
#bit result odd = result.0
iéh(resultiodd)
Example ex_glint.c
Files:
Also See: #BYTE, #RESERVE, #LOCATE, #WORD

51

PCD_May 2015

__buildcount___

Only defined if Options>Project Options>Global Defines has
global defines enabled.

This id resolves to a number representing the number of
successful builds of the project.

#build

Syntax: #BUILD(segment = address)
#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)
#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)
#BUILD(segment = size) : For STACK use only
#BUILD(ALT_INTERRUPT)
#BUILD(AUX_MEMORY)
Elements: segment is one of the following memory segments which may be assigned a

location: RESET, INTERRUPT , or STACK

address is a ROM location memory address. Start and end are used to specify a
range in memory to be used. Start is the first ROM location and end is the last
ROM location to be used.

RESET will move the compiler's reset vector to the specified location.
INTERRUPT will move the compiler's interrupt service routine to the specified
location. This just changes the location the compiler puts it's reset and ISR, it
doesn't change the actual vector of the PIC. If you specify a range that is larger
than actually needed, the extra space will not be used and prevented from use by
the compiler.

STACK configures the range (start and end locations) used for the stack, if not
specified the compiler uses the last 256 bytes. The STACK can be specified by
only using the size parameters. In this case, the compiler uses the last RAM
locations on the chip and builds the stack below it.

ALT_INTERRUPT will move the compiler's interrupt service routine to the alternate
location, and configure the PIC to use the alternate location.

nosleep is used to prevent the compiler from inserting a sleep at the end of main()

Bootload produces a bootloader-friendly hex file (in order, full block size).

52

PreProcessor

Purpose:

Examples:

Example
Files:
Also See:

NOSLEEP_LOCK is used instead of A sleep at the end of a main A infinite loop.

AUX_MEMORY - Only available on devices with an auxiliary memory segment.
Causes compiler to build code for the auxiliary memory segment, including the
auxiliary reset and interrupt vectors. Also enables the keyword INT_AUX which is
used to create the auxiliary interrupt service routine.

When linking multiple compilation units, this directive must appear exactly the
same in each compilation unit.

These directives are commonly used in bootloaders, where the reset and interrupt
needs to be moved to make space for the bootloading application.

/* assign the location where the compiler will
place the reset and interrupt vectors */
#build (reset=0x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#build (stack=0x1E00:0x1FFF)

#build(stack= 0x300) // When Start and End locations are not
specified, the compiler uses the last RAM locations available on the
chip.

None

#LOCATE, #RESERVE, #ROM, #ORG

#byte

Syntax: #byte id = x
Elements: id is a valid C identifier,
X is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate the variable at

address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at address
x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable, then
id and x share the same memory location.

53

PCD_May 2015

Examples: #byte status register = 0x42
#byte b port = 0x02C8

struct {
short int r w;
short int c_d;

int data : 6 ; } E port;
#byte a port = O0x2DA

a port.c d = 1;

Example ex_glint.c
Files:
Also See: #bit, #locate, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers,

Enumerated Types, Structures & Unions, Typedef

#case
Syntax: #CASE
Elements: None
Purpose: Will cause the compiler to be case sensitive. By default the compiler is case
insensitive. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.
Warning: Not all the CCS example programs, headers and drivers have been
tested with case sensitivity turned on.
Examples: #case
int STATUS;
void func() {
int status;
éfATUS = status; // Copy local status to
//global
}
Example ex_cust.c
Files:
Also See: None

54

PreProcessor

date

Syntax: __ DATE__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with the date of the compi
the form: "31-JAN-03"

Examp|es; printf ("Software was compiled on ");
printf (DATE);

Example None

Files:

Also See: None

#define

Syntax: #define id text
or
#define id(x,y...) text
Elements: id is a preprocessor identifier, text is any text, x,y is a list of local preprocessor
identifiers, and in this form there may be one or more identifiers separated by
commas.
Purpose: Used to provide a simple string replacement of the ID with the given text from this

point of the program and on.

In the second form (a C macro) the local identifiers are matched up with similar
identifiers in the text and they are replaced with text passed to the macro where it
is used.

If the text contains a string of the form #idx then the result upon evaluation will be
the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is
concatenated with parameter idy forming a new identifier.

Within the define text two special operators are supported:

#x is the stringize operator resulting in "x"
X#ty is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ...
and the local identifier used is __va_args__. In this case, all remaining

55

PCD_May 2015

arguments are combined with the commas.

Examples: #define BITS 8
a=a+BITS; //same as a=a+8;
#define hi (x) (x<<4)
a=hi (a); //same as a=(a<<4);
#define isequal (a,b) (primary ##a[b]==backup ##a[b])
// usage iseaqual (names,5) is the same as
// (primary names[5]==backup names[5])
#define str(s) #s
#define part (device) #include str (device##.h)
// usage part (16F887) is the same as
// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)
Example ex_stwt.c, ex_macro.c
Files:
Also See: #UNDEF, #IFDEF, #IFNDEF
definedinc
Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
Returns: A C status for the type of id entered as follows:
0 — not known
1 — typedef or enum
2 — struct or union type
3 — typemod qualifier
4 — defined function
5 — function prototype
6 — compiler built-in function
7 — local variable
8 — global variable
Function: This function checks the type of the variable or function being passed in
and returns a specific C status based on the type.
Availability: All devices
Requires: None.
Examples: intx,y=0;

56

PreProcessor

y = definedinc(x);

/l'y will return 7 — x is a local variable

Example Files: None

Also See: None
#device

Syntax: #DEVICE chip options

#DEVICE Compilation mode selection

Elements: Chip Options-

chip is the name of a specific processor (like: dsPIC33FJ64GP306), To get a

current list of supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

ADC=x Where x is the number of bits read_adc()
should return
ADC=SIGNED Result returned from read_adc() is

ADC=UNSIGNED
ICD=TRUE
ICD=n

WRITE_EEPROM=ASYNC

WRITE_EEPROM = NOINT

HIGH INTS=TRUE

signed.(Default is unsigned)

Return result from read_adc() is
unsigned.(default is UNSIGNED)

Generates code compatible with Microchips
ICD debugging hardware.

For chips with multiple ICSP ports specify the
port number being used. The default is 1.
Prevents WRITE_EEPROM from hanging
while writing is taking place. When used, do
not write to EEPROM from both ISR and
outside ISR.

Allows interrupts to occur while the
write_eeprom() operations is polling the done
bit to check if the write operations has
completed. Can be used as long as no
EEPROM operations are performed during an
ISR.

Use this option for high/low priority interrupts

57

PCD_May 2015

on the PIC® 18.

%f=. No 0 before a decimal pint on %f numbers
less than 1.

OVERLOAD=KEYWORD Overloading of functions is now supported.
Requires the use of the keyword for
overloading.

OVERLOAD=AUTO Default mode for overloading.

PASS_STRINGS=IN_RAM A new way to pass constant strings to a
function by first copying the string to RAM
and then passing a pointer to RAM to the
function.

CONST=READ_ONLY Uses the ANSI keyword CONST definition,
making CONST variables read only, rather
than located in program memory.

CONST=ROM Uses the CCS compiler traditional keyword
CONST definition, making CONST variables
located in program memory.

NESTED_INTERRUPTS=TR Enables interrupt nesting for PIC24, dsPIC30,

UE and dsPIC33 devices. Allows higher priority
interrupts to interrupt lower priority interrupts.
NORETFIE ISR functions (preceeded by a #int_xxx) will

use a RETURN opcode instead of the
RETFIE opcode. This is not a commonly
used option; used rarely in cases where the
user is writing their own ISR handler.

NO_DIGITAL_INIT Normally the compiler sets all I/O pins to
digital and turns off the comparator. This
option prevents that action.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully
define the device. Be warned that a #DEVICE with a chip identifier, will clear all
previous #DEVICE and #FUSE settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The valid keywords
are CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and
ANSI mode, the compiler uses the default fuse settings NOLVP, PUT for chips with
these fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode.

ANSI Default data type is SIGNED all other modes default is UNSIGNED. C
is case sensitive, all other modes are case insensitive.

58

PreProcessor

Purpose:

Examples:

Example
Files:
Also See:

CCSs2 varl6 = NegConst8 is compiled as: varl6 = NegConst8 & 0xff (no sign extension)
CCs3 . The overload keyword is required.

CCS2 only The default #DEVICE ADC is set to the resolution of the part, all other modes
default to 8.
onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Chip Options -Defines the target processor. Every program must have exactly one
#DEVICE with a chip. When linking multiple compilation units, this directive must
appear exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing
code to be compiled without encountering errors created by compiler compliance.
As CCS discovers discrepancies in the way expressions are evaluated according to
ANSI, the change will generally be made only to the ANSI mode and the next major
CCS release.

Chip Options-

#device DSPIC33FJ64GP306

#device PIC24FJ64GA002 ICD=TRUE

#device ADC=10

#device ICD=TRUE ADC=10

Float Options-

f#device %$f=.

printf ("$£f",.5); //will print .5, without the directive it will print
0.5

Compilation mode selection-
#device CCS2

None

None

device

Syntax:

_ DEVICE__

Elements:

Purpose:

None

This pre-processor identifier is defined by the compiler with the base number of
the current device (from a #DEVICE). The base number is usually the number
after the C in the part number. For example the PIC16C622 has a base number of
622.

59

PCD_May 2015

Examples:

Example
Files:
Also See:

#if _ device ==71
SETUP ADC PORTS(ALL DIGITAL);
#endif

None

#DEVICE

#if expr #else #elif #endif

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optional
code
#endif
Elements: expr is an expression with constants, standard operators and/or
preprocessor identifiers. Code is any standard c source code.
Purpose: The pre-processor evaluates the constant expression and if it is non-
zero will process the lines up to the optional #ELSE or the #ENDIF.
Note: you may NOT use C variables in the #IF. Only preprocessor
identifiers created via #define can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if
the id is defined and O if it is not.
== and != operators now accept a constant string as both operands.
This allows for compile time comparisons and can be used with
GETENV() when it returns a string result.
Examples: #if MAX VALUE > 255

Example Files:

Also See:

long value;
#else
int wvalue;
#endif
#if getenv (“DEVICE”)=="PIC16F877"
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IFNDEF, getenv()

60

PreProcessor

#error

Syntax: #ERROR text
#ERROR / warning text
#ERROR / information text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this directive
appears in the file. The text may include macros that will be expanded
for the display. This may be used to see the macro expansion. The
command may also be used to alert the user to an invalid compile time
situation.

Examples: #if BUFFER SIZE>16
#error Buffer size is too large
fendif
#error Macro test: min(x,y)

Example Files: ex_psp.c

Also See: #WARNING

#export (options)

Syntax: #EXPORT (options)

Elements: FILE=filname
The filename which will be generated upon compile. If not given, the filname will be
the name of the file you are compiling, with a .0 or .hex extension (depending on
output format).

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will be visible to modules that import or link this relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that import or link
this relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

RELOCATABLE

61

PCD_May 2015

Purpose:

Examples:

Example
Files:
See Also:

CCS relocatable object file format. Must be imported or linked before loading into a
PIC. This is the default format when the #EXPORT is used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

RANGE-=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable object file or a
stand-alone HEX binary. A relocatable object file must be linked into your
application, while a stand-alone HEX binary can be programmed directly into the
PIC.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this may
be used for 8722 like devices with external memory.

#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc?2 (void) { /* some code */ }
void TimerFunc3 (void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but the
object this is being linked to can only see TimerTask ()

*/
None

#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation
Unit

62

PreProcessor

file
Syntax: __FILE__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the
file path and the filename of the file being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
_ FILE " at line " _LINE _ "\r\n");
Example Files: assert.h
Also See: __line__
filename
Syntax: __FILENAME__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the
filename of the file being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILENAME " at line " _ LINE__ "\r\n");
Example Files: None
Also See: __line_ _
#fill_rom
Syntax: #fill_rom value
Elements: value is a constant 16-bit value
Purpose: This directive specifies the data to be used to fill unused ROM locations. When

linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

63

PCD_May 2015

Examples: #£i11 rom 0x36
Example None
Files:
Also See: #ROM
#fuses
Syntax: #FUSES options
Elements: options vary depending on the device. A list of all valid options has been put at
the top of each devices .h file in a comment for reference. The PCW device edit
utility can modify a particular devices fuses. The PCW pull down menu VIEW |
Valid fuses will show all fuses with their descriptions.
Some common options are:
e LP, XT, HS, RC
o WDT, NOWDT
e PROTECT, NOPROTECT
e PUT, NOPUT (Power Up Timer)
e BROWNOUT, NOBROWNOUT
Purpose: This directive defines what fuses should be set in the part when it is

programmed. This directive does not affect the compilation; however, the
information is put in the output files. If the fuses need to be in Parallax format, add
a PAR option. SWAP has the special function of swapping (from the Microchip
standard) the high and low BYTES of non-program data in the Hex file. This is
required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For
example, the oscillator fuses are set up by the #USE delay directive. The debug,
No debug and ICSPN Fuses are set by the #DEVICE ICD=directive.

Some processors allow different levels for certain fuses. To access these levels,
assign a value to the fuse.

When linking multiple compilation units be aware this directive applies to the final
object file. Later files in the import list may reverse settings in previous files.

To eliminate all fuses in the output files use:
#FUSES none

To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

64

PreProcessor

Examples: #fuses HS,NOWDT

Example None

Files:

Also See: None

#hexcomment

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None

Purpose: Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the top of the

hex file.
Examples: #HEXCOMMENT Version 3.1 - requires 20MHz crystal
Example None
Files:
Also See: None

#id

Syntax: #ID number 32
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Number 3 2 is a 32 bit number, number is a 8 bit number, filename is any
valid PC filename and checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This
directive does not affect the compilation but the information is put in the
output file.

The first syntax will take a 32 -bit number and put one byte in each of the
four ID bytes in the traditional manner. The second syntax specifies the

65

PCD_May 2015

Examples:

Example Files:

Also See:

exact value to be used in each of the four ID bytes .

When a filename is specified the ID is read from the file. The format must
be simple text with a CR/LF at the end. The keyword CHECKSUM
indicates the device checksum should be saved as the ID.

#id 0x12345678
#id 0x12, 0x34, 0x45, 0x67

#id "serial.num"
#id CHECKSUM

ex_cust.c

None

#ifdef #ifndef #else #elif #endif

Syntax:

#|FDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

Elements:

Purpose:

Examples:

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor simply
checks to see if the specified ID is known to the preprocessor (created
with a #DEFINE). #IFDEF checks to see if defined and #IFNDEF checks
to see if it is not defined.

#define debug // Comment line out for no debug
#ifdef DEBUG

printf ("debug point a");
#endif

66

PreProcessor

Example Files:

Also See:

ex_sqw.c

#IF

#ignore_warnings

Syntax: #ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings
Elements: warnings is one or more warning numbers separated by commas
Purpose: This function will suppress warning messages from the compiler. ALL indicates no
warning will be generated. NONE indicates all warnings will be generated. If
numbers are listed then those warnings are suppressed.
Examples: #ignore warnings 203
while (TRUE) {
#ignore warnings NONE
Example None
Files:
Also See: Warning messages

#import (options)

Syntax:

#IMPORT (options)

Elements:

FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object
file. If neither ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object
file. If neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the
#IMPORT is used.

67

PCD_May 2015

Purpose:

Examples:

Example Files:

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

RANGE=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported
data.

SIZE=id
The identifier is made a constant with the size of the imported data.

This directive will tell the compiler to include (link) a relocatable object with
this unit during compilation. Normally all global symbols from the specified
file will be linked, but the EXCEPT and ONLY options can prevent certain
symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{

while (TRUE)

TimerTask() ;

}
/*
timer.o is linked with this compilation, but only TimerTask()
is visible in scope from this object.

*/

None

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple
Compilation Unit

#include

Syntax: #INCLUDE <filename>

or
#INCLUDE "filename"

68

PreProcessor

Elements:

Purpose:

Examples:

filename is a valid PC filename. It may include normal drive and path
information. A file with the extension ".encrypted" is a valid PC file. The
standard compiler #INCLUDE directive will accept files with this
extension and decrypt them as they are read. This allows include files to
be distributed without releasing the source code.

Text from the specified file is used at this point of the compilation. If a
full path is not specified the compiler will use the list of directories
specified for the project to search for the file. If the filename is in " then
the directory with the main source file is searched first. If the filename is
in <> then the directory with the main source file is searched last.

#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqw.c
Also See: None
#inline
Syntax: #INLINE
Elements: None
Purpose: Tells the compiler that the function immediately following the directive is
to be implemented INLINE. This will cause a duplicate copy of the code
to be placed everywhere the function is called. This is useful to save
stack space and to increase speed. Without this directive the compiler
will decide when it is best to make procedures INLINE.
Examples: #inline
swapbyte (int &a, int &b) {
int t;
t=a;
a=b;
b=t;
}
Example Files: ex_cust.c

69

PCD_May 2015

Also See: #SEPARATE

#INT_XXXX

Syntax: #INT_AC1 Analog comparator 1 output change
#INT_AC2 Analog comparator 2 output change
#INT_AC3 Analog comparator 3 output change
#INT_AC4 Analog comparator 4 output change
#INT_ADC1 ADC1 conversion complete
#INT_ADC2 Analog to digital conversion complete
#INT_ADCPO ADC pair 0 conversion complete
#INT_ADCP1 ADC pair 1 conversion complete
#INT_ADCP2 ADC pair 2 conversion complete
#INT_ADCP3 ADC pair 3 conversion complete
#INT_ADCP4 ADC pair 4 conversion complete
#INT_ADCP5 ADC pair 5 conversion complete
#INT_ADDRERR Address error trap
#INT_C1RX ECAN1 Receive Data Ready
#INT_CI1TX ECAN1 Transmit Data Request
#INT_C2RX ECAN2 Receive Data Ready
#INT_C2TX ECAN2 Transmit Data Request
#INT_CAN1 CAN 1 Combined Interrupt Request
#INT_CAN2 CAN 2 Combined Interrupt Request
#INT_CNI Input change notification interrupt
#INT_COMP Comparator event
#INT_CRC Cyclic redundancy check generator
#INT_DCI DCI transfer done
#INT_DCIE DCE error
#INT_DMAO DMA channel 0 transfer complete
#INT_DMA1 DMA channel 1 transfer complete
#INT_DMA2 DMA channel 2 transfer complete
#INT_DMA3 DMA channel 3 transfer complete
#INT_DMA4 DMA channel 4 transfer complete
#INT_DMAS DMA channel 5 transfer complete
#INT_DMAG DMA channel 6 transfer complete
#INT_DMA7 DMA channel 7 transfer complete

#INT_DMAERR

DMAC error trap

70

PreProcessor

#INT_EEPROM
#INT_EX1
#INT_EX4
#INT_EXTO
#INT_EXT1
#INT_EXT2
#INT_EXT3
#INT_EXT4
#INT_FAULTA
#INT_FAULTA2
#INT_FAULTB
#INT_IC1
#INT_IC2
#INT_IC3
#INT_IC4
#INT_IC5
#INT_IC6
#INT_IC7
#INT_IC8
#INT_LOWVOLT
#INT_LVD
#INT_MATHERR
#INT_MI2C
#INT_MI2C2
#INT_OC1
#INT_OC2
#INT_OC3
#INT_OC4
#INT_OC5
#INT_OC6
#INT_OC7
#INT_OC8
#INT_OSC_FAIL
#INT_PMP
#INT_PMP2
#INT_PWM1
#INT_PWM2
#INT_PWM3
#INT_PWM4

Write complete
External Interrupt 1
External Interrupt 4
External Interrupt O
External interrupt #1
External interrupt #2
External interrupt #3
External interrupt #4
PWM Fault A

PWM Fault A 2
PWM Fault B

Input Capture #1
Input Capture #2
Input Capture #3
Input Capture #4
Input Capture #5
Input Capture #6
Input Capture #7
Input Capture #8
Low voltage detected
Low voltage detected
Arithmetic error trap
Master 12C activity
Master2 12C activity
Output Compare #1
Output Compare #2
Output Compare #3
Output Compare #4
Output Compare #5
Output Compare #6
Output Compare #7
Output Compare #8

System oscillator failed

Parallel master port

Parallel master port 2

PWM generator 1 time based interrupt
PWM generator 2 time based interrupt
PWM generator 3 time based interrupt
PWM generator 4 time based interrupt

71

PCD_May 2015

#INT_PWMSEM

PWM special event trigger

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave 12C activity
#INT_SI2C2 Slave2 12C activity
#INT_SPI1 SPI1 Transfer Done
#INT_SPI1E SPI1E Transfer Done
#INT_SPI2 SPI2 Transfer Done
#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error

#INT_STACKERR Stack Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMERS Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG Timer 6 overflow
#INT_TIMER7 Timer 7 overflow
#INT_TIMERS Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UART1E UART1 error

#INT_UART2E UART?2 error

#INT_AUX Auxiliary memory ISR

Elements: NOCLEAR, LEVEL=n, HIGH, FAST, ALT
Purpose: These directives specify the following function is an interrupt function. Interrupt
functions may not have any parameters. Not all directives may be used with all
parts. See the devices .h file for all valid interrupts for the part or in PCW use the
pull down VIEW | Valid Ints

The MPU will jump to the function when the interrupt is detected. The compiler will
generate code to save and restore the machine state, and will clear the interrupt
flag. To prevent the flag from being cleared add NOCLEAR after the

#INT_xxxx. The application program must call ENABLE_INTERRUPTS(INT_xxxx)
to initially activate the interrupt.

72

PreProcessor

An interrupt marked FAST uses the shadow feature to save registers. Only one
interrupt may be marked fast. Any registers used in the FAST interrupt beyond the
shadow registers is the responsibility of the user to save and restore.

Level=n specifies the level of the interrupt.

Enable_interrupts specifies the levels that are enabled. The default is level 0 and
level 7 is never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:
HINT _XXxX
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
Compiler does a FAST save/restore of key registers.
Only one is allowed in a program.
#INT_xxxx HIGHLevel=3
Interrupt is enabled when levels 3 and below are enabled.
#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.
#INT _xxxx ALT

Interrupt is placed in Alternate Interrupt Vector instead of Default Interrupt
Vector.

Examples: #int_ad

adc_handler () {
adc_active=FALSE;

}
#int timerl noclear
isr() {
}

Example None

Files:

Also See: enable_interrupts(), disable_interrupts(), #iNT_DEFAULT,

line
Syntax: __line__
Elements: None

73

PCD_May 2015

Purpose: The pre-processor identifier is replaced at compile time with line
number of the file being compiled.

Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILE " at line " LINE _ "\r\n");
Example Files: assert.h
Also See: __file_

H#list

Syntax: #LIST
Elements: None
Purpose: #LIST begins inserting or resumes inserting source lines into the

.LST file after a #NOLIST.

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #NOLIST

#line

Syntax: #LINE number file name

Elements: Number is non-negative decimal integer. File name is optional.

Purpose: The C pre-processor informs the C Compiler of the location in your source
code. This code is simply used to change the value of _LINE_ and _FILE_
variables.

Examples: 1. void main () {

#line 10 // specifies the line number that

// should be reported for

74

PreProcessor

// the following line of input

2. #line 7 "hello.c"
// line number in the source file
// hello.c and it sets the
// line 7 as current line
// and hello.c as current file

Example Files: None
Also See: None
#locate
Syntax: #LOCATE id=x
Elements: id is a C variable,
X is a constant memory address
Purpose: #LOCATE allocates a C variable to a specified address. If the C variable was not
previously defined, it will be defined as an INT8.
A special form of this directive may be used to locate all A functions local
variables starting at a fixed location.
Use: #LOCATE Auto = address
This directive will place the indirected C variable at the requested address.
Exanuﬂes; // This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x800
Example ex_glint.c
Files:
Also See: #byte, #bit, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers,

Enumerated Types, Structures & Unions, Typedef

75

PCD_May 2015

#module

Syntax:

#MODULE

Elements:

Purpose:

Examples:

Example Files:

See Also:

None

All global symbols created from the #MODULE to the end of the file will
only be visible within that same block of code (and files #INCLUDE
within that block). This may be used to limit the scope of global
variables and functions within include files. This directive also applies to
pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote
scope of variables and functions as in the standard C methodology.
#MODULE does add some benefits in that pre-processor #DEFINE can
be given scope, which cannot normally be done in standard C
methodology.

int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g count;
#define G COUNT MAX 100
int GetCount (void) {return(g count);}
void SetCount (int newCount) {

if (newCount>G COUNT MAX)

newCount=G_COUNT_ MAX;

g count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope,
but the variable g count and the #define G COUNT MAX only
has scope to this file.

=/
None

#EXPORT, Invoking the Command Line Compiler, Multiple Compilation
Unit

76

PreProcessor

#nolist

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #LIST

#0CS

Syntax: #0OCS x

Elements: x is the clock's speed and can be 1 Hz to 100 MHz.

Purpose: Used instead of the #use delay(clock = x)

Examples: #include <18F4520.h>

Example Files:

Also See:

#device ICD=TRUE
#0CS 20 MHz
#use rs232 (debugger)

void main () {

None

#USE DELAY

77

PCD_May 2015

#opt

Syntax: #OPT n

Elements: All Devices: n is the optimization level 0-9

Purpose: The optimization level is set with this directive. This setting applies to
the entire program and may appear anywhere in the file. The default is
9 for normal.

Examples: #opt 5

Example Files: None

Also See: None

#org

Syntax:

#ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:

Purpose:

start is the first ROM location (word address) to use, end is the last ROM
location, segment is the start ROM location from a previous #ORG

This directive will fix the following function, constant or ROM declaration
into a specific ROM area. End may be omitted if a segment was
previously defined if you only want to add another function to the
segment.

Follow the ORG with a { } to only reserve the area with nothing inserted
by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local
variables and scratch variables are placed in low memory. This should
only be used if the ORG'd function will not return to the caller. The RAM
used will overlap the RAM of the main program. Add a AUTO=0 at the

78

PreProcessor

Examples:

Example Files:

Also See:

end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all
functions user and compiler generated from this point in the file until a
#ORG DEFAULT is encountered (no address range). If a compiler
function is called from the generated code while DEFAULT is in effect the
compiler generates a new version of the function within the specified
address range.

#ORG may be used to locate data in ROM. Because CONSTANT are
implemented as functions the #ORG should proceed the CONSTANT and
needs a start and end address. For a ROM declaration only the start
address should be specified.

When linking multiple compilation units be aware this directive applies to
the final object file. It is an error if any #ORG overlaps between files
unless the #ORG matches exactly.

#ORG 0x1E00, Ox1FFF

MyFunc () {

//This function located at 1E00
}

#0ORG 0x1EO00

Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl N0=12345;

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1C00

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

}
loader.c

#ROM

79

PCD_May 2015

#pin_select
Syntax: #PIN_SELECT function=pin_xx
Elements: function is the Microchip defined pin function name, such

as: ULRX (UARTL receive), INT1 (external interrupt 1),
T2CK (timer 2 clock), IC1 (input capture 1), OC1 (output

capture 1).

NULL NULL

ciout Comparator 1 Output

C20UT Comparator 2 Output

C30uT Comparator 3 Output

C40UT Comparator 4 Output

uiTx UART1 Transmit

U1RTS UART1 Request to Send

u2TX UART2 Transmit

U2RTS UART2 Request to Send

u3TXx UART3 Transmit

U3RTS UART3 Request to Send

u4TXx UART4 Transmit

U4RTS UART4 Request to Send

SDO1 SPI1 Data Output

SCK10UT SPI1 Clock Output

SS10UT SPI1 Slave Select
Output

SDO2 SPI2 Data Output

SCK20UT SPI2 Clock Output

SS20UT SPI2 Slave Select
Output

SDO3 SPI3 Data Output

SCK30UT SPI3 Clock Output

SS30UT SPI3 Slave Select
Output

SDO4 SPI4 Data Output

SCK40UT SPI4 Clock Output

SS40UT SPI4 Slave Select
Output

OC1 Output Compare 1

OC2 Output Compare 2

oC3 Output Compare 3

OC4 Output Compare 4

OC5 Output Compare 5

OC6 Output Compare 6

80

PreProcessor

OC7

0OCs8

0C9

OC10
OC11
0OC12
OC13
0OC14
OC15
OC16
C1TX
C2TX
CSDO
CSCKOUT
COFSOUT
UPDN1

UPDN2

CTPLS
SYNCO1

SYNCO2

REFCLKO
CMP1

CMP2
CMP3
CMP4

PWM4H
PWMA4L
QEI1CCMP

QEI2CCMP

MDOUT
DCIDO
DCISCKOUT
DCIFSOUT
INT1

INT2

INT3

INT4

Output Compare 7
Output Compare 8
Output Compare 9
Output Compare 10
Output Compare 11
Output Compare 12
Output Compare 13
Output Compare 14
Output Compare 15
Output Compare 16
CANL1 Transmit

CAN2 Transmit

DCI Serial Data Output
DCI Serial Clock Output
DCI Frame Sync Output
QEI1 Direction Status
Output

QEI2 Direction Status
Output

CTMU Output Pulse
PWM Synchronization
Output Signal

PWM Secondary
Synchronization Output
Signal

REFCLK Output Signal
Analog Comparator
Output 1

Analog Comparator
Output 2

Analog Comparator
Output 3

Analog Comparator
Output 4

PWM4 High Output
PWM4 Low Output
QEI1 Counter
Comparator Output
QEI2 Counter
Comparator Output
DSM Modulator Output
DCI Serial Data Output
DCI Serial Clock Output
DCI Frame Sync Output
External Interrupt 1 Input
External Interrupt 2 Input
External Interrupt 3 Input
External Interrupt 4 Input

81

PCD_May 2015

T1CK Timer 1 External Clock
Input

T2CK Timer 2 External Clock
Input

T3CK Timer 3 External Clock
Input

T4CK Timer 4 External Clock
Input

T5CK Timer 5 External Clock
Input

T6CK Timer 6 External Clock
Input

T7CK Timer 7 External Clock
Input

T8CK Timer 8 External Clock
Input

TOCK Timer 9 External Clock
Input

IC1 Input Capture 1

IC2 Input Capture 2

IC3 Input Capture 3

IC4 Input Capture 4

IC5 Input Capture 5

IC6 Input Capture 6

IC7 Input Capture 7

IC8 Input Capture 8

IC9 Input Capture 9

IC10 Input Capture 10

IC11 Input Capture 11

IC12 Input Capture 12

IC13 Input Capture 13

IC14 Input Capture 14

IC15 Input Capture 15

IC16 Input Capture 16

C1RX CANL1 Receive

C2RX CAN2 Receive

OCFA Output Compare Fault A
Input

OCFB Output Compare Fault B
Input

OCFC Output Compare Fault C
Input

U1RX UART1 Receive

U1CTS UART1 Clear to Send

U2RX UART2 Receive

U2CTS UART2 Clear to Send

U3RX UART3 Receive

U3CTS UART3 Clear to Send

82

PreProcessor

U4RX
U4CTS
SDI1
SCK1IN
SS1IN
SDI2
SCK2IN
SS2IN
SDI3
SCK3IN
SS3IN
SDI4
SCKA4IN
SS4IN
CSD
CSCK
COFS
FLTA1
FLTA2
QEA1
QEA2
QEB1
QEB2
INDX1
INDX2
HOME1
HOME2
FLT1
FLT2
FLT3
FLT4
FLT5
FLT6
FLT7
FLT8
SYNCI1

SYNCI2
DCIDI
DCISCKIN
DCIFSIN
DTCMP1
DTCMP2

DTCMP3

UART4 Receive
UART4 Clear to Send
SPI1 Data Input

SPI1 Clock Input
SPI1 Slave Select Input
SPI2 Data Input

SPI2 Clock Input
SPI2 Slave Select Input
SPI3 Data Input

SPI3 Clock Input
SPI3 Slave Select Input
SPI4 Data Input

SPI14 Clock Input
SPI4 Slave Select Input
DCI Serial Data Input
DCI Serial Clock Input
DCI Frame Sync Input
PWML1 Fault Input
PWM2 Fault Input
QEI1 Phase A Input
QEI2 Phase A Input
QEI1 Phase B Input
QEI2 Phase B Input
QEI1 Index Input
QEI2 Index Input
QEI1 Home Input
QEI2 Home Input
PWML1 Fault Input
PWM2 Fault Input
PWM3 Fault Input
PWM4 Fault Input
PWMS5 Fault Input
PWM6 Fault Input
PWM?7 Fault Input
PWMS8 Fault Input
PWM Synchronization
Input 1

PWM Synchronization
Input 2

DCI Serial Data Input
DCI Serial Clock Input
DCI Frame Sync Input
PWM Dead Time
Compensation 1 Input
PWM Dead Time
Compensation 2 Input
PWM Dead Time
Compensation 3 Input

83

PCD_May 2015

DTCMP4 PWM Dead Time
Compensation 4 Input
DTCMP5 PWM Dead Time
Compensation 5 Input
DTCMP6 PWM Dead Time
Compensation 6 Input
DTCMP7 PWM Dead Time

Compensation 7 Input

pin_xx is the CCS provided pin definition. For example:
PIN_C7, PIN_BO, PIN_D3, etc.

Purpose: On PICs that contain Peripheral Pin Select (PPS), this
allows the programmer to define which pin a peripheral is
mapped to.
Examples: #pin_select ULTX=PIN C6
#pin select UIRX=PIN C7
#pin_select INT1=PIN_BO
Example None
Files:
Also See: None
__pcd__
Syntax: __PCD__
Elements: None
Purpose: The PCD compiler defines this pre-processor identifier. It may be
used to determine if the PCD compiler is doing the compilation.
Examples: #ifdef _ pcd

Example Files:

Also See:

#device dsPIC33FJ256MC710
#endif

ex_sqw.c

None

84

PreProcessor

#pragma

Syntax: #PRAGMA cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C
compilers. This compiler will accept this directive before any other pre-
processor command. In no case does this compiler require this
directive.

Examples: #pragma device PIC16C54

Example Files: ex_cust.c

Also See: None

#profile

Syntax: #profile options

Elements: options may be one of the following:

function Profiles the start/end of functions and all
5 profileout() messages.

functi Profiles the start/end of functions,
ons, parameters sent to functions, and all
param profileout() messages.

eters

profileo Only profile profilout() messages.

ut

paths Profiles every branch in the code.
off Disable all code profiling.

on Re-enables the code profiling that was

previously disabled with a #profile off
command. This will use the last
options before disabled with the off
command.

85

PCD_May 2015

Purpose:

Examples:

Example Files:

Large programs on the microcontroller may generate lots of profile data, which
may make it difficult to debug or follow. By using #profile the user can
dynamically control which points of the program are being profiled, and limit
data to what is relevant to the user.

#profile off
void BigFunction (void)
{
// BigFunction code goes here.
// Since #profile off was called above,
// no profiling will happen even for other
// functions called by BigFunction() .
}

#profile on

ex_profile.c

Also See: #use profile(), profileout(), Code Profile overview

#recursive

Syntax: #RECURSIVE

Elements: None

Purpose: Tells the compiler that the procedure immediately following the directive
will be recursive.

Examples: #recursive

Example Files:

Also See:

int factorial (int num) {
if (num <= 1)
return 1;
return num * factorial (num-1) ;

}

None

None

86

PreProcessor

#reserve
Syntax: #RESERVE address
or
#RESERVE address, address, address
or

#RESERVE start:end

Elements: address is a RAM address, start is the first address and end is the last address
Purpose: This directive allows RAM locations to be reserved from use by the
compiler. #RESERVE must appear after the #DEVICE otherwise it will have no
effect. When linking multiple compilation units be aware this directive applies to the
final object file.
Examples; #DEVICE dsPIC30F2010
#RESERVE ~ 0x800:0x80B3
Example ex_cust.c
Files:
Also See: #0ORG
#rom
Syntax: #ROM address = {list}
#ROM type address = {list}
Elements: address is a ROM word address, list is a list of words separated by
commas
Purpose: Allows the insertion of data into the .HEX file. In particular, this may be

used to program the '84 data EEPROM, as shown in the following
example.

Note that if the #ROM address is inside the program memory space,
the directive creates a segment for the data, resulting in an error if a
#ORG is over the same area. The #ROM data will also be counted as
used program memory space.

The type option indicates the type of each item, the default is 16 bits.
Using char as the type treats each item as 7 bits packing 2 chars into
every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies

87

PCD_May 2015

to the final object file.

Some special forms of this directive may be used for verifying program
memory:

#ROM address = checksum
This will put a value at address such that the entire program memory
will sum to 0x1248

#ROM address = crcl6
This will put a value at address that is a crc16 of all the program
memory except the specified address

#ROM address = crc8
This will put a value at address that is a crc16 of all the program
memory except the specified address

Examples: #rom getnev ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={"(c)CCS, 2010"}

Example Files: None

Also See: #ORG

#separate

Syntax: #SEPARATE options

Elements: options is optional, and are:

STDCALL — Use the standard Microchip calling method, used in C30.
WO-W?7 is used for function parameters, rest of the working registers
are not touched, remaining function parameters are pushed onto the
stack.

ARG=Wx:WYy — Use the working registers Wx to Wy to hold function
parameters. Any remaining function parameters are pushed onto the
stack.

DND=Wx:Wy — Function will not change Wx to Wy working registers.

AVOID=Wx:Wy — Function will not use Wx to Wy working registers for
function parameters.

NO RETURN - Prevents the compiler generated return at the end of a

88

PreProcessor

Purpose:

Examples:

function.
You cannot use STDCALL with the ARG, DND or AVOID parameters.

If you do not specify one of these options, the compiler will determine
the best configuration, and will usually not use the stack for function
parameters (usually scratch space is allocated for parameters).

Tells the compiler that the procedure IMMEDIATELY following the
directive is to be implemented SEPARATELY. This is useful to prevent
the compiler from automatically making a procedure INLINE. This will
save ROM space but it does use more stack space. The compiler will
make all procedures marked SEPARATE, separate, as requested,
even if there is not enough stack space to execute.

#separate ARG=WO:W7 AVOID=W8:W15 DND=W8:W15
swapbyte (int *a, int *b) {

int t;
t=*a;
*a:*b;
*b=t;
}
Example Files: ex_cust.c
Also See: #INLINE
#serialize
Syntax: #SERIALIZE(id=xxx, next="x" | file="filename.txt" " |
listfile="filename.txt", "prompt="text", log="filename.txt") -
or
#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")
Elements: id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char

array

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address
specified. -or-

string=x - The integer x is the number of bytes to be written to address
specified.

unicode=n - If nis a 0, the string format is normal unicode. For n>0n
indicates the string

89

PCD_May 2015

Purpose:

Examples:

number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number
from, and this file is updated by the ICD programmer. It is assumed this
is a one line file with the serial number. The programmer will increment
the serial number.

listfile="filename.txt" - The file x is used to read the initial serial
number from, and this file is updated by the ICD programmer. It is
assumed this is a file one serial number per line. The programmer will
read the first line then delete that line from the file.

next="x" - The serial number X is used for the first load, then the hex
file is updated to increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial
number on each load. If used with one of the above three options then
the default value the user may use is picked according to the above
rules.

log=xxx - A file may optionally be specified to keep a log of the date,
time, hex file name and serial number each time the part is programmed.
If no id=xxx is specified then this may be used as a simple log of all
loads of the hex file.

Assists in making serial numbers easier to implement when working with
CCS ICD units. Comments are inserted into the hex file that the ICD
software interprets.

//Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8int8 const serialNumA=100;
#serialize (id=serialNumA, next="200", prompt="Enter the serial
number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA, next="200", prompt="Enter the serial
number", log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize (id=serialNumA,listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte
#serialize (dataee=0,binary=1,next="45",prompt="Put in Serial
number")

//Place string serial number at EEPROM address 0, reserving
2 bytes

90

PreProcessor

Example Files:

Also See:

#serialize (dataee=0, string=2,next="AB",prompt="Put in
Serial number")

None

None

#task

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK
directive is needed just before each RTOS task to enable the compiler to tell which functions are
RTOS tasks. An RTOS task cannot be called directly like a regular function can.

Syntax: #TASK (options)
Elements: options are separated by comma and may be:
rate=time
Where time is a number followed by s, ms, us, or ns. This specifies how
often the task will execute.
max=time
Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.
gueue=bytes
Specifies how many bytes to allocate for this task's incoming messages.
The default value is 0.
enabled=value
Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.
Purpose: This directive tells the compiler that the following function is an RTOS

task.

The rate option is used to specify how often the task should execute.
This must be a multiple of the minor_cycle option if one is specified in
the #USE RTOS directive.

The max option is used to specify how much processor time a task will
use in one execution of the task. The time specified in max must be

equal to or less than the time specified in the minor_cycle option of the
#USE RTOS directive before the project will compile successfully. The

91

PCD_May 2015

compiler does not have a way to enforce this limit on processor time, so
a programmer must be careful with how much processor time a task
uses for execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The

default queue value is 0.

Examples: #task (rate=ls, max=20ms,

Also See: #USE RTOS

__time_

Syntax: __TIME__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with the time
of the compile in the form:

Examples: printf ("Software was compiled on ");
printf(_ TIME);

Example Files: None

Also See: None

#type

Syntax: #TYPE standard-type=size

#TYPE default=area
#TYPE unsigned
#TYPE signed

#TYPE char=signed
#TYPE char=unsigned
#TYPE ARG=Wx:Wy
#TYPE DND=Wx:Wy
#TYPE AVOID=Wx:Wy
#TYPE RECURSIVE
#TYPE CLASSIC

92

PreProcessor

Elements:

Purpose:

Examples:

standard-type is one of the C keywords short, int, long, float, or double
sizeis 1,8,16, 48, or 64
area is a memory region defined before the #TYPE using the addressmod directive

Wx:Wy is a range of working registers (example: W0, W1, W15, etc)

By default the compiler treats SHORT as 8 bits , INT as 16 bits, and LONG as 32
bits. The traditional C convention is to have INT defined as the most efficient size for
the target processor. This is why it is 16 bits on the dsPIC/PIC24 ® . In order to help
with code compatibility a #TYPE directive may be used to allow these types to be
changed. #TYPE can redefine these keywords.

Note that the commas are optional. Be warned CCS example programs and
include files may not work right if you use #TYPE in your program.

Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable
storage. This is done by specifying default=area where area is a addressmod
address space.

When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the
default data type.

The ARG parameter tells the compiler that all functions can use those working
registers to receive parameters. The DND parameters tells the compiler that all
functions should not change those working registers (not use them for scratch
space). The AVOID parameter tells the compiler to not use those working registers
for passing variables to functions. If you are using recursive functions, then it will
use the stack for passing variables when there is not enough working registers to
hold variables; if you are not using recursive functions, the compiler will allocate
scratch space for holding variables if there is not enough working registers.
#SEPARATE can be used to set these parameters on an individual basis.

The RECURSIVE option tells the compiler that ALL functions can be recursive.
#RECURSIVE can also be used to assign this status on an individual basis.

#TYPE SHORT= 1 , INT= 8 , LONG= 16, FLOAT=48
#TYPE default=area
addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in

93

PCD_May 2015

#type

#TYPE

#TYPE
#TYPE
#TYPE
#TYPE

default=

SIGNED

RECURSIVE
ARG=WO : W7
AVOID=W8:W15
DND=W8:W15

// 0x100-0x1FF

// restores memory allocation
// back to normal

void main ()

{

int variablel; // variablel can only take values from -128 to 127

}

Example ex_cust.c
Files:
Also See: None

#undef

Syntax: #UNDEF id

Elements: id is a pre-processor id defined via #DEFINE

Purpose: The specified pre-processor ID will no longer have meaning to the pre-
processor.

Examples: #if MAXSIZE<100

Example Files:

Also See:

#undef MAXSIZE
#define MAXSIZE 100
#endif

None

#DEFINE

94

PreProcessor

_unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string

Purpose
This macro will convert a standard ASCII string to a Unicode
format string by inserting a \000 after each character and
removing the normal C string terminator.

For example: _unicode("ABCD")
will return: ~ "A\O0B\000OC\000D" (8 bytes total with the
terminator)

Since the normal C terminator is not used for these strings you
need to do one of the following for variable length strings:

string = _unicode(KEYWORD) "\000\000";
OR

string = _unicode(KEYWORD);

string_size = sizeof(_unicode(KEYWORD));

Examples: #define USB DESC_STRING TYPE 3

#define USB_STRING (x)
(sizeof (_unicode (x))+2),USB DESC STRING TYPE, unicode (x)
#define USB ENGLISH STRING 4,USB DESC STRING TYPE,0x09,C
//Microsoft
for US-English

char const USB STRING DESC[]=[
USB_ENGLISH STRING,
USB_STRING ("CCS"),
USB_STRING("CCS HID DEMO")
}i

Example Files: usb_desc_hid.h

95

PCD_May 2015

#use capture

Syntax:

#USE CAPTURE(options)

Elements:

ICXx/CCPx
Which CCP/Input Capture module to us.

INPUT = PIN_xx

Specifies which pin to use. Useful for device with
remappable pins, this will cause compiler to automatically
assign pin to peripheral.

TIMER=x

Specifies the timer to use with capture unit. If not
specified default to timer 1 for PCM and PCH compilers
and timer 3 for PCD compiler.

TICK=x

The tick time to setup the timer to. If not specified it will
be set to fastest as possible or if same timer was already
setup by a previous stream it will be set to that tick time.
If using same timer as previous stream and different tick
time an error will be generated.

FASTEST
Use instead of TICK=x to set tick time to fastest as
possible.

SLOWEST
Use instead of TICK=x to set tick time to slowest as
possible.

CAPTURE_RISING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_FALLING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_BOTH
PCD only. Specifies the edge that timer value is captured
on. Defaults to CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event
occurs. Valid options are 1, 4 and 16, default to 1 if not
specified. Options 4 and 16 are only valid when using
CAPTURE_RISING, will generate an error is used with

96

PreProcessor

Purpose:

Examples:

Example
Files:
Also See:

CAPTURE_FALLING or CAPTURE_BOTH.

ISR=x

PCD only. Specifies the number of capture events to
occur before generating capture interrupt. Valid options
are 1, 2, 3 and 4, defaults to 1 is not specified. Option 1
is only valid option when using CAPTURE_BOTH, will
generate an error if trying to use 2, 3 or 4 with it.

STREAM=id

Associates a stream identifier with the capture module.
The identifier may be used in functions like
get_capture_time().

DEFINE=id

Creates a define named id which specifies the number of
capture per second. Default define name if not specified
is CAPTURES_PER_SECOND. Define name must start
with an ASCII letter 'A' to 'Z', an ASCII letter 'a' to 'z’ or an
ASCII underscore (*_").

This directive tells the compiler to setup an input capture
on the specified pin using the specified settings. The
#USE DELAY directive must appear before this directive
can be used. This directive enables use of built-in
functions such as get_capture_time() and
get_capture_event().

#USE
CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=
1,FASTEST)

None.

get_capture_time(), get_capture_event()

97

PCD_May 2015

#use delay

Syntax:

#USE DELAY (options))

Elements:

Also See:

Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following
denominations: M, MHZ, K, KHZ. This specifies the clock the CPU runs at.
Depending on the PIC this is 2 or 4 times the instruction rate. This directive is not
needed if the following type=speed is used and there is no frequency multiplication or
division.

type=speed type defines what kind of clock you are using, and the following values
are valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal,
int (same as internal) or rc. The compiler will automatically set the oscillator
configuration bits based upon your defined type. If you specified internal, the compiler
will also automatically set the internal oscillator to the defined speed. Configuration
fuses are modified when this option is used. Speed is the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms() use.

ACT or ACT=type for device with Active Clock Tuning, type can be either USB or
SOSC. If only using ACT type will default to USB. ACT=USB causes the compiler to
enable the active clock tuning and to tune the internal oscillator to the USB clock.
ACT=SOSC causes the compiler to enable the active clock tuning and to tune the
internal oscillator to the secondary clock at 32.768 kHz. ACT can only be used when
the system clock is set to run from the internal oscillator.

AUX: type=speed Some chips have a second oscillator used by specific periphrials
and when this is the case this option sets up that oscillator.

delay_ms(), delay_us()

#use dynamic_memory

Syntax: #USE DYNAMIC_MEMORY
Elements: None
Purpose: This pre-processor directive instructs the compiler to create the

_DYNAMIC_HEAD object. _DYNAMIC_HEAD is the location where the first free
space is allocated.

98

PreProcessor

Examples:

Example
Files:
Also See:

#USE DYNAMIC MEMORY
void main () {

}
ex_malloc.c

None

#use fast_io

Syntax: #USE FAST_IO (port)

Elements: portisA,B,C,D, E, F, G, H, Jor ALL

Purpose: Affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #use xxxx_IO directive is
encountered. The fast method of doing 1/O will cause the compiler to perform 1/O
without programming of the direction register. The compiler's default operation is
the opposite of this command, the direction 1/O will be set/cleared on each 1/O
operation. The user must ensure the direction register is set correctly via
set_tris_X(). When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

Examples: #use fast io(A)

Example ex_cust.c

Files:

Also See: #USE FIXED_IO, #USE STANDARD_IO, set_tris_X() , General Purpose I/O

#use fixed _io

Syntax: #USE FIXED_IO (port_outputs=pin, pin?)
Elements: port is A-G, pin is one of the pin constants defined in the devices .h file.
Purpose: This directive affects how the compiler will generate code for input and output

instructions that follow. This directive takes effect until another #USE XXX_10
directive is encountered. The fixed method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output every time it is used. The
pins are programmed according to the information in this directive (not the
operations actually performed). This saves a byte of RAM used in standard 1/O.

99

PCD_May 2015

When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

Examples: #use fixed io(a outputs=PIN A2, PIN A3)

Example None

Files:

Also See: #USE FAST_IO, #USE STANDARD_10, General Purpose 1/0
#use i2c

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:

MASTER

Sets to the master mode

MULTI_MASTER
SLAVE

Set the multi_master mode

Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast I12C specification.

FAST=nnnnnn
SLOW
RESTART _WDT

FORCE_HW
FORCE_SW
NOFLOAT_HIGH

Sets the speed to nnnnnn hz
Use the slow I12C specification
Restart the WDT while waiting in [2C_READ

Use hardware I12C functions.
Use software 12C functions.

Does not allow signals to float high, signals are
driven from low to high

SMBUS Bus used is not 12C bus, but very similar

STREAM=id Associates a stream identifier with this 12C port.
The identifier may then be used in functions like
i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

12C1 Instead of SCL= and SDA= this sets the pins to

the first module

100

PreProcessor

12C2 Instead of SCL= and SDA= this sets the pins to
the second module

NOINIT No initialization of the 12C peripheral is performed.
Use 12C_INIT() to initialize peripheral at run time.

Only some chips allow the following:
DATA_HOLD No ACK is sent until I2C_READ is called for data
bytes (slave only)
ADDRESS_HOLD No ACK is sent until I2C_read is called for the address
byte (slave only)
SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes low

Purpose: CCS offers support for the hardware-based 12C™ and a software-based master
I2C™ device.(For more information on the hardware-based 12C module, please
consult the datasheet for your target device; not all PICs support 12C™.

The 12C library contains functions to implement an 12C bus. The #USE 12C remains
in effect for the 12C_START, 12C_STOP, 12C_READ, 12C_WRITE and 12C_POLL
functions until another USE 12C is encountered. Software functions are generated
unless the FORCE_HW is specified. The SLAVE mode should only be used with the
built-in SSP. The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream identifier.

Examples: #use I2C(master, sda=PIN B0, scl=PIN Bl)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE HW)

#use I2C(master, scl=PIN B0, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

Example ex_extee.c with 16c74.h
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,

i2c_write, i2c_read, 12C Overview

#use profile()

Syntax: #use profile(options)

Elements: options may be any of the following, comma separated:

ICD Default — configures code profiler to use the ICD
connection.
TIMER Optional. If specified, the code profiler run-time ol

101

PCD_May 2015

1

BAUD=

the microcontroller will use the Timerl peripheral as
a timestamp for all profile events. If not specified the
code profiler tool will use the PC clock, which may

not be accurate for fast events.

Optional. If specified, will use a different baud rate between the
microcontroller and the code profiler tool. This may be required
on slow microcontrollers to attempt to use a slower baud rate.

Purpose: Tell the compiler to add the code profiler run-time in the microcontroller and configure
the link and clock.

Examples: #profile(ICD, TIMER1, baud=9600)

Example ex_profile.c

Files:

Also See: #profile(), profileout(), Code Profile overview

#use pwm

Syntax: #use pwm (options)

Elements: options are separated by commas and may be:

PWMx or CCPx

Selects the CCP to use, x being the module
number to use.

PWMx or OCx

OUTPUT=PIN_xx

TIMER=X

FREQUENCY=x

Selects the Output Compare module, x being the
module number to use.

Selects the PWM pin to use, pin must be one of the
CCP OC pins. If device has remappable pins compiler
will assign specified pin to specified CCP OC module.
If CCP OC module not specified it will assign
remappable pin to first available module.

Selects timer to use with PWM module, default if not
specified is timer 2.

Sets the period of PWM based off specified value,
should not be used if PERIOD is already specified. If
frequency can't be achieved exactly compiler will
generate a message specifying the exact frequency
and period of PWM. If neither FREQUENCY or
PERIOD is specified, the period defaults to maximum

102

PreProcessor

possible period with maximum resolution and compiler
will generate a message specifying the frequency and
period of PWM, or if using same timer as previous
stream instead of setting to maximum possible it will
be set to the same as previous stream. If using same
timer as previous stream and frequency is different
compiler will generate an error.

PERIOD=x Sets the period of PWM, should not be used if
FREQUENCY is already specified. If period can't be
achieved exactly compiler will generate a message
specifying the exact period and frequency of PWM. If
neither PERIOD or FREQUENCY is specified, the
period defaults to maximum possible period with
maximum resolution and compiler will generate a
message specifying the frequency and period of PWM,
or if using same timer as previous stream instead of
setting to maximum possible it will be set to the same
as previous stream. If using same timer as previous
stream and period is different compiler will generate an
error.

BITS=x Sets the resolution of the the duty cycle, if period or
frequency is specified will adjust the period to meet set
resolution and will generate an message specifying the
frequency and duty of PWM. If period or frequency not
specified will set period to maximum possible for
specified resolution and compiler will generate a
message specifying the frequency and period of PWM,
unless using same timer as previous then it will
generate an error if resolution is different then previous
stream. If not specified then frequency, period or
previous stream using same timer sets the resolution.

DUTY=x Selects the duty percentage of PWM, default if not
specified is 50%.

PWM_ON Initialize the PWM in the ON state, default state if
pwm_on or pwm_off is not specified.

PWM_OFF Initalize the PWM in the OFF state.

STREAM=id Associates a stream identifier with the PWM signal.

The identifier may be used in functions like
pwm set duty percent().

Purpose: This directive tells the compiler to setup a PWM on the specified pin using the
specified frequency, period, duty cycle and resolution. The #USE DELAY directive
must appear before this directive can be used. This directive enables use of built-in
functions such as set_pwm_duty_percent(), set_pwm_frequency(),
set_pwm_period(), pwm_on() and pwm_off().

Examples: None

103

PCD_May 2015

Also See:

#use rs232

Syntax:

#USE RS232 (options)

Elements:

Options are separated by commas and may be:

STREAM=id Associates a stream identifier with this RS232
port. The identifier may then be used in
functions like fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial 1/O routines even
when the UART pins are specified.

BRGH10OK Allow bad baud rates on chips that have baud rate
problems.

ENABLE=pin The specified pin will be high during transmit. This
may be used to enable 485 transmit.

DEBUGGER Indicates this stream is used to send/receive data

RESTART_WDT

INVERT

PARITY=X

BITS =X

FLOAT_HIGH

through a CCS ICD unit. The default pin used is
B3, use XMIT= and RCV= to change the pin used.
Both should be the same pin.

Will cause GETC() to clear the WDT as it waits for
a character.

Invert the polarity of the serial pins (normally not
needed when level converter, such as the
MAX232). May not be used with the internal UART.
Where xis N, E, or O.

Where x is 5-9 (5-7 may not be used with the SCI).
The line is not driven high. This is used for open

collector outputs. Bit 6 in RS232_ERRORS is set if
the pin is not high at the end of the bit time.

104

PreProcessor

ERRORS

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

SYNC_SLAVE

SYNC_MASTER

Used to cause the compiler to keep receive errors
in the variable RS232_ERRORS and to reset errors
when they occur.

A getc() normally samples data in the middle of a bit
time. This option causes the sample to be at the
start of a bit time. May not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER this is the
pin used to read the signal back. The default for
FLOAT_HIGH is the XMIT pin and for
MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if another
master on the bus is transmitting at the same time.
If a collision is detected bit 6 is set in

RS232 ERRORS and all future PUTC's are ignored
until bit 6 is cleared. The signal is checked at the
start and end of a bit time. May not be used with the
UART.

Makes getc() return an int16 and putc accept an
int16. This is for 9 bit data formats.

Will cause interrupts to be disabled when the
routines get or put a character. This prevents
character distortion for software implemented /O
and prevents interaction between I/O in interrupt
handlers and the main program when using the
UART.

To set the number of stop bits (default is 1). This
works for both UART and
non-UART ports.

To set the time getc() waits for a byte in
milliseconds. If no character comes in within this
time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART
and non-UART ports.

Makes the RS232 line a synchronous slave, making
the receive pin a clock in, and the data pin the data
in/out.

Makes the RS232 line a synchronous master,
making the receive pin a clock out, and the data pin

105

PCD_May 2015

SYNC_MATER_CONT

UART1

UARTI1A
UART?2
UART2A

NOINIT

ICD

UART3
UART4

ICD

Serial Buffer Options:
RECEIVE_BUFFER=x

TRANSMIT BUFFER=Xx

the data in/out.

Makes the RS232 line a synchronous master mode
in continuous receive mode. The receive pin is set
as a clock out, and the data pin is set as the data
in/out.

Sets the XMIT= and RCV= to the chips first
hardware UART.

Uses alternate UART pins

Sets the XMIT= and RCV= to the chips second
hardware UART.
Uses alternate UART pins

No initialization of the UART peripheral is
performed. Useful for dynamic control of the UART
baudrate or initializing the peripheral manually at a
later point in the program's run time. If this option is
used, then setup_uart() needs to be used to
initialize the peripheral. Using a serial routine (such
as getc() or putc()) before the UART is initialized
will cause undefined behavior.

Indicates this stream is used to send/receive data
through a CCS ICD unit. The default trasmit pin is
the PIC's ICSPDAT/PGD pin and the default
receive pin is the PIC's ICSPCLK/PGC pin. Use
XMIT= and RCV= to change the pins used.

PCD devices with multiple programming pin pairs,
use #device ICSP=x to specify which pin pair ICD it
is connected to. Option is not available when
Debugging, see DEBUGGER option above.

Sets the XMIT= and RCV= to the device's third
hardware UART.

Sets the XMIT= and RCV= to the device's fourth
hardware UART.

Indicates this stream uses the ICD in a special pass
through mode to send/receive serial data to/from
PC. The ICSP clock line is the PIC's receive pin,
usually pin B6, and the ICSP data line is the PIC's
transmit pin, usually pin B7.

Size in bytes of UART circular receive buffer,
default if not specified is zero. Uses an interrupt to
receive data, supports RDA interrupt or external
interrupts.

Size in bytes of UART circular transmit buffer,

106

PreProcessor

default if not specified is zero.

TXISR If TRANSMIT_BUFFER is greater then zero

specifies using TBE interrupt for transmitting data.
Default is NOTXISR if TXISR or NOTXISR is not
specified. TXISR option can only be used when
using hardware UART.

NOTXISR If TRANSMIT_BUFFER is greater then zero
specifies to not use TBE interrupt for transmitting
data. Defaultis NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is greater then
zero

Flow Control Options:

RTS = PIN_xx Pin to use for RTS flow control. When using
FLOW_CONTROL_MODE this pin is driven to the
active level when it is ready to receive more data.
In SIMPLEX_MODE the pin is driven to the active
level when it has data to transmit.
FLOW_CONTROL_MODE can only be use when
using RECEIVE_BUFFER

RTS_LEVEL=x Specifies the active level of the RTS pin, HIGH is
active high and LOW is active low. Defaults to
LOW if not specified.

CTS = PIN_xx Pin to use for CTS flow control. In both
FLOW_CONTROL_MODE and SIMPLEX_MODE
this pin is sampled to see if it clear to send data. If
pin is at active level and there is data to send it will
send next data byte.

CTS_LEVEL=x Specifies the active level of the CTS pin, HIGH is
active high and LOW is active low. Default to LOW
if not specified

FLOW_CONTROL_MODE Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to
the active level when ready to receive data.
Defaults to FLOW_CONTROL_MODE when
neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin isn't
specified then this option is not used.

SIMPLEX_MODE Specifies how the RTS pin is used. For
SIMPLEX_MODE the RTS pin is driven to the
active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or SIMPLEX_MODE is
specified. If RTS pin isn't specified then this option
is not used.

Purpose: This directive tells the compiler the baud rate and pins used for serial /0. This
directive takes effect until another RS232 directive is encountered. The #USE
DELAY directive must appear before this directive can be used. This directive

107

PCD_May 2015

enables use of built-in functions such as GETC, PUTC, and PRINTF. The functions
created with this directive are exported when using multiple compilation units. To
access the correct function use the stream identifier.

When using parts with built-in UART and the UART pins are specified, the SCI will
be used. If a baud rate cannot be achieved within 3% of the desired value using the
current clock rate, an error will be generated. The definition of the RS232_ERRORS
is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
o Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit O is used to indicate a parity error.

Warning:

The PIC UART will shut down on overflow (3 characters received by the hardware
with a GETC() call). The "ERRORS" option prevents the shutdown by detecting the
condition and resetting the UART.

Examples: #use rs232(baud=9600, xmit=PIN A2, rcv=PIN A3)

Example ex_cust.c
Files:
Also See: getc(), putc(), printf(), setup_uart(), RS2332 I/O overview

#use rtos
(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC
micro controller to run regularly scheduled tasks without the
need for interrupts. This is accomplished by a function
(RTOS_RUN()) that acts as a dispatcher. When a task is
scheduled to run, the dispatch function gives control of the
processor to that task. When the task is done executing or
does not need the processor anymore, control of the
processor is returned to the dispatch function which then will
give control of the processor to the next task that is scheduled
to execute at the appropriate time. This process is called
cooperative multi-tasking.

108

PreProcessor

Syntax: #USE RTOS (options)
Elements: options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer used by the
RTOS.
minor_cycle=time Where time is a number followed by s, ms, us, ns.

This is the longest time any task will run. Each
task's execution rate must be a multiple of this time.
The compiler can calculate this if it is not specified.

statistics Maintain min, max, and total time used by each
task.

Purpose: This directive tells the compiler which timer on the PIC to use for monitoring and
when to grant control to a task. Changes to the specified timer's prescaler will effect
the rate at which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to
execute with the minor_cycle option. This simply forces all task execution rates to be
a multiple of the minor_cycle before the project will compile successfully. If the this
option is not specified the compiler will use a minor_cycle value that is the smallest
possible factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum
processor time taken by one execution of each task, the maximum processor time
taken by one execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same
in each compilation unit.

Examples; #use rtos(timer=0, minor cycle=20ms)

Also See: #TASK

#use spi

Syntax: #USE SPI (options)

Elements: Options are separated by commas and may be:

MASTER Set the device as the master. (default)

SLAVE Set the device as the slave.

BAUD=n Target bits per second, default is as fast as possible.
CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is

used). (default=0)

109

PCD_May 2015

Purpose:

CLOCK_LOW=n Low time of clock in us (not needed if BAUD= is
used). (default=0)

Dl=pin Optional pin for incoming data.

DO=pin Optional pin for outgoing data.

CLK=pin Clock pin.

MODE=n The mode to put the SPI bus.

ENABLE=pin Optional pin to be active during data transfer.

LOAD=pin Optional pin to be pulsed active after data is
transferred.

DIAGNOSTIC=pin Optional pin to the set high when data is sampled.

SAMPLE_RISE Sample on rising edge.

SAMPLE_FALL Sample on falling edge (default).

BITS=n Max number of bits in a transfer. (default=32)

SAMPLE_COUNT=n Number of samples to take (uses majority vote).
(default=1

LOAD_ACTIVE=n Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1). (default=0)

IDLE=n Inactive state for CLK pin (0, 1). (default=0)

ENABLE_DELAY=n Time in us to delay after ENABLE is activated.
(default=0)

DATA_HOLD=n Time between data change and clock change

LSB_FIRST LSB is sent first.

MSB_FIRST MSB is sent first. (default)

STREAM=id Specify a stream name for this protocol.

SPI1 Use the hardware pins for SPI Port 1

SPI2 Use the hardware pins for SPI Port 2

FORCE_HW Use the pic hardware SPI.

SPI3 Use the hardware pins for SPI Port 3

SP14 Use the hardware pins for SPI Port 4

NOINIT Don't initialize the hardware SPI Port

XFER16 Uses 16 BIT transfers instead of two 8 BIT transfers

The SPI library contains functions to implement an SPI bus. After setting all of the
proper parameters in #USE SPI, the spi_xfer() function can be used to both transfer
and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins don’t
need to be assigned values through the options; the compiler will automatically
assign hardware-specific values to these pins. Consult your PIC’s data sheet as to
where the pins for hardware SPI are. If hardware SPI is not used, then software SPI
will be used. Software SPI is much slower than hardware SPI, but software SPI can
use any pins to transfer and receive data other than just the pins tied to the PIC’s
hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0
and SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets

110

PreProcessor

Examples:

Example
Files:
Also See:

IDLE=1 and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to
send data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted
as indicated above.

#use Spi(DI:PIN_Bl, DO=PIN BO, CLK=PIN B2, ENABLE=PIN B4, BITS=16)
// uses software SPI

#use spi (FORCE_HW, BITS=16, stream=SPI STREAM)
// uses hardware SPI and gives this stream the name SPI_STREAM

None

spi_xfer()

#use standard _io

Syntax: #USE STANDARD_IO (port)

Elements: portisA,B,C,D, E, F, G, H,Jor ALL

Purpose: This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #USE XXX_IO
directive is encountered. The standard method of doing I/0 will cause the compiler
to generate code to make an I/O pin either input or output every time it is used. On
the 5X processors this requires one byte of RAM for every port set to standard /0.
Standard_io is the default /O method for all ports.
When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

Examples: #use standard io(R)

Example ex_cust.c

Files:

Also See: #USE FAST_IO, #USE FIXED_IO, General Purpose I/O

111

PCD_May 2015

#use timer

Syntax: #USE TIMER (options)

Elements: TIMER=x
Sets the timer to use as the tick timer. X is a valid timer that the PIC has. Default
value is 1 for Timer 1.
TICK=xxX
Sets the desired time for 1 tick. xx can be used with ns(nanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't be
achieved it will set the time to closest achievable time and will generate a warning
specifying the exact tick time. The default value is 1us.
BITS=x
Sets the variable size used by the get_ticks() and set_ticks() functions for returning
and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for 32bits or 64 for
64 bits. The default is 32 for 32 bits.
ISR
Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.
NOISR
The get_ticks() function increments the upper bits of the tick timer. This requires
that the get_ticks() function be called more often then the timer's overflow rate.
NOISR is the default mode of operation.
STREAM=id
Associates a stream identifier with the tick timer. The identifier may be used in
functions like get_ticks().
DEFINE=id
Creates a define named id which specifies the number of ticks that will occur in one
second. Default define name if not specified is TICKS_PER_SECOND. Define
name must start with an ASCII letter 'A' to 'Z', an ASCII letter 'a' to 'z' or an ASCII
underscore (*_").
COUNTER or COUNTER=x
Sets up specified timer as a counter instead of timer. x specifies the prescallar to
setup counter with, default isl if x is not specified specified. The function get_ticks()
will return the current count and the function set_ticks() can be used to set count to
a specific starting value or to clear counter.

Purpose: This directive creates a tick timer using one of the PIC's timers. The tick timer is

initialized to zero at program start. This directive also creates the define
TICKS PER_SECOND as a floating point number, which specifies that number of

112

PreProcessor

ticks that will occur in one second.
Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intl6é current, unsigned intl6
previous) {
return (current - previous);

}

void main(void) {
unsigned intlé current tick, previous_tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

}

Example None
Files:
Also See: get_ticks(), set_ticks()

#use touchpad

Syntax: #USE TOUCHPAD (options)

Elements: RANGE=x
Sets the oscillator charge/discharge current range. If x is L, current is nominally 0.1
microamps. If x is M, current is nominally 1.2 microamps. If x is H, current is
nominally 18 microamps. Default value is H (18 microamps).

THRESHOLD=x
X is a number between 1-100 and represents the percent reduction in the nominal
frequency that will generate a valid key press in software. Default value is 6%.

SCANTIME=xxMS

xx is the number of milliseconds used by the microprocessor to scan for one key
press. If utilizing multiple touch pads, each pad will use xx milliseconds to scan for
one key press. Default is 32ms.

PIN=char
If a valid key press is determined on “PIN”, the software will return the character

113

PCD_May 2015

Purpose:

Examples:

Example
Files:
Also See:

“char” in the function touchpad_getc(). (Example: PIN_BO="A'")

SOURCETIME=xxus (CTMU only)
xX is thenumber of microseconds each pin is sampled for by ADC during each scan
time period. Default is 10us.

This directive will tell the compiler to initialize and activate the Capacitive Sensing
Module (CSM)or Charge Time Measurement Unit (CTMU) on the microcontroller.
The compiler requires use of the TIMERO and TIMER1 modules for CSM and
Timerl ADC modules for CTMU, and global interrupts must still be activated in the
main program in order for the CSM or CTMU to begin normal operation. For most
applications, a higher RANGE, lower THRESHOLD, and higher SCANTIME wiill
result better key press detection. Multiple PIN's may be declared in “options”, but
they must be valid pins used by the CSM or CTMU. The user may also generate a
TIMERO ISR with TIMERO's interrupt occuring every SCANTIME milliseconds. In
this case, the CSM's or CTMU's ISR will be executed first.

#USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN BO='C')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, ¢ will have '5'
None

touchpad_state(), touchpad_getc(), touchpad_hit()

#warning

Syntax: #WARNING text
Elements: text is optional and may be any text
Purpose: Forces the compiler to generate a warning at the location this directive

appears in the file. The text may include macros that will be expanded
for the display. This may be used to see the macro expansion. The
command may also be used to alert the user to an invalid compile time
situation.

To prevent the warning from being counted as a warning, use this
syntax: #warning/information text

114

PreProcessor

Examples: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif

Example Files: ex_psp.c

Also See: #ERROR

#word

Syntax: #WORD id = x

Elements: id is a valid C identifier,
X is a C variable or a constant

Purpose: If the id is already known as a C variable then this will locate the variable at address
x. In this case the variable type does not change from the original definition. If the id
is not known a new C variable is created and placed at address x with the type
int16

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable, then id
and x share the same memory location.

Examples: #word data = 0x0860

struct {

short C;

short 7;

short OV;

short N;

short RA;

short IPLO;

short IPLL;

short IPL2;

int upperByte : 8;
} status_register;
#word status_register = 0x42

short zero = status register.Z;

Example None
Files:
Also See: #bit, #byte, #locate, #reserve, Named Registers, Type Specifiers, Type Qualifiers,

Enumerated Types, Structures & Unions, Typedef

115

PCD_May 2015

#zero_ram

Syntax: #ZERO_RAM

Elements: None

Purpose: This directive zero's out all of the internal registers that may be used to hold

variables before program execution begins.

Examples: #zero ram
void main() {
}

Example ex_cust.c

Files:

Also See: None

116

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC microcontroller's
peripherals. This makes it very easy for the users to configure and use the peripherals without
going into in depth details of the registers associated with the functionality. The functions
categorized by the peripherals associated with them are listed on the next page. Click on the
function name to get a complete description and parameter and return value descriptions.

ADS() wrriiiiiiiiii ittt ——.

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()
F=to [oe (o] aT=Y @ IR= (o (oo [0 g TV () P UPPTUPPPPN

L0 22 PP PPPPPPPPPPPIRt

oL TS Yo (PR UUPPPRRRRN
atoi() atol() atoi32()

ALOI32() ALOIAB() ALOIBZA() vvvrrnneeeeeeerriiieie e e ettt eee e e e e e e et e e e e e e e e eat e e e eeeeeesstaaeeeeeesesraaaaeeassssranannns
AL ClEAN INTEITUDPIS(). e eiiiieiiiiie e e ettt e ettt e e e e ettt e e e e e e e e bt ea e e e e e e e eaa it e eeeeeeesaaaaeeeesessrsnnnnns
at_disable interrupts().............
at_enable_interrupts()..............
at_get capture()ocoevveeieeeennne
at_get_missing_pulse_delay()
at_get period()ccoeeereeiiiiiiiiinnnnn.

P o [y A o] 0 F= EoY S o101 [0 | (=Y () P
P Lo [A (=1sXe) [V (o] o T OO UUPPPTORR
at_get set point()
P Lo [Y= O o Yo 1 0L =) 1 (01 () [PPSR
P2 Lo [) r= L1 () PRSP
at_interrupt_active().......ccc.......
at_set_compare_time().........c......
at_set_missing_pulse _delay()
at_set_resolution()..........ccevvvennn...
at_set set point().........ccevvunnn..
at_setup_cc()
bit_clear()...........
bit_first().............
bit_last()
DIt S)i
bit_test()
DSEAICN() oo

PCD_May 2015

[od [T [0 (=Y U 1 149

cog_status()
cog_restart
(o (o o7 (o] () P PP URPTS
crc_cale8().........

crc_calcl6()
crc_calec32()
crc_init(mode)
cwg_status()

(oo B (=11 2= L4 () PSRRI
(o F Lol {1 (=T () PSSO
dci_data received()
(o (o I (== 1o [() PSPPSR
o To IE) 2= L { () PP PPPPRUPPPPIRE
dci_transmit_ready()................
o Tl LY 11 =Y (RPNt
delay cycles()....
delay ms().........
delay US().veeeereeeeiiiieeeiiiiieeens

disable interrupts()......ccccevvvees

Idiv().oveiieeiies

[o 0 F= T v= L { (PP PPPPPPPPPPPPRE
dma_status()

enable_interrupts()
€rASE PrOQrAM MEMIOIY ..evvvvveerreerereerereereeresssssesssesesssssssssesssesssssesesesssssssesssesssssressessrrrerrrrrerrrrree
(o 1O =T [[T (PP URPT TP
FADS() v

getc() getch() getchar() fgetc()

gets() fgets()

floor().coeeeeeeenennen.

fmod() ..vvvvvvrnnnnns
printf() fprintf()
putc() putchar() fputc()

get capture ccpl() get capture ccp2() get capture ccp3() get capture ccp4(

DI o (=) o= 1 o1 (8] f =Y o{od o o) () T 177
get_capture32 ccpl() get capture32 ccp2() get capture32 ccp3()

get _capture32 ccp4() get capture32 ccp5()
get_capture event()
get _capture time()........ccevven....

118

Built-in Functions

QL CAPTUIEI2(] evtuvututnintnttttteiteat e 181
[TS B 1Y o1V A or=Y o100 1 (=] () 182

[oT=I A g aTo) (o) o)ViY/n M o701 1oL { () 183
get_nco_accumulator()
OEE NCO INC VAIUE() vrvvvieieieieieieieieieeeteeeteteteeeeetetstesssesesssnrens
[o T A (o3 Y (PP PPPPPPN
get_timerA().......

get timerB().......

get timerx()

get_timerxy()
get timer ccpl() get timer ccp2() get timer ccp3() get timer ccp4()

[o T a0 =Y A olod o LT (TR PP OPPPPPPPPN:
o = 1 S () PRSP
getc() getch() getchar() fgetc()
[0 1= ST 017/ (PRSP
Jo 1= e (IR0 =) £ () PP UUPPPRRPRN
goto_address()....cccceveeeeeiinennnnn.
high_speed_adc_done()..........
i2c_init().............
i2c_isr_state()....
i2c_poll() ...
i2c_read()
i2c_slaveaddr()..
i2c_speed()........
I2C SEAM()i
2o 1 (o] o] () PSPPSR
i2c_write()
1] o101 P PP PP PP PPTPPPPS
INPUL CRANGE. X() 1eivvttuiiieeiiiieiiie e e e e ettt et e e e ettt et e e e e eee et e e aeeeesaaba e eeeeesesssaanaeesessssannnseeesesnrees
input_state()...........

INPUt X().oovveveeeeennne

interrupt_active()
isalnum(char) isalpha(char)
(1Yo 0] (O I Yo Lo L { (o =V RN
isgraph(x) islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x)

157 01U o1 0 PSPPSR
isamong()

[L(0 T () OO

PCD_May 2015

(10110101 G0 Y((
output bit()
output drive()
output float()
[UL o1 01 1o | T (PSRRI
(01011010 (0 () PRSPPI
output_toggle()...

pid_get result()..
pid_read()
pid Write()..ooeveeiiiieieee e,

pmp_address(address)
pmp_output full() pmp input full() pmp overflow() pmp error() pmp_timeout(

pmp_read()
pmp_write()
port_x_pullups ()
Lo LT o1 () R RRTRRRRRRRRN
printf() fprintf()...
o100 11 [=To TV (PO PP PP TOPPPPPRPPN
psp_output full() psp_input full() psp overflow()
PSP_TEAA() 1ottt ettt
PSP_WHItE() eeeeiiiiiiieieee e

putc() putchar() fputc()
putc_send();.....ccevvrrreeeeninernnnn
fputc_send();......
puts() fputs()....

[o [T o (= Al o0 1 UL TP UUPPPPRRRN
[o [T ST= A oo 10 01 () PP UUPPPPRRRN
gei_status()
QSOrt() evevveeeeennns

rand() ..o
rcv_buffer bytes()....ccceeeeeeeenee.

rcv_buffer_full()........................
read adc() read adc2()

120

Built-in Functions

read configuration MEMOIY()cciieeeeiieee e e ettt e e e e e e e e e e e e e e e e e e eeat e e eeseeesaaaaeeeeeeeeseen 252
Y= Lo =TT o 1) 1.0 () PSPPSR
(=T o IR (= ale [=To I =10 0 () NN
read program_memory()
read _high speed adC().......cooiiiiiiiiiiiiie
read rom MEMOIY() cooce i
read_sd_adc()......coevvvereeeniinnns

realloc()..............
release_io().........
reset_cpu()
restart_cause()...
restart_wdt()
[0 e= (I (=Y () PSSP
rotate right()
(o 1= U0 B (=T (o [() [PPSO
MC_AlarmM WIHEE() .o oo
rtc read()....cccoeeeeeiiiinin

[(o 1 (=Y (TS

rtos_await().......ccceceeeeeeeeeeeeenn.n.

rtos_disable().......ccovvvveeieeninns

rtos_enable()ocevvvveeeeeeninns

rtos msg poll().....cccceeeeeeeeennnn.

rtos msg_read()ccceeeevveennnen.

rtos_msg_send().....ccccceeeeerrnnns

rtos_overrun
00 TSI 1010 () O RRROOOPPET
rtos_signal()

[0 I =1 5] () PSSP

MOS_tEIMINALE() coie e

rtos wait()..............
1tOS_Vield()..eveeeeeeiiiiiiieeeeeiiis
set_adc_channel().......cccc........
set_adc_channel2()
set_analog_pins()
scanf().eeeeviiuennnnn.
set_ccpl _compare_time() set_ccp2 compare_time() set_ccp3_compare_time()

set_ccp4 _compare time() set_ccp5 compare tIME() ..coeeeeeeerrruieereeeieeiiiieee e e e 277
Y oo Yol o] =T | id1 a Vo [() ISR
set cog dead band()
set cog_phase()

Y i oTe 10 o= (Y (10 4 1Y (O
SEE NSPWITE AULY() oottt e e et e ettt e et e e et e e e e e e st e e e eee e e e e e e e e senaeeeeaeneeesseseeesseneeeseereeeesans
set_hspwm_event()ccc.......

set_hspwm_override()

set_hspwm phase()

set_motor pwm_duty()............

set_motor pwm_event()

set_motor_unit()......eeeeeeeverennnnns

PCD_May 2015

Y A (oL I [oY= | (U= () 286
ST =1 01U | U] o (PSRRI 287
set pwml duty() set pwm2 duty() set pwm3 duty() set pwm4 duty()

=LA 111V 0 A L o [0 1Y/ () P PSRRI 288
set_rtcc() set timerQ() set timerl() set timer2() set timer3() set timer4()

=LA 100 1=T o1 () PRSP UUPTS
set tickS() .ovvvvrrierieeiceiiiieeee,

setup _sd _adc_calibration()
set sd adc channel()
set_timerA()
set_timerB()
LA 10 1=Y () PRSP URPT S

R L 111 01=] 00/ (SRR
set_rtcc() set timerQ() set timerl() set timer2() set timer3() set timer4()

=LA (10 01= o1 () PO 295
set_timer_ccpl() set timer ccp2() set timer_ccp3() set timer _ccp4()

R 1A 1 0L =Y oo o Lo () PSRRI 296
set_timer_period_ccpl() set timer_period ccp2() set timer period ccp3()
set_timer_period_ccp4() set timer_period _ccp5()
SEE TS X() eeevvrreeeieeeieiiiieee e e e e e et e e e e e e e
set uart speed().....cccceerrvverennns

Y=10100] o] () PRSP
setup_adc(mode)........ccccevveeennes

setup_adc2(mode)....................

XY (U] o J= (o (o o Lo 1 <) ()
XY (U] o J= (o (o o Lo 1 5oy () R
setup_adc_reference()
RS0 o= () PRSPPI
L8| T oT=Y o110 1= () PRSPPI
setup_ccpl() setup ccp2() setup ccp3() setup ccp4() setup ccp5()
1<) (0] o I olo] o[G0 PP P PP PP PP PPPPPPPPPPPPPPPPPPPPRE
setup_clcl() setup clc2() setup_clc3() setup_clc4()
setup_comparator()
setup_compare().....cccceeereverennns
setup_crc(mode)
setup_cog()............
setup_crc().........
RST8] 0T o111 (P SRSPRI
RST8] oI F= (o] () PO URPT PP
setup_dci()

=100] oI [1= Y (PSRRI
Y (o I a1 Te | Ty o Y=Y =Y H=To [o () I

setup_high _speed_adc_pair()
setup_hspwm_blanking().............
setup_hspwm _chop clock()
setup _hspwm _trigger()............
setup_hspwm_unit()

setup hspwm() ..ccooevvvivvieeneennn.

122

Built-in Functions

setup hspwm_ UNit ChOP CIOCK()..vvrreuiieeiiiieiiee et e e e e e e e et e e e e e e e e araaanes 321
Y0 o I (o) VAo | Ao [=) (=Tox { () 323
YN0 oI AT 1 (o N o)11Y o o (R 323
setup_oscillator()
=100] o I o] [P PP RPN

setup_ pMP(oPtioN,addrESS MASK)......cueieieieirieieieietereeeeeeerererererererererererererererrrerrrerererererr——————..
setup_power pWMmM_PINS()..eveevvererererrvrreeeeennnns

setup psp(option,address mask)
setup pwml() setup pwm2() setup pwm3() setup pwm4()
setup_qgei()
setup_rtc()
setup_rtc_alarm()
Y00 o T = Lo [() SRRSO
setup smix()
SEtUP _ SPI() SEIUD SPIZ2(1) vevvrereiereeeieeeieeeeeeeeeeeeeeeseeeseseseseesesssssssssseseseessssssssssssssssssssssssssssssssssssnrnns
R =100 oI (100 LY 0 (PRSP
setup_timer_AQ).....
setup_timer_B().....
setup_timer_0()......
setup_timer_1()......
setup_timer_2()......
setup_timer_3()......
setup_timer_4()......
setup_timer_5()......
R0 o TV F- U () P PSPPSR
setup_vref()
setup_wdt()
setup_zdc()
LY 11 1 1= PP PPPPPNt
shift_right().........

sleep()...ceeeeeennnns

smtx_read()
smtx_reset timer()........cccuue.....
SMEX_Start()..eeeeeeveeviieeeiiiieeens
smtx_status().....
smtx_stop()........
smtx_write().......
smtx_update()

spi_data is in() SPi_dAta IS TNZ2() uuueieieiieiriiiieee et e e e e e e e e e e e e e e e e rra s

[I oY= 1 (=Y (o F= 1 v=) 353
spi_read() spi_read2()
spi_read3() .cccveereeeiiiiiieneen
spi_read4()
spi_read 16()
spi_read2 16() ...
spi_read3 16() ...
spi_read4 16() ...

PCD_May 2015

] S TIES] o 1T=o [ERRT 355
S IR L (=Y IS oI 1 (=2 () P 356
RS ST (S () PRSP 356
Y ST (Y- () I PRSP URPRS 356
Y ST =T (PP URPT 357
SPIH XFER IN() coieieiiieieee e 357
Y o110 14 () PP UEPT S 358
1o L () PP U P PP PPPPPPPPPPPPPPPPPPPPPIRE 359
1Y =11 o | (PP PPPPPPPNE 359

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr()
strcmp() strcoll() strcspn() strerror() stricmp() strlen() strlwr() strncat()

strncmp() strncpy() strpbrk() strrchr() strspn() strstr() StrXfrm() .ooeeeeveeeveeieeeieieieieieeeeeveeeeenes 360
L Uge])Y @ ((eT0] 0 Y/ () PR RTRURURPRPRUPRPRNE 362
Strtod() StrtOf(() SHOTAB()..eeeeeeirieieieieieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesssesesasssssssssssssssssssssssnsnnnes 362
L (0 () T PRPRURPRPRUPRPRNE 363
£ L (o][() P UPPPPPPPPPPIRE 364
L3 L (o 11][P PPPPPPPPPPPIRE 365
X122 1 o () P PP P PP PPPPUPPPPPPPPPPPPPPPPPRE 366
(0] (o 1N (@ (e T8 o Y=Y (T 366
(o T8 [ela] o =T I o =) (o () T PRSP 367
(o8l a] o= T N o 11) PRSP 368
JCo T8 (ol a] o= o IES] r= N (=Y () PR URR 369
L0 o101 (=Y =AYz 11 F=] (Y 370
Lo o101 (= 04 =S PP UUPPPRRRRN 371
L0 0T L= o (11 371
JVZ= = Lo () N 372
L= N <Y 1 [(S 373
{22 1 0= | PSPPSR 374
write configuration MEMOINY() .evuuuueiieeiieiiiieee e e et eiee e e e e et et e e e e e e e e ee ittt eeeeeeeesbbeeeeeeesssaaaaaeaaees 374
AL (R =T=T o o]0 0T (PP PP PP TOPPPPPPPPN 375
LI (=] ae [=Yo I =10 01 () PSR PTUPRO RSPt 376
LI T Yo =T aa W 0 0110 010) 4/ () 377
4o (oY v= 111 1) () PP PPPPUPPPPRUPPPPRE 378

124

abs()

Built-in Functions

Syntax: value = abs(x)

Parameters: X is any integer or float type.

Returns: Same type as the parameter.

Function: Computes the absolute value of a number.
Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: signed int target,actual;

Example Files:

Also See:

error = abs(target-actual);
None

labs()

sin() cos() tan() asin() acos() atan() sinh() cosh()
tanh() atan2()

Syntax:

val = sin (rad)

val = cos (rad)

val = tan (rad)

rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters:

Returns:

rad is any float type representing an angle in Radians -2pi to 2pi.
val is any float type with the range -1.0 to 1.0.
Value is any float type

rad is a float with a precision equal to val representing an angle in Radians -pi/2
to pi/2

val is a float with a precision equal to rad within the range -1.0 to 1.0.

125

PCD_May 2015

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

radl is a float with a precision equal to val representing an angle in Radians 0 to
pi

rad2 is a float with a precision equal to val representing an angle in Radians -pi to
pi

Result is a float with a precision equal to value

These functions perform basic Trigonometric functions.

sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)

asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range|[0,pi] radians

atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x

cosh returns the hyperbolic cosine of x

tanh _ returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

All devices

#INCLUDE <math.h>

float phase;

// Output one sine wave

for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);

ex_tank.c

log(), 10g10(), exp(), pow(), sqrt()

126

Built-in Functions

adc_done() adc_done2()

Syntax: value = adc_done();
value = adc_done2();
Parameters: None
Returns: A short int. TRUE if the A/D converter is done with conversion,
FALSE if it is still busy.
Function: Can be polled to determine if the A/D has valid data.
Availability: Only available on devices with built in analog to digital converters
Requires: None
Examples: intlé value;
setup_adc_ports (sANO|sAN1, VSS VDD);
setup_adc (ADC_CLOCK DIV _4|ADC TAD MUL 8);
set adc_channel (0);
read_adc (ADC_START_ONLY) ;
intl done = adc_done();
while (!done) {
done = adc_done();
}
value = read adc (ADC_READ ONLY) ;
printf (“A/C value = %LX\n\r”, value);
}
Example None
Files:
Also See: setup_adc(), set_adc_channel(), setup_adc_ports(), read_adc(),
ADC Overview
assert()
Syntax: assert (condition);
Parameters: condition is any relational expression
Returns: Nothing

127

PCD_May 2015

Function: This function tests the condition and if FALSE will generate an error
message on STDERR (by default the first USE RS232 in the
program). The error message will include the file and line of the
assert(). No code is generated for the assert() if you #define
NODEBUG. In this way you may include asserts in your code for
testing and quickly eliminate them from the final program.

Availability: All devices

Requires: assert.h and #USE RS232

Examples: assert (number of entries<TABLE SIZE);

// 1f number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

Example None

Files:

Also See: #USE RS232, RS232 1/0 Overview

atoe

Syntax: atoe(string);

Parameters: string is a pointer to a null terminated string of

characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a

floating point representation. If the result cannot be
represented, the behavior is undefined. This function
also handles E format numbers .

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string [10];

float32 x;

strcpy (string, "12E3");
x = atoe(string);
// x is now 12000.00

128

Built-in Functions

Example None
Files:
Also See: atoi(), atol(), atoi32(), atof(), printf()

atof() atof48() atof64()
strtof48()

Syntax: result = atof (string)
or
result = atof48(string)
or
result=atof64(string)
or

result-strtof48(string))

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number in single, extended or double
precision format

Function: Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>
Examples: char string [10];
float x;

strcpy (string, "123.456");
x = atof (string);
// x is now 123.456

Example ex_tank.c
Files:
Also See: atoi(), atol(), atoi32(), printf()

129

PCD_May 2015

pin_select()

Syntax:

pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters:

Returns:

Availability:
Requires:
Examples:

peripheral_pin — a constant string specifying which peripheral pin to
map the specified pin to. Refer to #pin_select for all available strings.
Using “NULL?” for the peripheral_pin parameter will unassign the output
peripheral pin that is currently assigned to the pin passed for the pin
parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's
header file for pin defines. If the peripheral_pin parameter is an input,
passing FALSE for the pin parameter will unassign the pin that is
currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock
sequence before writing the RPINRx or RPORX register register
determined by peripheral_pin and pin options. Default is TRUE if not
specified. The unlock sequence must be performed to allow writes to
the RPINRx and RPORX registers. This option allows calling
pin_select() multiple times without performing an unlock sequence each
time.

lock — optional parameter specifying whether to perform a lock
sequence after writing the RPINRx or RPORX registers. Default is
TRUE if not specified. Although not necessary it is a good idea to lock
the RPINRx and RPORX registers from writes after all pins have been
mapped. This option allows calling pin_select() multiple times without
performing a lock sequence each time.

Nothing.

On device with remappable peripheral pins.
Pin defines in device's header file.
pin_select(“U2TX",PIN_BO0);

/IMaps PIN_BO to U2TX //peripheral pin, performs unlock
/land lock sequences.

pin_select(*U2TX”,PIN_B0, TRUE,FALSE);

/IMaps PIN_BO to U2TX //peripheral pin and performs
/lunlock sequence.

pin_select(“U2RX”,PIN_B1,FALSE, TRUE);

/IMaps PIN_B1 to U2RX //peripheral pin and performs lock
/lsequence.

130

Built-in Functions

Example Files: None.
Also See: #pin_select

atoi() atol() atoi32()
atol32() atoi48() atoi64()

Syntax: ivalue = atoi(string)

or
Ivalue = atol(string)

or
i32value = atoi32(string)
or
i48value=atoi48(string)
or
i64value=atoi64(string)
or

L32vale=atol32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.
48value is a 48 bit int.
i64value is a 64 bit int.
L32value is a 32 bit long.

Function: Converts the string passed to the function into an int
representation. Accepts both decimal and hexadecimal argument. If
the result cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>
Examples: char string[10];
int x;

strcpy(string,"123");
x = atoi(string);
// x is now 123

Example input.c
Files:
Also See: printf()

131

PCD_May 2015

at_clear_interrupts()

Syntax: at_clear_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to disable. The
constants are defined in the device's header file as:
AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns: Nothing

Function: To disable the Angular Timer interrupt flags. More than one interrupt can be
cleared at a time by or'ing multiple constants together in a single call, or calling
function multiple times for each interrupt to clear.

Availability: All devices with an AT module.
Requires: Constants defined in the device's header file

Examples: #INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT_PERIOD INTERRUPT))
[
handle period interrupt();
at_clear_interrupts (AT_PERIOD_INTERRUPT) ;
]
if (at_interrupt (active (AT PHASE INTERRUPT) ;
[
handle phase interrupt();
at_clear_interrupts(AT_PHASE_INTERRUPT);

]

Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

132

Built-in Functions

at_disable_interrupts()

Syntax: at_disable_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to disable. The
constants are defined in the device's header file as:
AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT _CC1_INTERRUPT

Returns: Nothing
Function: To disable the Angular Timer interrupts. More than one interrupt can be disabled
at a time by or'ing multiple constants together in a single call, or calling function

multiple times for eadch interrupt to be disabled.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file
Examples; at disable interrupts (AT PHASE INTERRUPT) ;
at _disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);
Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_enable interrupts()

Syntax: at_enable_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to enable. The
constants are defined in the device's header file as:
AT_PHASE_INTERRUPT
AT _MISSING PULSE_INTERRUPT

133

PCD_May 2015

AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns: Nothing

Function: To enable the Angular Timer interrupts. More than one interrupt can be enabled at
a time by or'ing multiple constants together in a single call, or calling function
multiple times for each interrupt to be enabled.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file

Exan1p|e5; at_enable interrupts (AT PHASE INTERRUPT);
atienableiinterrupts (AT PERIOD INTERRUPT|AT CC1l INTERRUPT) ;

Example None

Files:

Also See: setup_at(), at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get_missing_pulse_delay(), at_get_phase_counter(), at_set_set_point(),
at_get_set_point(), at_get_set_point(), at_get_set_point_error(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status()

at_get_capture()

Syntax: result=at_get_capture(which);;

Parameters: which - an 8-bit constant specifying which AT Capture/Compare module to get the
capture time from, can be 1, 2 or 3.

Returns: A 16-bit integer

Function: To get one of the Angular Timer Capture/Compare modules capture time.

Availability: All devices with an AT module.

Requires: Nothing

Exan“ﬂes; resultl=at get capture(l);

result2=at get capture(2);

134

Built-in Functions

Example
Files:
Also See:

None

setup_at(), at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get_missing_pulse_delay(), at_get_phase_counter(), at_set_set_point(),
at_get_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_status()

at_get _missing_pulse_delay()

Syntax: result=at_get_missing_pulse_delay();

Parameters: None.

Returns: A 16-bit integer

Function: To setup the Angular Timer Missing Pulse Delay

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at_get missing pulse delay();

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_period(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get _capture(), at_get_status(), setup_at()

at_get_period()

Syntax: result=at_get_period();
Parameters: None.
Returns: A 16-bit integer. The MSB of the returned value specifies whether the period

counter rolled over one or more times. 1 - counter rolled over at least once, O -

135

PCD_May 2015

value returned is valid.
Function: To get Angular Timer Measured Period

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get period();

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_phase_counter(), at_set_set_point(),
at_get_set_point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_get phase_counter()

Syntax: result=at_get_phase_counter();

Parameters: None.
Returns: A 16-bit integer.
Function: To get the Angular Timer Phase Counter

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get phase counter();

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_set_set_point(),
at_get_set_point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

136

Built-in Functions

at_get_resolution()

Syntax: result=at_get_resolution();

Parameters: None
Returns: A 16-bit integer
Function: To setup the Angular Timer Resolution

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get resolution();

Example None

Files:

Also See: at_set_resolution(), at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),

at_get_period(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get_capture(), at_get_status(), setup_at()

at_get_set _point()

Syntax: result=at_get_set_point();

Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point
Availability: All devices with an AT module.
Requires: Nothing

Examples; result=at get set point();

137

PCD_May 2015

Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set _point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_get _set _point_error()

Syntax: result=at_get_set_point_error();

Parameters: None
Returns: A 16-bit integer

Function: To get the Angular Timer Set Point Error, the error of the measured period value
compared to the threshold setting.

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at_get set point error();

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_get_status()

Syntax: result=at_get_status();

Parameters: None

138

Built-in Functions

Returns: An 8-bit integer. The possible results are defined in the device's header file as:
AT_STATUS_PERIOD_AND_PHASE_VALID
AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function: To get the status of the Angular Timer module.
Availability: All devices with an AT module.
Requires: Nothing

Examples; if ((at_get status()&AT STATUS PERIOD AND PHASE VALID)==
AT STATUS PERIOD AND PHASE VALID
[
Period=at get period();
Phase=at get phase();
]

Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_capture(),
setup_at()

at_interrupt_active()

Syntax: result=at_interrupt_active(interrupt);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to check if its flag is
set. The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns: TRUE if the specified AT interrupt's flag is set, interrupt is active, or FALSE if the
flag is clear, interrupt is not active.

Function: To check if the specified Angular Timer interrupt flag is set.

Availability: All devices with an AT module.

139

PCD_May 2015

Requires: Constants defined in the device's header file

Examples: #INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT _PERIOD INTERRUPT))
[
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;
1
if (at_interrupt (active (AT PHASE INTERRUPT);
[
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT) ;

]

Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_set_compare_time()

Syntax: at_set_compare_time(which, compare_time);

Parameters: which - an 8-bit constant specifying which AT Capture/Compare module to set the
compare time for, can be 1, 2, or 3.

compare_time - a 16-bit constant or variable specifying the value to trigger an
interrupt/ouput pulse.

Returns: Nothing

Function: To set one of the Angular Timer Capture/Compare module's compare time.
Availability: All devices with an AT module.

Requires: Constants defined in the device's header file

Exanuﬂes: at set compare time(1,0x1FF);
at set compare time (3, compare time);

140

Built-in Functions

Example
Files:
Also See:

None

at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_get_capture(), at_get_status(), setup_at()

at_set_missing pulse delay()

Syntax: at_set_missing_pulse_delay(pulse_delay);

Parameters: pulse_delay - a signed 16-bit constant or variable to set the missing pulse delay.
Returns: Nothing

Function: To setup the Angular Timer Missing Pulse Delay

Availability: All devices with an AT module.

Requires: Nothing

Examples: at_set missing pulse delay(pulse delay);

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_get_missing_pulse_delay(),

at_get_period(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get capture(), at_get status(), setup_at()

at_set _resolution()

Syntax: at_set_resolution(resolution);
Parameters: resolution - a 16-bit constant or variable to set the resolution.
Returns: Nothing

141

PCD_May 2015

Function:
Availability:
Requires:
Examples:
Example

Files:
Also See:

To setup the Angular Timer Resolution
All devices with an AT module.

Nothing

at_set resolution(resolution);

None

at_get_resolution(), at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_period(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get_capture(), at_get_status(), setup_at()

at_set_set _point()

Syntax: at_set_set_point(set_point);

Parameters: set_point - a 16-bit constant or variable to set the set point. The set point
determines the threshold setting that the period is compared against for error
calculation.

Returns: Nothing

Function: To get the Angular Timer Set Point

Availability: All devices with an AT module.

Requires: Nothing

Examples: at set set point(set point);

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_get_set_point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

142

Built-in Functions

at_setup_cc()

Syntax: at_setup_cc(which, settings);

Parameters: which - an 8-bit constant specifying which AT Capture/Compare to setup, can be
1, 2 or3.

settings - a 16-bit constant specifying how to setup the specified AT
Capture/Compare module. See the device's header file for all options. Some of
the typical options include:

AT_CC_ENABLED

AT_CC_DISABLED

AT_CC_CAPTURE_MODE

AT_CC_COMPARE_MODE

AT_CAPTURE_FALLING_EDGE

AT_CAPTURE_RISING_EDGE

Returns: Nothing
Function: To setup one of the Angular Timer Capture/Compare modules to the specified
settings.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file

Exam ples; at_setup_cc(1,AT _CC_ENABLED|AT_ CC_CAPTURE_MODE |
AT CAPTURE FALLING EDGE|AT_ CAPTURE INPUT ATCAP);

at setup cc(2,AT CC ENABLED|AT CC_CAPTURE MODE |
AT CC ACTIVE HIGH);

Example None
Files:
Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_set_compare_time(), at_get_capture(), at_get_status(),
setup_at()

143

PCD_May 2015

bit_clear()
Syntax: bit_clear(var, bit)
Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 63 representing a bit number, 0 is the least
significant bit.
Returns: undefined
Function: Simply clears the specified bit in the given variable. The least
significant bit is 0. This function is the similar to: var &= ~(1<<bit);
Availability: All devices
Requires: Nothing
Examples: int x;
x=5;
bit clear(x,2);
// x is now 1
Example ex_patg.c
Files:
Also See: bit_set(), bit_test()

bit_first()

Syntax: N = bit_first (value, var)
Parameters: value is a 0 to 1 to be shifted in
var is a 16 bit integer.
Returns: An 8 bit integer
Function: This function sets N to the 0 based position of the first occurrence of
value. The search starts from the right or least significant bit.
Availability: 30F/33F/24-bit devices
Requires: Nothing
Examples: Intl6 var = 0x0033;
Int8 N = 0;
// N =2

N = bit first (0, var);

144

Built-in Functions

Example Files:

Also See:

None

shift_right(), shift_left(), rotate_right(), rotate_left()

bit_last()

Syntax: N = bit_last (value, var)
N = bit_last(var)

Parameters: value is a 0 to 1 to search for
var is a 16 bit integer.

Returns: An 8-bit integer

Function: The first function will find the first occurrence of value in the var starting
with the most significant bit.
The second function will note the most significant bit of var and then
search for the first different bit.
Both functions return a 0 based result.

Availability: 30F/33F/24-bit devices

Requires: Nothing

Examples: //Bit pattern

Example Files:

//11101110 11111111
Intl6e var = OxEEFF;
Int8 N = 0;

//N is assigned 12

N = bit last (0, wvar);
//N is assigned 12

N = bit last (var);

None

Also See: shift_right(), shift_left(), rotate_right(), rotate_left()
bit_set()

Syntax: bit_set(var, bit)

Parameters: var may be any variable (any Ivalue)

bit is a number 0- 63 representing a bit number, 0 is the least significant
bit.

145

PCD_May 2015

Returns: Undefined

Function: Sets the specified bit in the given variable. The least significant bit is 0.
This function is the similar to: var |= (1<<bit);

Availability: All devices

Requires: Nothing

Examples: int x;
x=5;

bit set(x,3);
// x is now 13

Example Files: ex_patg.c

Also See: bit_clear(), bit_test()

bit_test()

Syntax: value = bit_test (var, bit)

Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant bit.

Returns: Qorl
Function: Tests the specified bit in the given variable. The least significant bit is 0. This
function is much more efficient than, but otherwise similar to:

((var & (1<<bit)) = 0)

Availability: All devices

Requires: Nothing
Exanuﬂes; if(bit test(x,3) || !bit test (x,1)){
//either bit 3 is 1 or bit 1 is O
}
if (data!=0)

for (1=31; !bit test(data, i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

Example ex_patg.c

146

Built-in Functions

Files:
Also See: bit_clear(), bit_set()
bsearch()
Syntax: ip = bsearch (&key, base, num, width, compare)
Parameters: key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data
width: Width of elements in search data
compare: Function that compares two elements in search data
Returns: bsearch returns a pointer to an occurrence of key in the array pointed to
by base. If key is not found, the function returns NULL. If the array is not
in order or contains duplicate records with identical keys, the result is
unpredictable.
Function: Performs a binary search of a sorted array
Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: int nums[5]={1,2,3,4,5};
int compar (const void *argl,const void *arg2);
void main () {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof (int), compar);
}
int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;
}
Example Files: None
Also See: gsort()

147

PCD_May 2015

calloc()
Syntax: ptr=calloc(nmem, size)
Parameters: nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.
Returns: A pointer to the allocated memory, if any. Returns null otherwise.
Function: The calloc function allocates space for an array of nmem objects
whose size is specified by size. The space is initialized to all bits zero.
Availability: All devices
Requires: #INCLUDE <stdlibm.h>
Examples: int * iptr;

Example Files:

iptr=calloc(5,10);
// iptr will point to a block of memory of
// 50 bytes all initialized to O.

None

Also See: realloc(), free(), malloc()

ceil()

Syntax: result = ceil (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the smallest integer value greater than the
argument. CEIL(12.67) is 13.00.

Availability: All devices

Requires: #INCLUDE<math.h>

Examples: // Calculate cost based on weight rounded

Example Files:

// up to the next pound

cost = ceil(weight) * DollarsPerPound;

None

148

Built-in Functions

Also See: floor()

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for

use with a specific interrupt, thus eliminating the GLOBAL level as a
possible parameter. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RAL.

Availability: All devices

Requires: Nothing

Examples: clear interrupt (int timerl);

Example Files: None

Also See: enable_interrupts , #INT , Interrupts Overview

disable_interrupts(), interrupt_actvie()

cog_status()

Syntax: value=cog_status();

Parameters: None

Returns: value - the status of the COG module
Function: To determine if a shutdown event occurred on

the Complementary Output Generator
(COG) module.
Availability: All devices with a COG module.
Examples: if (cog status () ==COG_AUTO SHUTDOWN)
cog_restart () ;

149

PCD_May 2015

Example Files:

Also See:

None

setup_cog(), set_cog_dead_band(),
set_cog_blanking(), set_cog_phase(),
cog_restart()

cog_restart()

Syntax:

cog_restart();

Parameters:

Returns:
Function:

Availability:
Examples:

Example Files:

None

Nothing

To restart the Complementary Output

Generator (COG) module after an auto-

shutdown

event occurs, when not using auto-restart

option of module.

All devices with a COG module.

if (cog status ()==COG AUTO SHUTDOWN)
cog_restart () ;

None

Also See: setup_cog(), set_cog_dead_band(),
set_cog_blanking(), set_cog_phase(),
cog_status()

crc_calc()

crc_calc8()

crc_calcl6()
crc_calc32()

Syntax: Result = crc_calc (data,[width]);
Result = crc_calc(ptr,len,[width]);
Result = crc_calc8(data,[width]);

150

Built-in Functions

Result = crc_calc8(ptr,len,[width]);

Result = crc_calcl16(data,[width]); /lsame as crc_calc()
Result = crc_calc16(ptr,len,[width]); /lsame as crc_calc()
Result = crc_calc32(data,[width]);

Result = crc_calc32(ptr,len,[width]);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

data- This is one double word, word or byte that needs to be processed
when using
crc_calc16(), or crc_calc8(), crc_calc32()

ptr- is a pointer to one or more double words, words or bytes of data

len- number of double words, words or bytes to process for function calls
crc_calcl16(), or crc_calc8(), crc_calc32()

width- optional parameter used to specify the input data bit width to use
with the functions crc_calc16(), and crc_calc8(), crc_calc32() Only
available on devices with a 32-bit CRC peripheral.

If not specified, it defaults to the width of the return value of the function,
8-bit for crc_calc8(), 16-bit for crc_calc16() and 32-bit for crc_calc32().
For devices with a 16-bit for CRC the input data bit width is the same as
the return bit width, crc_calc16() and 8-bit crc_calc8().

Returns the result of the final CRC calculation.

This will process one data double word, word or byte or len double words,
words or bytes of data using the CRC engine.

Only the devices with built in CRC module.

Nothing

intl6 data([8];

Result = crc calc(data,8);
None

setup_crc(); crc_init()

crc_init(mode)

Syntax:

crc_init (data);

Parameters:

data - This will setup the initial value used by write CRC shift register.

151

PCD_May 2015

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Most commonly, this register is set to 0x0000 for start of a new CRC
calculation.

undefined

Configures the CRCWDAT register with the initial value used for CRC
calculations.

Only the devices with built in CRC module.
Nothing

crc_init (); // Starts the CRC accumulator out at 0

crc_init (OXFEEE); // Starts the CRC accumulator out at
OxXFEEE

None

setup_crc(), crc_calc(), crc_calcs8()

cwg_status()

Syntax: value = cwg_status();

Parame None

ters:

Returns the status of the CWG module

Functio To determine if a shutdown event occured causing the
n: module to auto-shutdown

Availabi On devices with a CWG module.

lity:

Exampl if (cwg_status() == CWG_AUTO_ SHUTDOWN)
es: cwg restart();

Exampl None

e Files:

Also setup_cwg(), cwg_restart()

See:

152

Built-in Functions

cwg_restart()

Syntax: cwg_restart();

Parame None

ters:

Returns Nothing

Functio To restart the CWG module after an auto-shutdown event

n: occurs, when not using auto-raster option of module.

Availabi On devices with a CWG module.

lity:

Exampl if (cwg status() == CWG_AUTO_ SHUTDOWN)

es: cwg restart();

Exampl None

e Files:

Also setup_cwg(), cwg_status()

See:

dac_write()

Syntax: dac_write (value)
dac_write (channel, value)

Parameters: Value: 8-bit integer value to be written to the DAC module
Value: 16-bit integer value to be written to the DAC module
channel: Channel to be written to. Constants are:

DAC_RIGHT
DAC_DEFAULT
DAC_LEFT

Returns: undefined

Function: This function will write a 8-bit integer to the specified DAC channel.
This function will write a 16-bit integer to the specified DAC channel.

Availability: Only available on devices with built in digital to analog converters.

Requires: Nothing

Examples: int i = 0;
setup_dac (DAC_VDD | DAC_OUTPUT) ;
while (1) {

153

PCD_May 2015

Also See:

it++;

dac_write(i);
}
int i = 0;
setup_dac (DAC_RIGHT ON, 5);
while (1) {

i++;

dac_write (DAC RIGHT | 1i);
}

setup_dac(), DAC Overview, see header file for device selected

dci_data received()

Syntax: dci_data_received()

Parameters: none

Returns: An intl. Returns true if the DCI module has received data.

Function: Use this function to poll the receive buffers. It acts as a kbhit() function for DCI.
Availability: Only available on devices with DCI

Requires: None

Examples: while(1)

Example Files:
Also See:

if(dci_data_received())

/Iread data, load buffers, etc...

}
}

None
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),
dci_transmit_ready()

dci_read()

Syntax:

dci_read(left_ channel, right_ channel);

Parameters:

left_channel- A pointer to a signed int16 that will hold the incoming audio data for

154

Built-in Functions

the left channel (on a stereo system). This data is received on the bus before the
right channel data (for situations where left & right channel does have meaning)

right_channel- A pointer to a signed int16 that will hold the incoming audio data for
the right channel (on a stereo system). This data is received on the bus after the
data in left channel.

Returns: undefined

Function: Use this function to read two data words. Do not use this function with DMA. This
function is provided mainly for applications involving a stereo codec.

If your application does not use both channels but only receives on a slot (see

setup_dci), use only the left channel.

Availability: Only available on devices with DCI

Requires: None

Examples: while(1)

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

}

Example None

Files:

Also See: DCI Overview, setup_dci(), dci_start(), dci_write(), dci_transmit_ready(),
dci_data_received()

dci_start()

Syntax: dci_start();

Parameters: None

Returns: undefined

Function: Starts the DCI module’s transmission. DCI operates in a continous transmission
mode (unlike other transmission protocols that transmit only when they have data).
This function starts the transmission. This function is primarily provided to use DCI
in conjunction with DMA

Availability: ~ Only available on devices with DCI.

Requires: None

155

PCD_May 2015

Examples: dci_initialize((12S_MODE | DCI_MASTER |
DCI_CLOCK_OUTPUT | SAMPLE_RISING_EDGE |
UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME |
DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
RECEIVE_SLOTO | RECEIVE_SLOT1, TRANSMIT_SLOTO |
TRANSMIT_SLOT1, 6000);

dci_start();
Example None
Files:
Also See: DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(),

dci_data_received()

dci_transmit_ready()

Syntax: dci_transmit_ready()
Parameters: None
Returns: An intl. Returns true if the DCI module is ready to transmit

(there is space open in the hardware buffer).

Function: Use this function to poll the transmit buffers.
Availability: Only available on devices with DCI
Requires: None

Examples: while(1)

if(dci_transmit_ready())

/ltransmit data, load buffers, etc...

}
}
Example Files: None
Also See: DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),

dci_data_received()

156

Built-in Functions

dci_write()

Syntax: dci_write(left_channel, right_channel);

Parameters: left channel- A pointer to a signed int16 that holds the outgoing audio data for the
left channel (on a stereo system). This data is transmitted on the bus before the
right channel data (for situations where left & right channel does have meaning)
right channel- A pointer to a signed int16 that holds the outgoing audio data for the
right channel (on a stereo system). This data is transmitted on the bus after the
data in left channel.

Returns: undefined

Function: Use this function to transmit two data words. Do not use this function with DMA.
This function is provided mainly for applications involving a stereo codec.

If your application does not use both channels but only transmits on a slot (see
setup_dci()), use only the left channel. If you transmit more than two slots, call this
function multiple times.

Availability: Only available on devices with DCI

Requires: None

Examples: while(1)

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);
}

Example None

Files:

Also See: DCI Overview, setup_dci(), dci_start(), dci_read(), dci_transmit_ready(),

dci_data_received()

delay_cycles()

Syntax: delay_cycles (count)
Parameters: count - a constant 1-255
Returns: undefined

157

PCD_May 2015

Function: Creates code to perform a delay of the specified number of instruction
clocks (1-255). An instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the

delay time.
Availability: All devices
Requires: Nothing
Examples: delay cycles(1); // Same as a NOP

delay cycles(25); // At 20 mhz a 5us delay
Example Files: ex_cust.c

Also See: delay_us(), delay_ms()

delay_ms()

Syntax: delay_ms (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16,
now the upper byte affects the time.

Returns: undefined

Function: This function will create code to perform a delay of the specified
length. Time is specified in milliseconds. This function works by
executing a precise number of instructions to cause the requested
delay. It does not use any timers. If interrupts are enabled the time
spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the

delay time.
Availability: All devices
Requires: #USE DELAY

158

Built-in Functions

Examples:

Example Files:

Also See:

#use delay (clock=20000000)

delay ms(2);

void delay seconds(int n) {
for (;n!=0; n- -)
delay ms(1000);

}

ex_sqw.c

delay_us(), delay_cycles(), #USE DELAY

delay us()

Syntax:

delay_us (time)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16,
now the upper byte affects the time.

undefined

Creates code to perform a delay of the specified length. Time is
specified in microseconds. Shorter delays will be INLINE code and
longer delays and variable delays are calls to a function. This function
works by executing a precise number of instructions to cause the
requested delay. It does not use any timers. If interrupts are enabled
the time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the
delay time.

All devices

#USE DELAY
#use delay(clock=20000000)

do {
output high (PIN BO);
delay us (duty);
output low (PIN BO);
delay us (period-duty) ;

159

PCD_May 2015

Example Files:

Also See:

} while (TRUE) ;
ex_sqw.c

delay_ms(), delay_cycles(), #USE DELAY

disable_interrupts()

Syntax: disable_interrupts (name)
disable_interrupts (INTR_XX)
disable_interrupts (expression)

Parameters: name - a constant defined in the devices .h file
INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL
expression — A non-constant expression

Returns: When INTR_LEVELX is used as a parameter, this function will return the
previous level.

Function: Disables the interrupt for the given name. Valid specific names are the
same as are used in #INT_xxx and are listed in the devices .h file. Note
that it is not necessary to disable interrupts inside an interrupt service
routine since interrupts are automatically disabled.

INTR_GLOBAL - Disables all interrupts that can be disabled
INTR_NORMAL — Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR
INTR_LEVELO .. INTR_LEVEL7 — Disables interrupts at this level and
below, enables interrupts above this level

INTR_CN_PIN | PIN_xx — Disables a CN pin interrupts

expression — Disables interrupts during evaluation of the expression.

Availability: All dsPIC and PIC24 devices

Requires: Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples: disable interrupts (INT RDA); // RS232 OFF

160

Built-in Functions

Example Files:

Also See:

disable interrupts(memcpy (bufferl,buffer2,10)) ;
enable interrupts (ADC_DONE) ;
enable interrupts (RB_CHANGE) ;

// these enable the interrupts

None

enable_interrupts(), #INT_xxxx, Interrupts Overview, clear_interrupt()
interrupt_active()

div()
div()

Syntax: idiv=div(hum, denom)
Idiv =Idiv(Inum, Idenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.

Inum and Idenom are signed longs , signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The
div function returns a structure of type div_t, comprising of both the
quotient and the remainder. The Idiv function returns a structure of type
Idiv_t, comprising of both the quotient and the remainder.

Function: The div and Idiv function computes the quotient and remainder of the
division of the numerator by the denominator. If the division is inexact,
the resulting quotient is the integer or long of lesser magnitude that is
the nearest to the algebraic quotient. If the result cannot be represented,
the behavior is undefined; otherwise quot*denom(ldenom)+rem shall
equal num(lnum).

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>

Examples: div_t idiv;

ldiv_t lidiv;
idiv=div(3,2);
//idiv will contain quot=1 and rem=1

1idiv=1div(300,250) ;
//1idiv will contain lidiv.quot=1 and lidiv.rem=50

161

PCD_May 2015

Example Files: None

Also See: None

dma_start()

Syntax: dma_start(channel, mode, addressA, addressB, count);

Parameters: Channel- The channel used in the DMA transfer
mode - The mode used for the DMA transfer.

addressA- The start RAM address of the buffer to use located within the
DMA RAM bank.

addressB- If using PING_PONG mode the start RAM address of the
second buffer to use located within the DMA RAM bank.

count - Number of DMA transfers to do. Value must be one less than
actual number of transfers.

Returns: void

Function: Starts the DMA transfer for the specified channel in the specified mode of
operation.

Availability: Devices that have the DMA module.

Requires: Nothing

Exan“ﬂes; dma_start (2, DMA CONTINOUS | DMA PING_ PONG, 0x4000,
0x4200,255) ;

// This will setup the DMA channel 2 for continuous ping-pong
mode with DMA RAM addresses of 0x4000 and 0x4200.

Example Files: None

Also See: setup_dmay(), dma_status()

162

Built-in Functions

dma_status()

Syntax: Value = dma_status(channel);

Parameters: Channel — The channel whose status is to be queried.

Returns: Returns a 8-bit int. Possible return values are :
DMA_IN_ERROR 0x01
DMA_OUT_ERROR 0x02
DMA_B_SELECT 0x04

Function: This function will return the status of the specified channel in the DMA
module.

Availability: Devices that have the DMA module.

Requires: Nothing

Examples: Int8 value;

Example Files:

Also See:

value = dma status(3); // This will return the status of
channel 3 of the DMA module.

None

setup_dmay(), dma_start().

enable_interrupts()

Syntax: enable_interrupts (name)
enable_interrupts (INTR_XX)

Parameters: name- a constant defined in the devices .h file
INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL

Returns: undefined

Function: Name -Enables the interrupt for the given name. Valid specific names are

the same as are used in #INT_xxx and are listed in the devices .h file.
INTR_GLOBAL — Enables all interrupt levels (same as INTR_LEVELDO)

INTR_NORMAL — Use normal vectors for the ISR

163

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Enables interrupts at this level and
above, interrupts at lower levels are disabled

INTR_CN_PIN | PIN_xx — Enables a CN pin interrupts
All dsPIC and PIC24 devices

Should have a #INT_xxxx, Constants are defined in the devices .h file.

enable interrupts (INT TIMERO);
enable interrupts (INT TIMERL);
enable interrupts (INTR_CN PIN|Pin BO);

None

disable_enterrupts(), #INT_xxxx, Interrupts Overview, clear_interrupt()
interrupt_active()

erase_program_memory

Syntax: erase_program_memory (address);
Parameters: address is 32 bits. The least significant bits may be ignored.
Returns: undefined
Function: Erases FLASH_ERASE_SIZE bytes to OxFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part.
Family FLASH_ERASE_SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)
NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program memory access.
Availability: All devices
Requires: Nothing
Examples: Int32 address = 0x2000;

164

Built-in Functions

erase program memory (address); // erase block of memory from 0x2000
to 0x2400 for a PIC24HJ/FJ /33FJ device, or erase 0x2000 to 0x2040
for a dsPIC30F chip

Example None
Files:
Also See: write program memory(), Program Eeprom Overview

ext_int_edge()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and O otherwise.
source is a constant from 0 to 4.
Source is optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low" and

"low to high"
Returns: undefined
Function: Determines when the external interrupt is acted upon. The edge may be

L TO_Hor H_TO_L to specify the rising or falling edge.

Availability: Only devices with interrupts

Requires: Constants are in the devices .h file

Examples: ext int edge(2, L TO H); // Set up PIC18 EXT2
ext_int edge(2, L_TO H); // Set up external interrupt 2 to
interrupt

// on rising edge
ext int edge(H TO L); // Sets up EXT
ext_int edge(H_TO_L); // Sets up external interrupt 0
to interrupt

// on falling edge

Example Files: ex_wakup.c
Also See: #INT_EXT , enable_interrupts() , disable_interrupts , Interrupts
Overview

165

PCD_May 2015

fabs()

Syntax: result=fabs (value)

Parameters: value is any float type

Returns: result is a float with precision to value

Function: The fabs function computes the absolute value of a float
Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: double result;

result=fabs (-40.0)
// result is 40.0

Example Files: None

Also See: abs(), labs()

getc()
getch()

getchar()
fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character

Function: This function waits for a character to come in over the RS232 RCV pin and returns
the character. If you do not want to hang forever waiting for an incoming character
use kbhit() to test for a character available. If a built-in USART is used the hardware
can buffer 3 characters otherwise GETC must be active while the character is being
received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN

166

Built-in Functions

Availability:
Requires:

Examples:

Example
Files:
Also See:

(the last USE RS232).
All devices

#USE RS232

printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N'");

#use rs232 (baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)
#use rs232 (baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)
#use rs232 (baud=9600,xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

ex_stwt.c

putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

gets() fgets()

Syntax: gets (string)
value = fgets (string, stream)
Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: Reads characters (using getc()) into the string until a RETURN (value

13) is encountered. The string is terminated with a 0. Note that INPUT.C
has a more versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults
to STDIN (the last USE RS232).

167

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices

#USE RS232

char string[30];

printf ("Password: ");

gets (string);

if (strcmp (string, password))
printf ("OK") ;

None

getc(), get_string in input.c

floor()

Syntax: result = floor (value)

Parameters: value is any float type

Returns: result is a float with precision equal to value

Function: Computes the greatest integer value not greater than the
argument. Floor (12.67) is 12.00.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: // Find the fractional part of a value

Example Files:

Also See:

frac = value - floor(value);

None

ceil()

fmod()

Syntax:

result= fmod (vall, val2)

168

Built-in Functions

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

vall is any float type
val2 is any float type

result is a float with precision equal to input parameters vall and val2
Returns the floating point remainder of vall/val2. Returns the value vall -
i*val2 for some integer “i” such that, if val2 is nonzero, the result has the
same sign as vall and magnitude less than the magnitude of val2.

All devices.

#INCLUDE <math.h>

float result;
result=fmod (3,2);
// result is 1

None

None

printf()
fprintf()

Syntax:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:

Returns:

Function:

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function
name to be used for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format
specifies do not work in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first
two forms) or to a specified function. Formatting is in accordance with
the string argument. When variables are used this string must be a
constant. The % character is used within the string to indicate a variable

169

PCD_May 2015

Availability:

Requires:

value is to be formatted and output. Longs in the printf may be 16 or 32
bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual
for other escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults
to STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to
specify how many characters are to be outputted, or 01-09 to indicate
leading zeros, or 1.1 to 9.9 for floating point and %w output. t is the type
and may be one of the following:

C Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)

LX Hex long int (upper case)

Float with truncated decimal

Float with rounded decimal

Float in exponential format

Unsigned int with decimal place inserted. Specify two
numbers for n. The first is a total field width. The
second is the desired number of decimal places.

s 0@ —+

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 O0OFE
%3.1w 1.8 254

* Result is undefined - Assume garbage.
All Devices

#USE RS232 (unless fname is used)

170

Built-in Functions

Examples: byte x,y,z;
printf ("HiThere") ;
printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("%2u %X %4X\n\r",x,vy,z);
printf (LCD PUTC, "n=%u",n);

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

putc()
putchar()

fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE
RS232 must appear before this call to determine the baud rate and pin
used. The #USE RS232 remains in effect until another is encountered
in the file.

If fputc() is used then the specified stream is used where putc() defaults
to STDOUT (the last USE RS232).

Availability: All devices
Requires: #USE RS232
Examples: putc ('*');

for (i=0; i<10; i++)

putc (buffer[i]);

putc(13);
Example Files: ex_tgetc.c
Also See: getc(), printf(), #USE RS232, RS232 I/O Overview

171

PCD_May 2015

puts()
fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc(). After
the string is sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are
sent. In general printf() is more useful than puts().
If fputs() is used then the specified stream is used where puts() defaults
to STDOUT (the last USE RS232)

Availability: All devices

Requires: #USE RS232

Examples: puts(" —---------- ")
puts(" | HI ")
puts(" -—=———————- ")

Example Files: None

Also See:

printf(), gets(), RS232 1/0 Overview

free()

Syntax: free(ptr)
Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.
Returns: No value
Function: The free function causes the space pointed to by the ptr to be

deallocated, that is made available for further allocation. If ptr is a null
pointer, no action occurs. If the ptr does not match a pointer earlier
returned by the calloc, malloc or realloc, or if the space has been

172

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

deallocated by a call to free or realloc function, the behavior is undefined.
All devices.

#INCLUDE <stdlibm.h>

int * iptr;

iptr=malloc(10);

free (iptr)
// iptr will be deallocated

None

realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, &exp);

Parameters: value is any float type
exp is a signed int.

Returns: result is a float with precision equal to value

Function: The frexp function breaks a floating point number into a normalized
fraction and an integral power of 2. It stores the integer in the signed int
object exp. The result is in the interval [1/2 tol) or zero, such that value
is result times 2 raised to power exp. If value is zero then both parts are
zero.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

Example Files:

Also See:

signed int exp;
result=frexp (.5, &exp) ;
// result is .5 and exp is O

None

Idexp(), exp(), log(), log10(), modf()

173

PCD_May 2015

scanf()

Syntax:

scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)

Parameters:

Returns:

Function:

cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.

0 if a failure occurred, otherwise it returns the number of conversion specifiers that
were read in, plus the number of constant strings read in.

Reads in a string of characters from the standard RS-232 pins and formats the
string according to the format specifiers. The format specifier character (%) used
within the string indicates that a conversion specification is to be done and the value
is to be saved into the corresponding argument variable. A %% will input a single
%. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to
STDIN (the last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99 specifying
the field width, the number of characters to be inputted. t is the type and maybe
one of the following:

c Matches a sequence of characters of the number specified by the
field width (1 if no field width is specified). The corresponding
argument shall be a pointer to the initial character of an array long
enough to accept the sequence.

S Matches a sequence of non-white space characters. The
corresponding argument shall be a pointer to the initial character
of an array long enough to accept the sequence and a terminating
null character, which will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument
shall be a pointer to an unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding
argument shall be a pointer to a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument
shall be a pointer to a signed integer.

174

Built-in Functions

Ld

Lo

x or X

Lx or LX

Li

f,gore

Matches a long signed decimal integer. The corresponding
argument shall be a pointer to a long signed integer.

Matches a signed or unsigned octal integer. The corresponding
argument shall be a pointer to a signed or unsigned integer.

Matches a long signed or unsigned octal integer. The
corresponding argument shall be a pointer to a long signed or
unsigned integer.

Matches a hexadecimal integer. The corresponding argument shall
be a pointer to a signed or unsigned integer.

Matches a long hexadecimal integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

Matches a signed or unsigned integer. The corresponding argument
shall be a pointer to a signed or unsigned integer.

Matches a long signed or unsigned integer. The corresponding
argument shall be a pointer to a long signed or unsigned integer.

Matches a floating point number in decimal or exponential format.
The corresponding argument shall be a pointer to a float.

Matches a non-empty sequence of characters from a set of
expected characters. The sequence of characters included in the
set are made up of all character following the left bracket ([) up to
the matching right bracket (]). Unless the first character after the
left bracket is a ”, in which case the set of characters contain all
characters that do not appear between the brackets. If a -
character is in the set and is not the first or second, where the first
is a”, nor the last character, then the set includes all characters
from the character before the - to the character after the -.

For example, %[a-z] would include all characters from a to z in the
set and %["a-z] would exclude all characters from a to z from the
set. The corresponding argument shall be a pointer to the initial
character of an array long enough to accept the sequence and a
terminating null character, which will be added automatically.

Assigns the number of characters read thus far by the call to scanf()
to the corresponding argument. The corresponding argument
shall be a pointer to an unsigned integer.

An optional assignment-suppressing character (*) can be used after
the format specifier to indicate that the conversion specification is
to be done, but not saved into a corresponding variable. In this
case, no corresponding argument variable should be passed to

175

PCD_May 2015

Availability:
Requires:

Examples:

Example
Files:
Also See:

the scanf() function.

A string composed of ordinary non-white space characters is
executed by reading the next character of the string. If one of the
inputted characters differs from the string, the function fails and
exits. If a white-space character precedes the ordinary non-white
space characters, then white-space characters are first read in
until a non-white space character is read.

White-space characters are skipped, except for the conversion
specifiers [, ¢ or n, unless a white-space character precedes the [

or ¢ specifiers.
All Devices

#USE RS232

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &number, name, &time))

printf"\r\nName: %s, Number: %u, Time:

None

RS232 1/0 Overview, getc(), putc(), printf()

%$1d", name, number, time) ;

get capture()

Syntax: value = get_capture(x)

Parameters: x defines which ccp module to read from.

Returns: A 16-bit timer value.

Function: This function obtains the last capture time from the indicated CCP module
Availability: Only available on devices with Input Capture modules

Requires: None

Examples:

Example Files: ex_ccpmp.c

176

Built-in Functions

Also See:

setup_ccpx()

get _capture()

Syntax: value = get_capture(x, wait)

Parameters: x defines which input capture result buffer module to read from
wait signifies if the compiler should read the oldest result in the buffer or the next
result to enter the buffer

Returns: A 16-bit timer value.

Function: If wait is true, the current capture values in the result buffer are cleared, and the
next result to be sent to the buffer is returned. If wait is false, the default setting, the
first value currently in the buffer is returned. However, the buffer will only hold four
results while waiting for them to be read, so if read isn't being called for every
capture event, when wait is false, the buffer will fill with old capture values and any
new results will be lost.

Availability: ~ Only available on devices with Input Capture modules

Requires: None

Exan“ﬂes; setup_timer3 (TMR_INTERNAL | TMR DIV BY 8);
setup_capture (2, CAPTURE _FE | CAPTURE_ TIMER3);
while (TRUE) {

timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: $LU”, timerValue);
}

Example None

Files:

Also See: setup_capture(), setup_compare(), Input Capture Overview

get _capture _ccpl()
get_capture _ccp2()
get _capture _ccp3()

177

PCD_May 2015

get_capture _ccp4()
get_capture_ccp5()

Syntax: value=get_capture_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or
the next result in the buffer or the next result to enter the buffer.

Returns: valuel6 -a 16-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared,
and the next result to be sent, the buffer is returned. If wait is false, the
default setting, the first value currently in the buffer is return. However, the
buffer will only hold four results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will
fill with old capture values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

Examples: unsigned intl6 value;

Example Files:

setup ccpl (CCP_CAPTURE FE);
while (TRUE) {

value=get capture_ ccpl (TRUE) ;
printf ("Capture occurred at: %LU", value);

None

178

Built-in Functions

Also See:

set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), set_timer_period_ccpX(), get_timer_ccpx(),
get_capture32_ccpX()

get _capture32_ccpl()
get _capture32_ccp2()
get_capture32_ccp3()
get_capture32_ccp4()
get_capture32_ccp5()

Syntax: value=get_capture32_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or
the next result in the buffer or the next result to enter the buffer.

Returns: value32 -a 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared,
and the next result to be sent, the buffer is returned. If wait is false, the
default setting, the first value currently in the buffer is return. However, the
buffer will only hold two results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will
fill with old capture values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

179

PCD_May 2015

Examples: unsigned int32 value;
setup_ccpl (CCP_CAPTURE_FE|CCP_TIMER 32 BIT);
while (TRUE) {

value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: %LU", value);

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), set_timer_period_ccpX(), get_timer_ccpx(),
get_capture_ccpX()

get_capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

if(get_capture_event())
result = get_capture_time();

Example Files: None
Also See: #use_capture, get_capture_time()

180

Built-in Functions

get _capture_time()

Syntax: result = get_capture_time([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: An int16 value representing the last capture time.

Function: To get the last capture time.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1,FASTEST)

Example Files:

Also See:

result = get capture time();

None

#use_capture, get_capture_event()

get _capture32()

Syntax: result = get_capture32(x,[wait]);

Parameters: x is 1-16 and defines which input capture result buffer modules to read from.
wait is an optional parameter specifying if the compiler should read the oldest
result in
the bugger or the next result to enter the buffer.

Returns: A 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared, and the

next result

to be sent to the buffer is returned. If wait is false, the default setting, the first
value currently

in the buffer is returned. However, the buffer will only hold four results while

181

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:
Also See:

waiting for them

to be read, so if get_capture32 is not being called for every capture event. When
wait is false,

the buffer will fill with old capture values and any new results will be lost.

Only devices with a 32-bit Input Capture module
Nothing

setup timer2 (TMR INTERNAL | TMR DIV BY 1 | TMR 32 BIT);
setup capture(1l,CAPTURE FE | CAPTURE TIMER2 | CAPTURE 32 BIT);
while (TRUE) {

timerValue=get capture32 (1, TRUE);

printf ("Capture 1 occurred at: $SLU", timerValue);

}

None
setup_capture(), setup_compare(), get_capture(), Input Capture Overview

get_hspwm_capture()

Syntax: result=get_hspwm_capture(unit);

Parameters: unit - The High Speed PWM unit to set.

Returns: Unsigned in16 value representing the capture PWM time base value.

Function: Gets the captured PWM time base value from the leading edge detection on the
current-limit input.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Exanuﬂes; result=get hspwm capture(1);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

182

Built-in Functions

set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
setup_hspwm_chop_clock(), setup_hspwm_unit_chop_clock()
setup_hspwm(), setup_hspwm_secondary()

get_motor_pwm_count()

Syntax: Datal6 = get_motor_pwm_count(pwm);

Parameters: pwm- Defines the pwm module used.

Returns: 16 bits of data

Function: Returns the PWM count of the motor control unit.

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: Datal6 = get motor pmw_count (1) ;

Example Files: None

Also See: setup_motor_pwm(), set_motor_unit(), set_motor_pwm_event(),

set_motor_pwm_duty();

get_nco_accumulator()

Syntax: value =get_nco_accumulator();
Parameters: none

Returns: current value of accumulator.
Availability: On devices with a NCO module.
Examples: value = get nco_accumulator();
Example Files: None

Also See: setup_nco(), set_nco_inc_value(),

get_nco_inc_value()

183

PCD_May 2015

get _nco_inc_value()

Syntax: value =get_nco_inc_value();
Parameters: None

Returns: - current value set in increment registers.
Availability: On devices with a NCO module.
Examples: value = get nco inc value();
Example Files: None

Also See: setup_nco(), set_nco_inc_value(),

get_nco_accumulator()

get_ticks()

Syntax: value = get_ticks([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE TIMER.
Returns: value — a 8, 16, 32 or 64 bit integer. (int8, int16, int32 or int64)

Function: Returns the current tick value of the tick timer. The size returned depends on the

size of the tick timer.

Availability: All devices.
Requires: #USE TIMER(options)
Examples: #USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 current tick;

current tick = get ticks();

}

Example None
Files:

184

Built-in Functions

Also See:

#USE TIMER, set_ticks()

get _timerA()

Syntax: value=get_timerA();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting (254,
255,0,1,2,...).

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing

Examples: set_timerA(0);

Example Files:

Also See:

while (timerA < 200);
none

set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax: value=get_timerB();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0, 1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

Examples: set_timerB(0);

185

PCD_May 2015

while (timerB < 200);
Example Files: none

Also See: set_timerB(), setup_timer_B(), TimerB Overview

get _timerx()

Syntax: value=get_timerl()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer9()

Parameters: None

Returns: The current value of the timer as an int16

Function: Retrieves the value of the timer, specified by X (which may be 1-9)

Availability: This function is available on all devices that have a valid timerX.

Requires: Nothing

Examples: if (get_timer2() % 0xAQ0 == HALF WAVE PERIOD)
output_toggle (PIN BO);

Example Files: ex_stwt.c

Also See: Timer Overview , setup_timerX(), get_timerXY(), set_timerX(),

set_timerXY()

186

Built-in Functions

get_timerxy()

Syntax: value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Parameters: Void

Returns: The current value of the 32 bit timer as an int32

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY (which
may be 23, 45, 67 and 89)

Availability: This function is available on all devices that have a valid 32 bit enabled
timers. Timers 2 & 3,4 &5, 6 & 7 and 8 & 9 may be used. The target
device must have one of these timer sets. The target timers must be
enabled as 32 bit.

Requires: Nothing

Examples: if (get timer23() > TRIGGER TIME)

ExecuteEvent () ;

Example Files: ex_stwt.c

Also See:

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(),
set_timerXY()

get timer_ccpl()
get timer_ccp2()
get _timer_ccp3()
get _timer_ccp4()
get _timer_ccp5()

Syntax:

value32=get_timer_ccpx();
valuel6=get_timer_ccpx(which);

187

PCD_May 2015

Parameters: which - when in 16-bit mode determines which timer value to read. 0
reads the lower timer value (CCPXTMRL), and 1 reads the upper timer
value (CCPXTMRH).

Returns: value32 - the 32-bit timer value.
valuel6- the 16-bit timer value.

Function: This function gets the timer values for the CCP module.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing
Exanuﬂes; unsigned int32 value32;
unsigned int32 valuel5;
value32=get timer ccpx(); //get the 32 bit timer
value
valuel6=get timer ccpx(0); //get the 16 bit timer

value from

//lower timer
valuel6=get timer ccpx(1l); //get the 16 bit timer
value from

//upper timer

Example Files: None

Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), set_timer_period_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()

188

Built-in Functions

get_tris_x()
Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()
Parameters: None
Returns: intl6, the value of TRIS register
Function: Returns the value of the TRIS register of port A,B,C,D, E, F, G, H, J, or
K.
Availability: All devices.
Requires: Nothing
Examples: tris_a = GET_TRIS A();
Example Files: None
Also See: input(), output_low(), output_high()

getc()
getch()

getchar()
fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)

189

PCD_May 2015

Returns: An 8 bit character

Function: This function waits for a character to come in over the RS232 RCV pin and returns
the character. If you do not want to hang forever waiting for an incoming character
use kbhit() to test for a character available. If a built-in USART is used the hardware
can buffer 3 characters otherwise GETC must be active while the character is being
received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN
(the last USE RS232).

Availability: All devices

Requires: #USE RS232
Examples: printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N'");

#use rs232 (baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin bl,
rcv=pin_ b0, stream=GPS)
#use rs232(baud=9600, xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

Example ex_stwt.c

Files:

Also See: putc(), kbhit(), printf(), #USE RS232, input.c, RS232 /O Overview
getenv()

Syntax: value = getenv (cstring);

Parameters: cstring is a constant string with a recognized keyword
Returns: A constant number, a constant string or O

190

Built-in Functions

This function obtains information about the execution environment. The
following are recognized keywords. This function returns a constant O if

the keyword is not understood.

FUSE_SET:fffff

Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff

ID

DEVICE

CLOCK
VERSION

VERSION_STRING

PROGRAM_MEMORY

STACK
SCRATCH

DATA_EEPROM

EEPROM_ADDRESS

READ_PROGRAM

ADC_CHANNELS

ADC_RESOLUTION

ICD

SPI

Returns 1 if fuse fffff is valid

Returns the device ID (set by #ID)

Returns the device name string (like
"PIC16C74")

Returns the MPU FOSC
Returns the compiler version as a float

Returns the compiler version as a
string

Returns the size of memory for code
(in words)

Returns the stack size

Returns the start of the compiler
scratch area

Returns the number of bytes of data
EEPROM

Returns the address of the start of
EEPROM. 0 if not supported by the
device.

Returns a 1 if the code memory can
be read

Returns the number of A/D channels

Returns the number of bits returned
from READ_ADC()

Returns a 1 if this is being compiled
fora ICD

Returns a 1 if the device has SPI

191

PCD_May 2015

USB

CAN

I2C_SLAVE

12C_MASTER

PSP

COMP

VREF

LCD

UART

AUART

CCPx

TIMERX

FLASH_WRITE_SIZE

FLASH_ERASE_SIZE

BYTES_PER_ADDRESS

BITS_PER_INSTRUCTION

RAM

Returns a 1 if the device has USB
Returns a 1 if the device has CAN

Returns a 1 if the device has I12C slave
H/W

Returns a 1 if the device has 12C
master H/W

Returns a 1 if the device has PSP

Returns a 1 if the device has a
comparator

Returns a 1 if the device has a voltage
reference

Returns a 1 if the device has direct
LCD HW

Returns the number of H/W UARTS

Returns 1 if the device has an ADV
UART

Returns a 1 if the device has CCP
number x

Returns a 1 if the device has TIMER
number x

Smallest number of bytes that can be
written to FLASH

Smallest number of bytes that can be
erased in FLASH

Returns the number of bytes at an
address location

Returns the size of an instruction in
bits

Returns the number of RAM bytes
available for your device.

192

Built-in Functions

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB
UARTX_RX
UARTxX_TX
SPIx_DI
SPIxDO

SPIXCLK
ETHERNET

QEI

Returns the address of the specified
special file register. The output format
can be used with the preprocessor
command #bit. name must match SFR
denomination of your target PIC
(example: STATUS, INTCON,
TXREG, RCREG, etc)

Returns the bit address of the
specified special file register bit. The
output format will be in “address:bit”,
which can be used with the
preprocessor command #byte. name
must match SFR.bit denomination of
your target PIC (example: C, Z, GIE,
TMROIF, etc)

Returns TRUE if the specified special
file register name is valid and exists
for your target PIC (example:
getenv("SFR_VALID:INTCON"))

Returns TRUE if the specified special
file register bit is valid and exists for
your target PIC (example:
getenv("BIT_VALID:TMROIF"))

Returns 1 if PB is a valid 1/0 PIN (like
A2)

Returns UARTXPin (like PINXC7)
Returns UARTXPin (like PINXC6)

Returns SPIxDI Pin

Returns SPIXDO Pin

Returns SPIXCLK Pin

Returns 1 if device supports Ethernet

Returns 1 if device has QEI

193

PCD_May 2015

DAC

DSP

DCI

DMA

CRC

CWG

NCO

CLC

DSM

OPAMP

RTC

CAP_SENSE

EXTERNAL_MEMORY

INSTRUCTION_CLOCK

ENH16

ENH24

IC

ICx

oC

Returns 1 if device has a D/A
Converter

Returns 1 if device supports DSP
instructions

Returns 1 if device has a DCI module
Returns 1 if device supports DMA
Returns 1 if device has a CRC module

Returns 1 if device has a CWG
module

Returns 1 if device has a NCO module
Returns 1 if device has a CLC module
Returns 1 if device has a DSM module
Returns 1 if device has op amps

Returns 1 if device has a Real Time
Clock

Returns 1 if device has a CSM cap
sense module and 2 if it has a CTMU
module

Returns 1 if device supports external
program memory

Returns the MPU instruction clock
Returns 1 for Enhanced 16 devices
Returns 2 for Enhanced 24 devices
Returns number of Input Capture units
device has

Returns TRUE if ICx is on this part

Returns number of Output Compare
units device has

194

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

OCx Returns TRUE if OCx is on this part

RAM_START Returns the starting address of the
first general purpose RAM location

PSV Returns TRUE if program space
visibility (PSV) is enabled. If PSV is
enabled, data in program memory
(‘const char *' or 'rom char *') can be
assigned to a regular RAM pointer
(‘char *') and a regular RAM pointer
can dereference data from program
memory or RAM.

All devices

Nothing

#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old
#ENDIF

for (i=0;i<getenv ("DATA EEPROM");i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS”)

#bit carry flag=GETENV (“BIT:C”)
None

None

gets() fgets()

Syntax:

gets (string)
value = fgets (string, stream)

195

PCD_May 2015

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

undefined
Reads characters (using getc()) into the string until a RETURN (value
13) is encountered. The string is terminated with a 0. Note that INPUT.C

has a more versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults
to STDIN (the last USE RS232).

All devices

#USE RS232

char string[301];
printf ("Password: ");
gets (string);

if (strcmp (string, password))
printf ("OK") ;

None

getc(), get_string in input.c

goto_address()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location. Jumps outside
of the current function should be done only with great caution. This is not
a normally used function except in very special situations.

Availability: All devices

Requires: Nothing

Examples: #define LOAD REQUEST PIN Bl

#define LOADER 0x1f00

196

Built-in Functions

Example Files:

Also See:

if(input(LOAD_REQUEST))
goto_ address (LOADER) ;

setjmp.h

label_address()

high_speed _adc_done()

Syntax: value = high_speed_adc_done([pair]);
Parameters: pair — Optional parameter that determines which ADC pair's ready flag to check. If
not used all ready flags are checked.
Returns: An intl6. If pair is used 1 will be return if ADC is done with conversion, 0 will be
return if still busy. If pair isn't use it will return a bit map of which conversion are
ready to be read. For example a return value of 0x0041 means that ADC pair 6,
AN12 and AN13, and ADC pair 0, ANO and AN1, are ready to be read.
Function: Can be polled to determine if the ADC has valid data to be read.
Availability: ~ Only on dsPIC33FJIxxGSxxx devices.
Requires: None
Exan”ﬂesj intl6 result[2]
setup_high speed adc pair(l, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc(ADC_CLOCK DIV 4);
read high speed adc(l, ADC START ONLY);
while ('high speed adc done (1)) ;
read_high speed adc (1, ADC_READ ONLY, result);
printf (“AN2 value = $LX, AN3 value = $LX\n\r”,result[0],result[l]);
Example None
Files:
Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), read_high_speed_adc()

197

PCD_May 2015

12c_init()

Syntax: i2c_init([stream],baud);

Parameters: stream — optional parameter specifying the stream defined
in #USE 12C.
baud — if baud is 0, 12C peripheral will be disable. If baudis 1, I12C
peripheral is initialized and enabled with baud rate specified in #USE 12C
directive. If baud is > 1 then I2C peripheral is initialized and enabled to
specified baud rate.

Returns: Nothing

Function: To initialize 12C peripheral at run time to specified baud rate.

Availability: All devices.

Requires: #USE 12C

Examples: #USE 12C(MASTER,I2C1, FAST,NOINIT)

Example Files:

Also See:

i2c_init(TRUE); //initialize and enable 12C peripheral to baud
rate specified in //#USE 12C

i2c_init(500000); //initialize and enable 12C peripheral to a
baud rate of 500 //KBPS

None
12C_POLL(), i2c_speed(), 12C_SlaveAddr(), I12C_ISR_STATE()

J2C_WRITE(),
12C_READ(), USE_I2C(), 12C()

12c_isr_state()

Syntax: state = i2c_isr_state();

state = i2c_isr_state(stream);
Parameters: None
Returns: state is an 8 bit int

0 - Address match received with R/W bit clear, perform i2c_read() to read

198

Built-in Functions

the 12C address.

1-0x7F - Master has written data; i2c_read() will immediately return the
data

0x80 - Address match received with R/W bit set; perform i2c_read() to
read the 12C address, and use i2c_write() to pre-load the transmit buffer
for the next transaction (next 12C read performed by master will read this
byte).

0x81-0xFF - Transmission completed and acknowledged; respond with
i2c_write() to pre-load the transmit buffer for the next transation (the next
12C read performed by master will read this byte).

Function: Returns the state of I2C communications in I12C slave mode after an SSP
interrupt. The return value increments with each byte received or sent.

If Ox00 or 0x80 is returned, an i2C_read() needs to be performed to read
the 12C address that was sent (it will match the address configured by
#USE 12C so this value can be ignored)

Availability: Devices with i2c hardware
Requires: #USE 12C
Examples: #INT_SSP
void i2c_isr() |
state = i2c_isr state();
if (state==) i2c_read();
i@c read();
if (state == 0x80)

i2c _read(2);
if (state >= 0x80)

i2c_write(send buffer[state - 0x80]);
else if (state > 0)
rcv_buffer[state - 1] = i2c_read();
}
Example Files: ex_slave.c
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read,

#USE 12C, 12C Overview

i2c_poll()

Syntax: i2c_poll()
i2c_poll(stream)

Parameters: stream (optional)- specify the stream defined in #USE 12C

199

PCD_May 2015

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

1 (TRUE) or 0 (FALSE)

The 12C_POLL() function should only be used when the built-in SSP is
used. This function returns TRUE if the hardware has a received byte in
the buffer. When a TRUE is returned, a call to 12C_READ() will
immediately return the byte that was received.

Devices with built in 12C

#USE 12C

if(i2c-poll())
buffer [index]=i2c-read();//read data

None

i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE I12C, 12C Overview

12c_read()

Syntax:

data = i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

Parameters:

Returns:

Function:

Availability:

Requires:

ack -Optional, defaults to 1.

0 indicates do not ack.

1 indicates to ack.

2 slave only, indicates to not release clock at end of read. Use when
i2c_isr_state ()

returns 0x80.

stream - specify the stream defined in #USE 12C

data - 8 bit int

Reads a byte over the 12C interface. In master mode this function will
generate the clock and in slave mode it will wait for the clock. There is
no timeout for the slave, use i2c_poll() to prevent a lockup. Use
restart_wdt() in the #USE I2C to strobe the watch-dog timer in the
slave mode while waiting.

All devices.

#USE 12C

200

Built-in Functions

Examples: i2c start();
i2c write(Oxal);
datal = i2c_read(TRUE);
data2 = i2c_ read(FALSE);
i2c_stop();

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_write, #USE I2C, 12C Overview

i12c_slaveaddr()

Syntax: 12C_SlaveAddr(addr);
I2C_SlaveAddr(stream, addr);

Parameters: addr = 8 bit device address
stream (optional) - specifies the stream used in #USE 12C

Returns: Nothing
Function: This functions sets the address for the 12C interface in slave mode.
Availability: Devices with built in 12C
Requires: #USE 12C
Examples: i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08);
Example Files: ex_slave.c
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read,

#USE 12C, 12C Overview

12c_speed()

Syntax: i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE [2C

201

PCD_May 2015

Returns: Nothing.

Function: This function changes the I12c bit rate at run time. This only works if the
hardware 12C module is being used.

Availability: All devices.

Requires: #USE 12C

Examples: I2C_Speed (400000) ;

Example Files: none

Also See: i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,

i2c_read, #USE 12C, 12C Overview

12c_start()

Syntax: i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

Parameters: stream: specify the stream defined in #USE 12C
restart: 2 — new restart is forced instead of start
1 — normal start is performed
0 (or not specified) — restart is done only if the compiler last
encountered a 12C_START and no I12C_STOP

Returns: undefined

Function: Issues a start condition when in the 12C master mode. After the start
condition the clock is held low until 12C_WRITE() is called. If another
I2C_start is called in the same function before an i2c_stop is called,
then a special restart condition is issued. Note that specific 12C
protocol depends on the slave device. The I2C_START function will
now accept an optional parameter. If 1 the compiler assumes the bus
is in the stopped state. If 2 the compiler treats this 12C_START as a
restart. If no parameter is passed a 2 is used only if the compiler
compiled a I2C_START last with no 12C_STOP since.

Availability: All devices.

Requires: #USE 12C

202

Built-in Functions

Examples:

Example Files:

Also See:

i2c_start();

i2c _write (0xa0); // Device address
i2c_write(address); // Data to device

i2c start(); // Restart

i2c_write (Oxal); // to change data direction
data=i2c read(0); // Now read from slave

i2c stop();

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE 12C, 12C Overview

12c_stop()

Syntax:

i2c_stop()
i2c_stop(stream)

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

stream: (optional) specify stream defined in #USE 12C
undefined

Issues a stop condition when in the 12C master mode.

All devices.

#USE 12C

i2c_start(); // Start condition
i2c _write(0xa0); // Device address
i2c_write(5); // Device command
i2c_write(12); // Device data
i2c_stop(); // Stop condition

ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE 12C, 12C Overview

12c_write()

Syntax: i2c_write (data)

i2c_write (stream, data)

203

PCD_May 2015

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

data is an 8 bit int
stream - specify the stream defined in #USE 12C

This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in
Multi_Master Mode.

This does not return an ACK if using i2c in slave mode.

Sends a single byte over the 12C interface. In master mode this function
will generate a clock with the data and in slave mode it will wait for the
clock from the master. No automatic timeout is provided in this
function. This function returns the ACK bit. The LSB of the first write
after a start determines the direction of data transfer (0 is master to
slave). Note that specific 12C protocol depends on the slave device.

All devices.

#USE 12C

long cmd;

i2c start(); // Start condition

i2c_write (0xa0);// Device address

i2c7write(cmd);// Low byte of command
(

i2c_write(cmd>>8);// High byte of command
i2c_stop(); // Stop condition
ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_read, #USE 12C, 12C Overview

input()

Syntax:

value = input (pin)

Parameters:

Pin to read. Pins are defined in the devices .h file. The actual value is a
bit address. For example, port a (byte 0x2C2) bit 3 would have a value
of 0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651

The PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST_10 mode is set on port A. note that
doing I/O with a variable instead of a constant will take much longer
time.

204

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

This function returns the state of the indicated pin. The method of I/O is
dependent on the last USE *_IO directive. By default with standard 1/0
before the input is done the data direction is set to input.

All devices.

Pin constants are defined in the devices .h file

while (!input (PIN Bl));
// waits for Bl to go high

if (input (PIN_AO0))
printf ("AO0 is now high\r\n");

intlé i=PIN B1;

while(!1i);
//waits for Bl to go high

ex_pulse.c

input_x(), output_low(), output_high(), #USE FIXED_IO, #USE
FAST_IO, #USE STANDARD_10, General Purpose 1/0

input_change_x()

Syntax: value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_k();
Parameters:
Returns: An 8-bit or 16-bit int representing the changes on the port.
Function: This function reads the level of the pins on the port and compares them to the

results the last time the input_change_x() function was called. A 1 is returned if
the value has changed, 0 if the value is unchanged.

205

PCD_May 2015

Availability: All devices.

Requires: None

Examples: pin_check = input change b();

Example None

Files:

Also See: input(), input_x(), output_x(), #USE FIXED_lO, #USE FAST IO, #USE

STANDARD_IO, General Purpose /O

iInput_state()

Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651 .

Returns: Bit specifying whether pin is high or low. A 1 indicates the pin is high and a
0 indicates it is low.

Function: This function reads the level of a pin without changing the direction of the
pin as INPUT() does.

Availability: All devices.
Requires: Nothing
Examples: level = input_state(pin A3);

printf ("level: %d",level);

Example Files: None

Also See: input(), set_tris_x(), output_low(), output_high(), General Purpose 1/O
input_x()

Syntax: value = input_a()

206

Built-in Functions

value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

None

An 16 bit int representing the port input data.

Inputs an entire word from a port. The direction register is changed in accordance
with the last specified #USE *_10O directive. By default with standard 1/0 before the
input is done the data direction is set to input.

All devices.

Nothing

data = input b();

ex_psp.c

input(), output_x(), #USE FIXED_lO, #USE FAST_|O, #USE STANDARD_IO

interrupt_active()

Syntax: interrupt_active (interrupt)

Parameters: Interrupt — constant specifying the interrupt

Returns: Boolean value

Function: The function checks the interrupt flag of the specified interrupt and returns
true in case the flag is set.

Availability: Device with interrupts

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples: interrupt active (INT TIMERO) ;

interrupt active (INT TIMERI1) ;

207

PCD_May 2015

Example Files: None

Also See: disable_interrupts() , #INT , Interrupts Overview
clear_interrupt, enable_interrupts()

isalnum(char)
isalpha(char)
iscntrl(x)
isdigit(char)
isgraph(x)
islower(char)

Isspace(char)
isupper(char)
isxdigit(char)
isprint(x)
Ispunct(x)
Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)
Parameters: datac is a 8 bit character
Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac
does match the criteria.
Function: Tests a character to see if it meets specific criteria as follows:

isalnum(x) Xis 0..9,'A'..'"Z', or'a..'z'

208

Built-in Functions

isalpha(x) Xis'A'..'"Z' or'a'..'z
isdigit(x) Xis'0'..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'Z
isspace(x) X is a space
isxdigit(x) Xis'0..'9', 'A'..'F', or 'a'..'f
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or
number
Availability: All devices.
Requires: #INCLUDE <ctype.h>
Examples: char id[20];
if (iéélpha (id[01)) {

valid id=TRUE;

for(i=1;i<strlen (id) ;i++)

valid id=valid id && isalnum(id[i]);
} else

valid id=FALSE;

Example Files: ex_str.c

Also See: isamong()

iIsamong()

Syntax: result = isamong (value, cstring)
Parameters: value is a character

cstring is a constant sting

Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Function: Returns TRUE if a character is one of the characters in a constant string.
Availability: All devices

Requires: Nothing

Examples: char x= 'x';

209

PCD_May 2015

Example Files:

if (isamong (x,
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is valid");

#INCLUDE <ctype.h>

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()
itoa()
Syntax: string = itoa(i32value, i8base, string)
string = itoa(i48value, i8base, string)
string = itoa(i64value, i8base, string)
Parameters: i32value is a 32 bit int
i48value is a 48 bit int
i64value is a 64 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters
Returns: string is a pointer to a null terminated string of characters
Function: Converts the signed int32 , int48, or a int64 to a string according to the
provided base and returns the converted value if any. If the result cannot
be represented, the function will return 0.
Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: int32 x=1234;

Example Files:

Also See:

char stringl[5];

itoa(x,10, string);
// string is now “1234”

None

None

210

Built-in Functions

kbhit()

Syntax: value = kbhit()
value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port. If the
stream parameter is not included, the function uses the primary stream
used by getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or
TRUE) if a character is ready for getc()

Function: If the RS232 is under software control this function returns TRUE if the
start bit of a character is being sent on the RS232 RCV pin. If the RS232
is hardware this function returns TRUE if a character has been received
and is waiting in the hardware buffer for getc() to read. This function may
be used to poll for data without stopping and waiting for the data to
appear. Note that in the case of software RS232 this function should be
called at least 10 times the bit rate to ensure incoming data is not lost.

Availability: All devices.
Requires: #USE RS232
Examples: char timed getc() {

long timeout;

timeout error=FALSE;
timeout=0;
while (!kbhit () && (++timeout<50000)) // 1/2
// second
delay us(10);
if (kbhit ())
return (getc()) ;
else {
timeout error=TRUE;
return (0) ;

}

Example Files: ex_tgetc.c

Also See: getc(), #USE RS232, RS232 1/0O Overview

211

PCD_May 2015

label address()

Syntax: value = label_address(label);
Parameters: label is a C label anywhere in the function
Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD
Function: This function obtains the address in ROM of the next instruction after the
label. This is not a normally used function except in very special
situations.
Availability: All devices.
Requires: Nothing
Examples: start:
a = (bt+c)<<2;
end:

Example Files:

Also See:

printf ("It takes %lu ROM locations.\r\n",
label address(end)-label address(start));

setimp.h

goto_address()

labs()

Syntax: result = labs (value)

Parameters: valueis a 16 , 32, 48 or 64 bit signed long int
Returns: A signed long int of type value

Function: Computes the absolute value of a long integer.
Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: if (labs(target value - actual value) > 500)

Example Files:

Also See:

printf ("Error is over 500 points\r\n");
None

abs()

212

ldexp()

Built-in Functions

Syntax: result=Idexp (value, exp);

Parameters: value is float any float type
exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.
result will have a precision equal to value

Function: The Idexp function multiplies a floating-point number by an integral power
of 2.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

Example Files:

Also See:

result=1ldexp(.5,0);
// result is .5

None

frexp(), exp(), log(), log10(), modf()

log()

Syntax: result =log (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the natural logarithm of the float x. If the argument is less

than or equal to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.

Domain error occurs in the following cases:

213

PCD_May 2015

Availability:
Requires:
Examples:
Example Files:

Also See:

¢ log: when the argument is negative
All devices

#INCLUDE <math.h>

Inx = log(x);

None

10g10(), exp(), pow()

log10()

Syntax: result =log10 (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the base-ten logarithm of the float x. If the argument is less
than or equal to zero or too large, the behavior is undefined.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.
Domain error occurs in the following cases:
¢ l0og10: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: db = 1ogl0(read adc()*(5.0/255))*10;

Example Files:

Also See:

None

log(), exp(), pow()

214

longjmp()

Built-in Functions

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is O then the function
setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp function had just returned the value
specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: longjmp (jmpbuf, 1);

Example Files:

Also See:

None

setimp()

make8()

Syntax:

i8 = MAKES8(var, offset)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

An 8 hit integer

Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) &
0xff) except it is done with a single byte move.

All devices

Nothing

int32 x;
int y;

y = make8(x,3); // Gets MSB of x

215

PCD_May 2015

Example Files:

Also See:

None

make16(), make32()

makel6()

Syntax:

i16 = MAKE16(varhigh, varlow)

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

varhigh and varlow are 8 bit integers.

A 16 bit integer

Makes a 16 bit number out of two 8 bit numbers. If either parameter is
16 or 32 bits only the Isb is used. Same as: i16 =
(int16)(varhigh&Oxff)*0x100+(varlow&0xff) except it is done with two byte
moves.

All devices

Nothing

long x;
int hi,lo;

x = makel6 (hi,lo);
[tc1298.c

make8(), make32()

make32()

Syntax:

i32 = MAKE32(varl, var2, var3, var4)

Parameters:

Returns:

Function:

varl-4 are a 8 or 16 bit integers. var2-4 are optional.
A 32 bit integer
Makes a 32 bit number out of any combination of 8 and 16 bit numbers.

Note that the number of parameters may be 1 to 4. The msb is first. If
the total bits provided is less than 32 then zeros are added at the msb.

216

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

All devices

Nothing
int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,vy,z); // x is 0x12124321

ex_freqc.c

Also See: make8(), makel16()

malloc()

Syntax: ptr=malloc(size)

Parameters: size is an integer representing the number of byes to be allocated.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The malloc function allocates space for an object whose size is specified
by size and whose value is indeterminate.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

Example Files:

Also See:

iptr=malloc(10);
// iptr will point to a block of memory of 10 bytes.

None

realloc(), free(), calloc()

217

PCD_May 2015

memcpy() memmove()

Syntax: memcpy (destination, source, n)
memmove(destination, source, n)

Parameters: destination is a pointer to the destination memory.
source is a pointer to the source memory,.
n is the number of bytes to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware that array
names are pointers where other variable names and structure names
are not (and therefore need a & before them).
Memmove performs a safe copy (overlapping objects doesn't cause a
problem). Copying takes place as if the n characters from the source are
first copied into a temporary array of n characters that doesn't overlap
the destination and source objects. Then the n characters from the
temporary array are copied to destination.

Availability: All devices

Requires: Nothing

Examples: memcpy (&structhA, &structB, sizeof (structhd));

Example Files:

memcpy (arrayA,arrayB,sizeof (arrayA));
memcpy (&structA, &databyte, 1);

char a[20]="hello";

memmove (a,a+2,5) ;
// a is now "1llo"

None

Also See: strepy(), memset()
memset()

Syntax: memset (destination, value, n)
Parameters: destination is a pointer to memory.

value is a 8 bit int
n is a 16 bit int.

218

Built-in Functions

Returns: undefined

Function: Sets n number of bytes, starting at destination, to value. Be aware that
array names are pointers where other variable names and structure
names are not (and therefore need a & before them).

Availability: All devices
Requires: Nothing
Examples: memset (arrayA, 0, sizeof (arrayh));

memset (arrayB, '?', sizeof (arrayB));
memset (&structhA, OxFF, sizeof (structd));

Example Files: None

Also See: memcpy()

modf()

Syntax: result= modf (value, & integral)

Parameters: value is any float type
integral is any float type

Returns: result is a float with precision equal to value
Function: The modf function breaks the argument value into integral and

fractional parts, each of which has the same sign as the argument. It
stores the integral part as a float in the object integral.

Availability: All devices
Requires: #INCLUDE <math.h>
Examples: float 48 result, integral;

result=modf (123.987, &integral) ;
// result is .987 and integral is 123.0000

Example Files: None

Also See: None

219

PCD_May 2015

_mul()
Syntax: prod=_mul(vall, val2);
Parameters: vall and val2 are both 8-bit, 16-bit, or 48-bit integers
Returns:
vall val2 prod
8 8 16
16* 16 32
32* 32 64
48* 48 64**
* or less
** large numbers will overflow with wrong results
Function: Performs an optimized multiplication. By accepting a different type than
it returns, this function avoids the overhead of converting the
parameters to a larger type.
Availability: All devices
Requires: Nothing
Examples: int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000
Example None
Files:
Also See: None
nargs()
Syntax: void foo(char * str, int count, ...)
Parameters: The function can take variable parameters. The user can use stdarg
library to create functions that take variable parameters.
Returns: Function dependent.
Function: The stdarg library allows the user to create functions that supports

variable arguments.
The function that will accept a variable number of arguments must have

220

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

at least one actual, known parameters, and it may have more. The
number of arguments is often passed to the function in one of its actual
parameters. If the variable-length argument list can involve more that one
type, the type information is generally passed as well. Before processing
can begin, the function creates a special argument pointer of type va_list.

All devices
#INCLUDE <stdarg.h>

int foo (int num, ...)
{

int sum = 0;

int i;
va_list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; 1i++)

sum = sum + va_ arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

None

va_start(), va_end(), va_arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);
Parameters: stype is a structure type name.
Field is a field from the above structure
Returns: An 8 bit byte
Function: These functions return an offset into a structure for the indicated field.

offsetof returns the offset in bytes and offsetofbit returns the offset in bits.

221

PCD_May 2015

Availability: All devices
Requires: #INCLUDE <stddef.h>
Examples: struct time structure {

Example Files:

Also See:

int hour, min, sec;
int zone : 4;
intl daylight savings;

x = offsetof (time structure, sec);
// x will be 2
x = offsetofbit (time structure, sec);
// x will be 16
x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

None

None

output_x()

Syntax:

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

Parameters:

Returns:

value is a 16 bit int

undefined

Function: Output an entire word to a port. The direction register is changed in
accordance with the last specified #USE *_10 directive.

Availability: All devices, however not all devices have all ports (A-E)

222

Built-in Functions

Requires:
Examples:
Example Files:

Also See:

Nothing

OUTPUT_B (0xf0) ;

ex_patg.c

input(), output_low(), output_high(), output_float(), output_bit(), #USE

FIXED_IO, #USE FAST_IlO, #USE STANDARD_IO, General Purpose
I/O

output_bit()

Syntax:

output_bit (pin, value)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Pins are defined in the devices .h file. The actual number is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651 .
The PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST_IO mode is set on port A. Note that
doing I/0 with a variable instead of a constant will take much longer
time.

ValueisaloraO0.

undefined

Outputs the specified value (0 or 1) to the specified 1/0 pin. The
method of setting the direction register is determined by the last
#USE *_10 directive.

All devices.

Pin constants are defined in the devices .h file

output bit(PIN BO, 0);
// Same as output low(pin BO);

output bit (PIN BO,input(PIN Bl));
// Make pin BO the same as Bl

output bit(PIN BO,shift left (&data,l,input (PIN Bl)));
// Output the MSB of data to

// BO and at the same time

// shift Bl into the LSB of data

intl6 i=PIN BO;

223

PCD_May 2015

ouput _bit(i,shift left(&data,l, input (PIN Bl)));
//same as above example, but
//uses a variable instead of a constant

Example Files: ex_extee.c with 9356.c

Also See: input(), output_low(), output_high(), output_float(), output_x(), #USE
FIXED_IO, #USE FAST_IO, #USE STANDARD_IO, General Purpose
I/0

output_drive()

Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or
5651 . This is defined as follows: #DEFINE PIN_A3 5651 .

Returns: undefined

Function: Sets the specified pin to the output mode.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Examples: output drive (pin AO0); // sets pin A0 to output its value
output bit (pin BO, input(pin AO0)) // makes BO the same as A0

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output_x(), output_float()

output_float()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651
. The PIN could also be a variable to identify the pin. The variable must
have a value equal to one of the constants (like PIN_A1) to work

224

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

properly. Note that doing I/O with a variable instead of a constant will
take much longer time.

undefined

Sets the specified pin to the input mode. This will allow the pin to float
high to represent a high on an open collector type of connection.

All devices.
Pin constants are defined in the devices .h file
if((data & 0x80)==0)
output low(pin AO);
else
output float (pin_AO0);
None
input(), output_low(), output_high(), output_bit(), output_x(),

output_drive(), #USE FIXED_IO, #USE FAST_IO, #USE
STANDARD_IO, General Purpose 1/0

output_high()

Syntax:

output_high (pin)

Parameters:

Returns:

Function:

Availability:

Requires:

Pin to write to. Pins are defined in the devices .h file. The actual value
is a bit address. For example, port a (byte 0x2C2) bit 3 would have a
value of 0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE
PIN_A3 5651 . The PIN could also be a variable. The variable must
have a value equal to one of the constants (like PIN_A1) to work
properly. The tristate register is updated unless the FAST_IO mode is
set on port A. Note that doing I/O with a variable instead of a constant
will take much longer time.

undefined

Sets a given pin to the high state. The method of I/0 used is dependent
on the last USE *_10O directive.

All devices.

Pin constants are defined in the devices .h file

225

PCD_May 2015

Examples:

Example Files:

Also See:

output high (PIN_AO);
output low (PIN_Al);

ex_sqw.c
input(), output_low(), output_float(), output_bit(), output_x(), #USE

FIXED_IO, #USE FAST_IO, #USE STANDARD_IO, General Purpose
I/0

output_low()

Syntax:

output_low (pin)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Pins are defined in the devices .h file. The actual value is a bit

address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651 .
The PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST 10 mode is set on port A. Note that
doing I/O with a variable instead of a constant will take much longer
time.

undefined

Sets a given pin to the ground state. The method of I/O used is
dependent on the last USE *_1O directive.

All devices.
Pin constants are defined in the devices .h file

output low (PIN_AO);

Intl16i=PIN Al;
output low (PIN_Al);

ex_sqw.c
input(), output_high(), output_float(), output_bit(), output_x(), #USE

FIXED_IO, #USE FAST_IO, #USE STANDARD_|O, General Purpose
110

226

Built-in Functions

output_toggle()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651 .

Returns: Undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_toggle (PIN B4);

Example Files:

None

Also See: Input(), output_high(), output_low(), output_bit(), output_x()

perror()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).

Returns: Nothing

Function: This function prints out to STDERR the supplied string and a description
of the last system error (usually a math error).

Availability: All devices.

Requires: #USE RS232, #INCLUDE <errno.h>

Examples: x = sin(y);

Example Files:

Also See:

if (errno!=0)
perror ("Problem in find area");

None

RS232 /0O Overview

227

PCD_May 2015

pid_busy()

Syntax:

result = pid_busy();

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

None

TRUE if PID module is busy or FALSE is PID module is not busy.
To check if the PID module is busy with a calculation.

All devices with a PID module.

Nothing

pid get result (PID START ONLY, ADCResult);
while (pid busy()):;
pid get result (PID_READ ONLY, &PIDResult);

None

setup_pid(), pid_write(), pid_get_result(), pid_read()

pid_get_result()

Syntax: pid_get_result(set_point, input, &output); //Start and Read
pid_get_result(mode, set_point, input); /[Start Only
pid_get_result(mode, &output) /IRead Only
pid_get_result(mode, set_point, input, &output);

Parameters: mode- constant parameter specifying whether to only start the calculation,

only read the result, or start the calculation and read the result. The
options are defined in the device's header file as:
PID_START_READ
PID_READ_ONLY
PID_START_ONLY

228

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

set_point -a 16-bit variable or constant representing the set point of the
control system, the value the input from the control system is compared
against to determine the error in the system.

input - a 16-bit variable or constant representing the input from the control
system.

output - a structure that the output of the PID module will be saved to.
Either pass the address of the structure as the parameter, or a pointer to
the structure as the parameter.

Nothing

To pass the set point and input from the control system to the PID module,
start the PID calculation and get the result of the PID calculation. The PID
calculation starts, automatically when the input is written to the PID
module's input registers.

All devices with a PID module.
Constants are defined in the device's .h file.

pid get result(SetPoint, ADCResult, &PIDOutput); //Start
and Read

pid_get_result (PID_START_ONLY, SetPoint, ADCResult); //Start
Only

pid get result (PID READ ONLY, &PIDResult); //Read
Only

None

setup_pid(), pid_read(), pid_write(), pid_busy()

pid_read()

Syntax:

pid_read(register, &output);

Parameters:

register- constant specifying which PID registers to read. The registers
that can be written are defined in the device's header file as:
PID_ADDR_ACCUMULATOR
PID_ADDR_OUTPUT
PID_ADDR_Z1

229

PCD_May 2015

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

PID_ADDR_Z2
PID_ADDR_K1
PID_ADDR_K2
PID_ADDR_K3
output -a 16-bit variable, 32-bit variable or structure that specified PID
registers value will be saved to. The size depends on the registers that are

being read. Either pass the address of the variable or structure as the
parameter, or a pointer to the variable or structure as the parameter.

Nothing

To read the current value of the Accumulator, Output, Z1, Z2, Set Point, K1,
K2 or K3 PID registers. If the PID is busy with a calculation the function will
wait for module to finish calculation before reading the specified register.

All devices with a PID module.

Constants are defined in the device's .h file.

pid read(PID ADDR 71, &value zl);

None

setup_pid(), pid_write(), pid_get_result(), pid_busy()

pid_write()

Syntax:

pid_write(register, &input);

Parameters:

register- constant specifying which PID registers to write. The registers
that can be written are defined in the device's header file as:

PID_ADDR_ACCUMULATOR

PID_ADDR_OUTPUT

PID_ADDR_Z1

PID_ADDR_Z2

PID_ADDR_Z3

PID_ADDR_K1

PID_ADDR_K2

230

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

PID_ADDR_K3
input -a 16-bit variable, 32-bit variable or structure that contains the data to
be written. The size depends on the registers that are being written. Either
pass the address of the variable or structure as the parameter, or a pointer
to the variable or structure as the parameter.
Nothing
To write a new value for the Accumulator, Output, Z1, Z2, Set Point, K1, K2
or K3 PID registers. If the PID is busy with a calculation the function will
wait for module to finish the calculation before writing the specified register.
All devices with a PID module.

Constants are defined in the device's .h file.

pid write(PID ADDR Z1l, &value zl);

None

setup_pid(), pid_read(), pid_get_result(), pid_busy()

pmp_address(address)

Syntax: pmp_address (address);

Parameters: address- The address which is a 16 bit destination address value. This will setup the
address register on the PMP module and is only used in Master mode.

Returns: undefined

Function: Configures the address register of the PMP module with the destination address
during Master mode operation. The address can be either 14, 15 or 16 bits based on
the multiplexing used for the Chip Select Lines 1 and 2.

Availability: Only the devices with a built in Parallel Port module.

Requires: Nothing.

231

PCD_May 2015

Examples: pmp_address (0x2100); // Sets up Address register to 0x2100
Example None

Files:

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),

psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full(),pmp_overflow().
See header file for device selected.

pmp_output_full()
pmp_input_full()
pmp_overflow()
pmp_error()
pmp_timeout()

Syntax: result = pmp_output_full() /IPMP only
result = pmp_input_full() /[PMP only
result = pmp_overflow() /IPMP only
result = pmp_eror() //[EPMP only
result = pmp_timeout() [/EPMP only
Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Port for the indicated conditions and

return TRUE or FALSE.

Availability: This function is only available on devices with Parallel Port hardware on
chips.

Requires: Nothing.

Examples: while (pmp output full()) ;
pmp_data = command;

while (!pmp input full()) ;
if (pmp_overflow())
error = TRUE;
else
data = pmp_data;

232

Built-in Functions

Example Files:
Also See:

None
setup_pmp(), pmp_write(), pmp_read()

pmp_read()

Syntax:

result = pmp_read (); //Parallel Master Port
result = pmp_read8(address); /[Enhanced Parallel Master Port
result = pmp_read16(address); /[Enhanced Parallel Master Port

pmp_read8(address,pointer,count); //Enhanced Parallel Master Port
pmp_readl6(address,pointer,count); //[Enhanced Parallel Master Port

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

address- EPMP only, address in EDS memory that is mapped to address
from parallel port device to read data from or start reading data from. (All
address in EDS memory are word aligned)

pointer- EPMP only, pointer to array to read data to.

count- EPMP only, number of bytes to read. For pmp_read16() number of
bytes must be even.

For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit value.
For pmp_read8(address,pointer,count) and
pmp_readl6(address,pointer,count) undefined.

For PMP module, this will read a byte from the next buffer location. For
EPMP module, reads one byte/word or count bytes of data from the address
mapped to the EDS memory location. The address is used in conjunction
with the offset address set with the setup_pmp_cs1() and setup_pmp_cs2()
functions to determine which address lines are high or low during the read.

Only the devices with a built in Parallel Master Port module or an Enhanced
Parallel Master Port module.

Nothing.
result = pmp read(); //PMP reads next byte of
//data
result = pmp read8 (0x8000) ; //EPMP reads byte of data from
the address mapped //to first address in
//EDS memory.
pmp readl6 (0x8002,ptr,16); //EPMP reads 16 bytes of

//data and returns to array
//pointed to by ptr
//starting at address mapped
//to address 0x8002 in

//EDS memory.

233

PCD_May 2015

Example Files:

None

Also See: setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(),
psp_write(), pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow() pmp_error(),
pmp_timeout(), psp_error(), psp_timeout()

pmp_write()

Syntax: pmp_write (data); //Parallel Master Port
pmp_write8(address,data); /lEnhanced Parallel Master
Port
pmp_write8(address,pointer,data); /[Enhanced Parallel Master
Port
pmp_writel6(address,data); //Enhanced Parallel Master
Port
pmp_writel6(address,pointer,data); /lEnhanced Parallel Master
Port

Parameters: data- The byte of data to be written.
address- EPMP only, address in EDS memory that is mapped to address
from parallel port device to write data to or start writing data to. (All
addresses in EDS memory are word aligned)
pointer- EPMP only, pointer to data to be written
count- EPMP only, number of bytes to write. For pmp_write16() number of
bytes must be even.

Returns: Undefined.

Function: For PMP modules, this will write a byte of data to the next buffer location.
For EPMP modules writes one byte/word or count bytes of data from the
address mapped to the EDS memory location. The address is used in
conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or
low during write.

Availability: Only the devices with a built in Parallel Master Port module or Enhanced
Parallel Master Port modules.

Requires: Nothing.

234

Built-in Functions

Examples:

Example Files:
Also See:

pmp write(data); //Write the data byte to
//the next buffer location.
pmp write8(0x8000,data); //EPMP writes the data byte to

//the address mapped to
//the first location in
//EDS memory.

pmp writel6 (0x8002,ptr,16); //EPMP writes 16 bytes of
//data pointed to by ptr
//starting at address mapped
//to address 0x8002 in
//EDS Memory

None

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(),
psp_write(), pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(), pmp_overflow(), pmp_error(),
pmp_timeout(), psp_error(), psp_timeout()

port_x_pullups ()

Syntax:

port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters:

Returns:
Function:

Availability:

Requires:

value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This
mask indicates what pins should have pullups activated. A 1 indicates the
pullups is on.

downmask for ports that permit pulldowns to be specified on a pin basis.
This mask indicates what pins should have pulldowns activated. A 1
indicates the pulldowns is on.

undefined
Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Only 14 and 16 bit devices (PCM and PCH). (Note: use
SETUP_COUNTERS on PCB parts).

Nothing

235

PCD_May 2015

Examples:
Example Files:

Also See:

port a pullups (FALSE) ;
ex_lcdkb.c, kbd.c

input(), input_x(), output_float()

pow() pwr()

Syntax:

f=pow (xy)
f=pwr (x,y)

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example Files:

Also See:

x and y are any float type

A float with precision equal to function parameters x and y.

Calculates X to the Y power.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative

All Devices

#INCLUDE <math.h>
area = pow (size,3.0);
None

None

printf() fprintf()

Syntax:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)

236

Built-in Functions

fprintf (stream, cstring, values...)

Parameters:

Returns:

Function:

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function
name to be used for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format specifies
do not work in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two
forms) or to a specified function. Formatting is in accordance with the
string argument. When variables are used this string must be a

constant. The % character is used within the string to indicate a variable
value is to be formatted and output. Longs in the printf may be 16 or 32
bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for
other escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults
to STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to
specify how many characters are to be outputted, or 01-09 to indicate
leading zeros, or 1.1 to 9.9 for floating point and %w output. t is the type
and may be one of the following:

C Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)
LX Hex long int (upper case)

f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w Unsigned int with decimal place inserted. Specify two

numbers for n. The first is a total field width. The
second is the desired number of decimal places.

Example formats:

237

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%?2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 00FE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.

All Devices

#USE RS232 (unless fname is used)

byte x,y,z;

printf ("HiThere");

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("$2u $X %4X\n\r",x,vy,z);

printf (LCD PUTC, "n=%u",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

profileout()

Syntax:

profileout(string);
profileout(string, value);
profileout(value);

Parameters:

Returns:

Function:

string is any constant string, and value can be any constant or variable
integer. Despite the length of string the user specifies here, the code profile
run-time will actually only send a one or two byte identifier tag to the code
profile tool to keep transmission and execution time to a minimum.
Undefined

Typically the code profiler will log and display function entry
and exits, to show the call sequence and profile the execution
time of the functions. By using profileout(), the user can add
any message or display any variable in the code profile tool.
Most messages sent by profileout() are displayed in the 'Data
Messages' and 'Call Sequence' screens of the code profile
tool.

238

Built-in Functions

Availability:

Requires:
Examples:

Example Files:

Also See:

If a profileout(string) is used and the first word of string is
"START", the code profile tool will then measure the time it
takes until it sees the same profileout(string) where the
"START" is replaced with "STOP". This measurement is then
displayed in the 'Statistics' screen of the code profile tool,

using string as the name (without "START" or "STOP")
Any device.

#use profile() used somewhere in the project source code.
/I send a simple string.

profileout("This is a text string");

/I send a variable with a string identifier.
profileout("RemoteSensor=", adc);

/' just send a variable.

profileout(adc);

/I time how long a block of code takes to execute.
/I this will be displayed in the 'Statistics' of the

/I Code Profile tool.

profileout("start my algorithm");

[* code goes here */

profileout("stop my algorithm™);

ex_profile.c

#use profile(), #profile, Code Profile overview

psp_output_full()

psp_input_full()
psp_overflow()

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error(); /[EPMP only
result = psp_timeout(); /[EPMP only
Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Slave Port (PSP) for the indicated

239

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

conditions and return TRUE or FALSE.
This function is only available on devices with PSP hardware on chips.

Nothing

while (psp_output full()) ;
psp_data = command;
while (!psp input full()) ;
if (psp_overflow())

error = TRUE;
else

data = psp data;

ex_psp.c

setup_psp(), PSP Overview

psp_read()

Syntax: Result = psp_read ();

Result = psp_read (address);

Parameters: address- The address of the buffer location that needs to be read. If
address is not specified, use the function psp_read() which will read the
next buffer location.

Returns: A byte of data.

Function: psp_read() will read a byte of data from the next buffer location and
psp_read (address) will read the buffer location address.

Availability: Only the devices with a built in Parallel Master Port module of Enhanced
Parallel Master Port module.

Requires: Nothing.

Examples: Result = psp read(// Reads next byte of data

Example Files:
Also See:

) i
Result psp_read(3); // Reads the buffer location 3
None
setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

240

Built-in Functions

psp_write()

Syntax: psp_write (data);
psp_write(address, data);

Parameters: address-The buffer location that needs to be written to
data- The byte of data to be written

Returns: Undefined.

Function: This will write a byte of data to the next buffer location or will write a byte to
the specified buffer location.

Availability: Only the devices with a built in Parallel Master Port module or Enhanced
Parallel Master Port module.

Requires: Nothing.
Examples: psp_write(data); // Write the data byte to
// the next buffer location.
Example Files: None
Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

putc()
putchar()

fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE

241

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

RS232 must appear before this call to determine the baud rate and pin
used. The #USE RS232 remains in effect until another is encountered in
the file.

If fputc() is used then the specified stream is used where putc() defaults
to STDOUT (the last USE RS232).

All devices

#USE RS232

putc('*");

for (i=0; 1i<10; i++)
putc (buffer[i]);

putc (13);

ex_tgetc.c

getc(), printf(), #USE RS232, RS232 I/0 Overview

putc_send();

fputc_send();

Syntax: putc_send();
fputc_send(stream);
Parameters: stream — parameter specifying the stream defined in #USE RS232.
Returns: Nothing
Function: Function used to transmit bytes loaded in transmit buffer over RS232.

Depending on the options used in #USE RS232 controls if function is
available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently
transmitting. If not transmitting it will then check for data in transmit buffer.
If there is data in transmit buffer it will load next byte from transmit buffer
into the hardware TX buffer, unless using CTS flow control option. In that
case it will first check to see if CTS line is at its active state before loading

next byte from transmit buffer into the hardware TX buffer.

If using hardware UARTX with TXISR option, function only available if
using CTS flow control option, it will test to see if the TBEX interrupt is
enabled. If not enabled it will then test for data in transmit buffer to send.

242

Built-in Functions

Availability:

Requires:
Examples:

Example Files:

If there is data to send it will then test the CTS flow control line and if at its
active state it will enable the TBEX interrupt. When using the TXISR mode
the TBEX interrupt takes care off moving data from the transmit buffer into
the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check
if there is data in transmit buffer to send. If there is data it will then check
the CTS flow control line, and if at its active state it will clock out the next
data byte.

All devices

#USE RS232
#USE_RS232(UART1,BAUD=9600, TRANSMIT_BUFFER=50,NOTXISR)
printf(“Testing Transmit Buffer”);
while(TRUE){
putc_send();
}

None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),
TX_BUFFER_BYTES(), GET(), PUTC() RINTF(), SETUP_UART(),
PUTC()_SEND
puts()
fputs()
Syntax: puts (string).
fputs (string, stream)
Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: Sends each character in the string out the RS232 pin using putc(). After
the string is sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are
sent. In general printf() is more useful than puts().
If fputs() is used then the specified stream is used where puts() defaults
to STDOUT (the last USE RS232)
Availability: All devices
Requires: #USE RS232

243

PCD_May 2015

Examples:

Example Files:

Also See:

printf(), gets(), RS232 I/O Overview

pwm_ off()

Syntax:

pwm_off([stream]);

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

stream — optional parameter specifying the stream defined in
#USE PWM.

Nothing.

To turn off the PWM signal.

All devices.

#USE PWM
#USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while(TRUE){
if(kbhit)){
¢ = getc();

if(c=="F")
pwm_off();

}

None

Also See: #use_pwm, pwm_on(), pwm_set_duty_percent(),
pwm_set_duty(), pwm_set_frequency()

pwm_on()

Syntax: pwm_on([stream]);

Parameters: stream — optional parameter specifying the stream defined in
#USE PWM.

Returns: Nothing.

244

Built-in Functions

Function: To turn on the PWM signal.
Availability: All devices.
Requires: #USE PWM
Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();
if (c=='0")
pwm_on () ;
}
}
Example Files: None

Also See:

#use_pwm, pwm_off(), pwm_set_duty_percent(),
pwm_set duty, pwm_set frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);

Parameters: stream — optional parameter specifying the stream defined in
#USE PWM.
duty — an int16 constant or variable specifying the new PWM high time.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle
percentage depends on the period of the PWM signal. This
function is faster than pwm_set_duty_percent(), but requires
you to know what the period of the PWM signal is.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM(OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Example Files:
Also See:

None
#use_pwm, pwm_on, pwm_off(), pwm_set_frequency(),
pwm_set duty percent()

pwm_set_duty percent

Syntax: pwm_set_duty_ percent([stream]), percent

Parameters: stream — optional parameter specifying the stream defined in #USE PWM.
percent- an intl6 constant or variable ranging from 0 to 1000 specifying the

245

PCD_May 2015

Returns:
Function:
Availability:

Requires:
Examples:

Example Files:
Also See:

new PWM duty cycle, D is 0% and 1000 is 100.0%.
Nothing.

To change the duty cycle of the PWM signal. Duty cycle percentage is
based off the current frequency/period of the PWM signal.
All devices.

#USE PWM

#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

pwm set duty percent (500) ; //set PWM duty cycle to 50%
None

#use_pwm, pwm_on(), pwm_off(), pwm_set_frequency(),
pwm_set duty()

pwm_set frequency

Syntax: pwm_set_frequency([stream],frequency);

Parameters: stream — optional parameter specifying the stream defined
in #USE PWM.
frequency — an int32 constant or variable specifying the
new PWM frequency.

Returns: Nothing.

Function: To change the frequency of the PWM signal. Warning this
may change the resolution of the PWM signal.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency (1000); //set PWM frequency to 1kHz

Example Files: None

Also See:

#use_pwm, pwm_on(), pwm_off(), pwm_set_duty percent,
pwm_set_duty()

246

Built-in Functions

gei_get _count()

Syntax: value = gei_get_count([unit]);
Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.
Returns: void
Function: Reads the current 16-bit value of the position counter.
Availability: Devices that have the QEI module.
Requires: Nothing.
Examples: value = gei get counter();

Example Files:

Also See:

None

setup_gei() , gei_set_count() , gei_status().

gei_set_count()

Syntax: gei_set_count([unit,] value);

Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

Returns: void

Function: Write a 16-bit value to the position counter.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: gei set counter (value);

Example Files:

Also See:

None

setup_qgei() , gei_get_count() , gei_status().

247

PCD_May 2015

gei_status()

Syntax: status = gei_status([unit]);

Parameters: status- The status of the QEI module
unit- Optional unit number, defaults to 1.

Returns: void

Function: Returns the status of the QUI module.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: status = gei status();

Example Files:

Also See:

None

setup_qgei() , gei_set_count() , gei_get_count().

gsort()

Syntax: gsort (base, num, width, compare)

Parameters: base: Pointer to array of sort data
num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort algorithm). The
contents of the array are sorted into ascending order according to a
comparison function pointed to by compare.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums[5]={ 2,3,1,5,4};

int compar (void *argl,void *arg2);

248

Built-in Functions

void main () {
gsort (nums, 5, sizeof(int), compar);

}

int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return 0

else return 1;

}

Example Files: ex_gsort.c
Also See: bsearch()
rand()
Syntax: re=rand()
Parameters: None
Returns: A pseudo-random integer.
Function: The rand function returns a sequence of pseudo-random integers in the
range of 0 to RAND_MAX.
Availability: All devices
Requires: #INCLUDE <STDLIB.H>
Examples: int I;
I=rand();
Example Files: None
Also See: srand()

249

PCD_May 2015

rcv_buffer _bytes()

Syntax: value = rcv_buffer_bytes([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE
RS232.
Returns: Number of bytes in receive buffer that still need to be retrieved.
Function: Function to determine the number of bytes in receive buffer that still need
to be retrieved.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=10
0)
void main(void) {
char c;
if(rcv_buffer_bytes() > 10)
¢ = getc();
}
Example Files: None

Also See:

_USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),
TX_BUFFER_BYTES(), GETC(), PUTC() ,PRINTF(), SETUP_UART(
), PUTC_SEND()

rcv_buffer_full()

Syntax: value = rcv_buffer_full([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
RS232.

Returns: TRUE if receive buffer is full, FALSE otherwise.

250

Built-in Functions

Function:
Availability:
Requires:

Examples:

Example Files:

Function to test if the receive buffer is full.
All devices
#USE RS232

#USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=1
00)
void main(void) {

char c;

if(rcv_buffer_full())

¢ = getc();

None

Also See: _USE_RS232(),RCV_BUFFER_BYTES(), TX_BUFFER_BYTES()
,TX_BUFFER_FULL(), GETC(), PUTC(), PRINTF(), SETUP_UART(),
PUTC_SEND()

read adc()

read _adc?2()

Syntax:

value =read_adc ([mode])
value =read_adc2 ([mode])

Parameters:

Returns:

Function:

mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the
default)

ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

This function will read the digital value from the analog to digital
converter. Calls to setup_adc(), setup_adc_ports() and
set_adc_channel() should be made sometime before this function is
called. The range of the return value depends on number of bits in the
chips A/D converter and the setting in the #DEVICE ADC= directive as
follows:

#DEVICE 10 bit 12 bit
ADC=8 00-FF 00-FF
ADC=10 0-3FF 0-3FF
ADC=11 X X

251

PCD_May 2015

Availability:
Requires:

Examples:

Example
Files:

ADC=12 0-FFC 0-FFF
ADC=16 0-FFCO 0-FFFO
Note: xis not defined

Only available on devices with built in analog to digital converters.

Pin constants are defined in the devices .h file.

intlé value;
setup adc_ports (sANO|sAN1l, VSS VDD);
setup_adc (ADC_CLOCK_DIV 4 |ADC TAD MUL 8);

while (TRUE)
{
set_adc_channel (0) ;
value = read adc();
printf (“Pin ANO A/C value = $LX\n\r”, value);

delay ms (5000);

set adc_channel(1);
read adc (ADC_START ONLY) ;

value = read adc (ADC_READ ONLY) ;
printf ("Pin AN1 A/D value = $LX\n\r", value);
}

ex_admm.c,

read_configuration_memory()

Syntax: read_configuration_memory([offset], ramPtr, n)
Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer
offset is an optional parameter specifying the offset into configuration
memory to start reading from, offset defaults to zero if not used.
Returns: undefined
Function: Reads n bytes of configuration memory and saves the values to ramPtr.
Availability: All
Requires: Nothing
Examples: int datal(6];

252

Built-in Functions

Example Files:

Also See:

read configuration memory (data, 6);
None

write_configuration_memory(), read_program_memory(), Configuration
Memory Overview

read _eeprom()

Syntax: value =read_eeprom (address , [N])
read_eeprom(address , variable)
read_eeprom(address , pointer, N)
Parameters: address is an 8 bit or 16 bit int depending on the part
N specifies the number of EEPROM bytes to read
variable a specified location to store EEPROM read results
pointer is a pointer to location to store EEPROM read results
Returns: An 16 bit int
Function: By default the function reads a word from EEPROM at the specified
address. The number of bytes to read can optionally be defined by
argument N. If a variable is used as an argument, then EEPROM is read
and the results are placed in the variable until the variable data size is
full. Finally, if a pointer is used as an argument, then n bytes of
EEPROM at the given address are read to the pointer.
Availability: This command is only for parts with built-in EEPROMS
Requires: Nothing
Examples: #define LAST VOLUME 10

Example Files:

Also See:

volume = read EEPROM (LAST VOLUME) ;
None

write_eeprom(), Data Eeprom Overview

read_extended ram()

Syntax:

read_extended_ram(page,address,data,count);

253

PCD_May 2015

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

page — the page in extended RAM to read from

address — the address on the selected page to start reading from
data — pointer to the variable to return the data to

count — the number of bytes to read (0-32768)

Undefined

To read data from the extended RAM of the PIC.

On devices with more then 30K of RAM.

Nothing

unsigned int8 data[8];
read extended ram(1l,0x0000,data,8);

None

read_extended_ram(), Extended RAM Overview

read_program_memory()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits . The least significant bit should always be 0 in PCM.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at dataptr.
BDue to the 24 bit program instruction size on the PCD devices, every
fourth byte will be read as 0x00

Availability: Only devices that allow reads from program memory.

Requires: Nothing

Examples: char buffer[64];

Example Files:

Also See:

read external memory(0x40000, buffer, 64);
None

write program memory(), Program Eeprom Overview

254

Built-in Functions

read _high _speed adc()

Syntax: read_high_speed_adc(pair,mode,result); /l Individual start and
read or
I/l read only
read_high_speed_adc(pair,result); /I Individual start and
read
read_high_speed_adc(pair); /l Individual start
only
read_high_speed_adc(mode,result); /I Global start and
read or
/I read only
read_high_speed_adc(result); /I Global start and
read
read_high_speed_adc(); /l Global start only
Parameters: pair — Optional parameter that determines which ADC pair number to
start and/or read. Valid values are 0 to total number of ADC pairs. 0
starts and/or reads ADC pair ANO and AN1, 1 starts and/or reads ADC
pair AN2 and ANS3, etc. If omitted then a global start and/or read will be
performed.
mode — Optional parameter, if used the values may be:
- ADC_START_AND_READ (starts conversion and reads
result)
- ADC_START_ONLY (starts conversion and returns)
- ADC_READ_ONLY(reads conversion result)
result — Pointer to return ADC conversion too. Parameter is optional, if
not used the read_fast_adc() function can only perform a start.
Returns: Undefined
Function: This function is used to start an analog to digital conversion

and/or read the digital value when the conversion is
complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime
before this function is called.

When using this function to perform an individual start and
read or individual start only, the function assumes that the
pair's trigger source was set to
INDIVIDUAL_SOFTWARE_TRIGGER.

255

PCD_May 2015

When using this function to perform a global start and read,
global start only, or global read only. The function will
perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.

2. Clear the corresponding ready flags (if
doing a start).

3. Set the global software trigger (if doing a
start).

4. Read the corresponding ADC pairs in
order from lowest to highest (if doing a read).

5. Clear the corresponding ready flags (if

doing a read).

When using this function to perform a individual read only.
The function can read the ADC result from any trigger

source.
Availability: Only on dsPIC33FJxxGSxxx devices.
Requires: Constants are define in the device .h file.
Examples: //Individual start and read

intl6 result[2];

setup high speed adc (ADC _CLOCK DIV 4);
setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read_high_ speed_adc (0, result); //starts conversion for ANO
and ANl and stores

//result in result[0] and result[1l]

//Global start and read
intl6 result[4];

setup _high speed adc(ADC _CLOCK DIV 4);
setup high speed adc pair (0, GLOBAL SOFTWARE TRIGGER);
setup_high speed adc pair (4, GLOBAL SOFTWARE TRIGGER);
read high speed adc(result); //starts conversion for ANO,
AN1,

//AN8 and AN9 and

//stores result in result[0],
result //[1], result[2]

and result[3]

Example Files: None

Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(),
high_speed_adc_done()

256

Built-in Functions

read_rom_memory()

Syntax: READ_ROM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits. The least significant bit should always be 0.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer

Returns: undefined

Function: Reads count bytes from program memory at address to dataptr. Due to the 24
bit program instruction size on the PCD devices, three bytes are read from each
address location.

Availability: Only devices that allow reads from program memory.

Requires: Nothing

Examples; char buffer([64];
read program memory (0x40000, buffer, 64);

Example None

Files:

Also See: write_eeprom(), read_eeprom(), Program eeprom overview

read sd _adc()

Syntax: value =read_sd_adc();

Parameters: None

Returns: A signed 32 bit int.

Function: To poll the SDRDY bit and if set return the signed 32 bit value stored in the
SD1RESH and SD1RESL registers, and clear the SDRDY bit. The result returned
depends on settings made with the setup_sd_adc() function, but will always be a
signed int32 value with the most significant bits being meaningful. Refer to
Section 66, 16-bit Sigma-Delta A/D Converter, of the PIC24F Family Reference
Manual for more information on the module and the result format.

Availability: ~ Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC) module.

257

PCD_May 2015

Examples: value = read_sd_adc()

Example None

Files:

Also See: setup_sd_adc(), set_sd_adc_calibration(), set_sd_adc_channel()

realloc()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc
or realloc function, size is an integer representing the number of byes to
be allocated.

Returns: A pointer to the possibly moved allocated memory, if any. Returns null
otherwise.

Function: The realloc function changes the size of the object pointed to by the ptr
to the size specified by the size. The contents of the object shall be
unchanged up to the lesser of new and old sizes. If the new size is
larger, the value of the newly allocated space is indeterminate. If ptr is a
null pointer, the realloc function behaves like malloc function for the
specified size. If the ptr does not match a pointer earlier returned by the
calloc, malloc or realloc, or if the space has been deallocated by a call
to free or realloc function, the behavior is undefined. If the space cannot
be allocated, the object pointed to by ptr is unchanged. If size is zero
and the ptr is not a null pointer, the object is to be freed.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

Example Files:

Also See:

iptr=malloc(10);
realloc (iptr, 20)

// iptr will point to a block of memory of 20 bytes, if
available.

None

malloc(), free(), calloc()

258

Built-in Functions

release_io()
Syntax: release_io();
Parameters: none
Returns: nothing
Function: The function releases the 1/O pins after the device wakes up from deep
sleep, allowing
the state of the 1/O pins to change
Availability: Devices with a deep sleep module.
Requires: Nothing
Examples: unsigned intlé restart;
restart = restart cause();
if (restart == RTC_FROM DS)
release io();
Example Files: None
Also See: sleep()

reset_cpu()

Syntax: reset_cpu()

Parameters: None

Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on
PCB and PCM parts and also reset the registers to power-up state on
the PIC18XXX.

Availability: All devices

Requires: Nothing

Examples: if (checksum!=0)

Example Files:

reset cpul();

None

259

PCD_May 2015

Also See:

None

restart_cause()

Syntax: value =restart_cause()

Parameters: None

Returns: A value indicating the cause of the last processor reset. The actual
values are device dependent. See the device .h file for specific values
for a specific device. Some example values are:
RESTART_POWER_UP, RESTART_BROWNOUT, RESTART_WDT
and RESTART_MCLR

Function: Returns the cause of the last processor reset.
In order for the result to be accurate, it should be called immediately in
main().

Availability: All devices

Requires: Constants are defined in the devices .h file.

Examples: switch (restart cause()) {

Example Files:

Also See:

case RESTART BROWNOUT:
case RESTART WDT:
case RESTART MCLR:
handle_error();

}

ex_wdt.c

restart_wdt(), reset_cpu()

restart_wdt()

Syntax:

restart_wdt()

Parameters:

Returns:

None

undefined

260

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

Restarts the watchdog timer. If the watchdog timer is
enabled, this must be called periodically to prevent the
processor from resetting.

The watchdog timer is used to cause a hardware reset
if the software appears to be stuck.

The timer must be enabled, the timeout time set and
software must periodically restart the timer. These are
done differently on the PCB/PCM and PCH parts as
follows:

PCB/PCM PCH

Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart wdt() restart wdt()

All devices

#FUSES

#fuses WDT // PCB/PCM example

// See setup wdt for a
// PIC18 example
main () {
setup_wdt (WDT_2304MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

ex_wdt.c

#FUSES, setup_wdt(), WDT or Watch Dog Timer
Overview

rotate left()

Syntax:

rotate_left (address, bytes)

Parameters:

Returns:

address is a pointer to memory
bytes is a count of the number of bytes to work with.

undefined

261

PCD_May 2015

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Rotates a bit through an array or structure. The address may be an
array identifier or an address to a byte or structure (such as
&data). Bit 0 of the lowest BYTE in RAM is considered the LSB.

All devices

Nothing

x = 0x86;

rotate left(&x, 1);

// x is now 0x0d

None

rotate_right(), shift_left(), shift_right()

rotate_right()

Syntax: rotate_right (address, bytes)
Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.
Returns: undefined
Function: Rotates a bit through an array or structure. The address may be an
array identifier or an address to a byte or structure (such as &data). Bit
0 of the lowest BYTE in RAM is considered the LSB.
Availability: All devices
Requires: Nothing
Examples: struct {
int cell 1 : 4;
int cell 2 : 4;
int cell 3 : 4;

Example Files:

int cell 4 : 4; } cells;
rotate right (&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right (&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

None

262

Built-in Functions

Also See:

rotate_left(), shift_left(), shift_right()

rtc_alarm_read()

Syntax: rtc_alarm_read(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the
alarm in the RTCC module.
Structure used in read and write functions are defined in the device
header file
as rtc_time_t

Returns: void

Function: Reads the date and time from the alarm in the RTCC module to structure
datetime.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Exan“ﬂes; rtc_alarm read(&datetime);

Example Files:

Also See:

None

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(), setup_rtc()

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the
alarm in the RTCC module.
Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

263

PCD_May 2015

Function:

Availability:
Requires:
Examples:

Example Files:

Writes the date and time to the alarm in the RTCC module as specified
in the structure date time.

Devices that have the RTCC module.
Nothing.
rtc_alarm write(&datetime);

None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(), setup_rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC
module.
Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

Function: Reads the current value of Time and Date from the RTCC module and
stores the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(&datetime);

Example Files:

Also See:

ex_rtcc.c

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(), setup_rtc()

264

Built-in Functions

rec_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the
RTCC module.
Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the RTCC module as specified in the structure
date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_write (&datetime);

Example Files: ex_rtcc.c

Also See: rtc_read() , rtc_alarm_read() , rtc_alarm_write() , setup_rtc_alarm() ,

rtc_write(), setup_rtc()

rtos_await()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function waits for

expre to be true before continuing execution of the rest of the code of
the RTOS task. This function allows other tasks to execute while the task
waits for expre to be true.

Availability: All devices

Requires: #USE RTOS

265

PCD_May 2015

Examples:

Also See:

rtos_await(kbhit());

None

rtos_disable()
The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None

Function: This function disables a task which causes the task to not execute until
enabled by rtos_enable(). All tasks are enabled by default.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_disable (toggle green)

Also See: rtos enable()

rtos_enable()
The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function enables a task to execute at it's specified rate.
Availability: All devices

266

Built-in Functions

Requires: #USE RTOS
Examples: rtos_enable (toggle green);
Also See: rtos disable()

rtos_msg_poll()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: i =rtos_msg_poll()

Parameters: None

Returns: An integer that specifies how many messages are in the queue.
Function: This function can only be used inside an RTOS task. This function

returns the number of messages that are in the queue for the task that
the rtos_msg_poll() function is used in.

Availability: All devices

Requires: #USE RTOS

Examples: if (rtos_msg _poll())

Also See: rtos msg send(), rtos msg read()

rtos_msg_read()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: b =rtos_msg_read()

Parameters: None

Returns: A byte that is a message for the task.

Function: This function can only be used inside an RTOS task. This function reads

267

PCD_May 2015

Availability:
Requires:

Examples:

Also See:

in the next (message) of the queue for the task that the rtos_msg_read()
function is used in.

All devices
#USE RTOS
if(rtos_msg poll()) {
b = rtos_msg _read();

rtos msg poll(), rtos msg send()

rtos._msg_send()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_msg_send(task, byte)

Parameters: task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

Returns: None

Function: This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by
task.

Availability: All devices

Requires: #USE RTOS

Examples: if (kbhit())
{

rtos_msg_send(echo, getc());

}

Also See: rtos_msg_poll(), rtos_msg_read()

rtos_overrun()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

rtos_overrun([task])

268

Built-in Functions

Parameters: task is an optional parameter that is the identifier of a function that is
being used as an RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)
Function: This function returns TRUE if the specified task took more time to

execute than it was allocated. If no task was specified, then it returns
TRUE if any task ran over it's alloted execution time.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_overrun ()

Also See: None

rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This

function controls the execution of the RTOS tasks at the allocated rate for
each task. This function will return only when rtos_terminate() is called.

Availability: All devices
Requires: #USE RTOS
Examples: rtos_run()
Also See: rtos terminate()

269

PCD_May 2015

rtos_signal()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)
Parameters: sem is a global variable that represents the current availability of a
shared

system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function
increments sem to let waiting tasks know that a shared resource is
available for use.

Availability: All devices

Requires: #USE RTOS

Examples: rtos signal (uart use)
Also See: rtos wait()

rtos_stats()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)

Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; //number of ticks the task

has
/lused
unsigned int16 task_min_ticks; //the minimum number of
ticks
/lused
unsigned int16 task_max_ticks; //the maximum number of
ticks

/lused
unsigned int16 hns_per _tick; /lus =

270

Built-in Functions

Returns:
Function:
Availability:
Requires:
Examples:

Also See:

(ticks*hns_per_tick)/10

Undefinga

This function returns the statistic data for a specified task.
All devices

#USE RTOS(statistics)

rtos_stats(echo, &stats)

None

rtos_terminate()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the
program will continue with the first line of code after the rtos_run() call in
the program. (This function causes rtos_run() to return.)

Availability: All devices

Requires: #USE RTOS

Examples: rtos_terminate ()

Also See: rtos run()

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

rtos_wait (sem)

271

PCD_May 2015

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Also See:

sem is a global variable that represents the current availability of a
shared
system resource (a semaphore).

None

This function can only be used by an RTOS task. This function waits for
sem to be greater than 0 (shared resource is available), then
decrements sem to claim usage of the shared resource and continues
the execution of the rest of the code the RTOS task. This function
allows other tasks to execute while the task waits for the shared
resource to be available.

All devices

#USE RTOS

rtos_wait (uart use)

rtos signal()

rtos_vyield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()

Parameters: None

Returns: None

Function: This function can only be used in an RTOS task. This function stops
the execution of the current task and returns control of the processor to
rtos_run(). When the next task executes, it will start it's execution on
the line of code after the rtos_yield().

Availability: All devices

Requires: #USE RTOS

Examples: void yield(void)

{
printf (“Yielding...\r\n”);
rtos_yield();
printf (“Executing code after yield\r\n”);

272

Built-in Functions

Also See:

None

set_adc_channel()
set_adc_channel2()

Syntax: set_adc_channel (chan [,neq]))
set_adc_channel2(chan)

Parameters: chan is the channel number to select. Channel numbers start at 0 and are
labeled in the data sheet ANO, AN1. For devices with a differential ADC it sets the
positive channel to use.
neg is optional and is used for devices with a differential ADC only. It sets the
negative channel to use, channel numbers can be 0 to 6 or VSS. If no parameter
is used the negative channel will be set to VSS by default.

Returns: undefined

Function: Specifies the channel to use for the next read_adc() call. Be aware that you must
wait a short time after changing the channel before you can get a valid read. The
time varies depending on the impedance of the input source. In general 10us is
good for most applications. You need not change the channel before every read if
the channel does not change.

Availability: Only available on devices with built in analog to digital converters

Requires: Nothing

Examples: set_adc_channel(2);
value = read adc();

Example ex_admm.c

Files:

Also See: read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

set_analog_pins()

Syntax:

set_analog_pins(pin, pin, pin, ...)

273

PCD_May 2015

Parameters: pin - pin to set as an analog pin. Pins are defined in the device's .h file. The
actual value is a bit address. For example, bit 3 of port A at address 5, would
have a value of 5*8+3 or 43. This is defined as follows:

#define PIN_A3 43

Returns: undefined

Function: To set which pins are analog and digital. Usage of function depends on method
device has for setting pins to analog or digital. For devices with ANSELX, x being
the port letter, registers the function is used as described above. For all other
devices the function works the same as setup_adc_ports() function.

Refer to the setup_adc_ports() page for documentation on how to use.

Availability: ~ On all devices with an Analog to Digital Converter

Requires: Nothing

Examples; set analog pins(PIN AO,PIN Al,PIN E1,PIN BO,PIN B5);

Example

Files:

Also See: setup_adc_reference(), set_adc_channel(), read_adc(), setup_adc(),
setup_adc_ports(),

ADC Overview

scanf()

Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)

Parameters: cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.

Returns: 0 if a failure occurred, otherwise it returns the number of conversion specifiers
that were read in, plus the number of constant strings read in.

Function: Reads in a string of characters from the standard RS-232 pins and formats the

string according to the format specifiers. The format specifier character (%) used
within the string indicates that a conversion specification is to be done and the
value is to be saved into the corresponding argument variable. A %% will input a

274

Built-in Functions

single %. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to
STDIN (the last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99
specifying the field width, the number of characters to be inputted. t is the type
and maybe one of the following:

c

Lu

Ld

Lo

x or X

Lx or LX

Matches a sequence of characters of the number specified by the
field width (1 if no field width is specified). The corresponding
argument shall be a pointer to the initial character of an array
long enough to accept the sequence.

Matches a sequence of non-white space characters. The
corresponding argument shall be a pointer to the initial
character of an array long enough to accept the sequence and
a terminating null character, which will be added automatically.

Matches an unsigned decimal integer. The corresponding
argument shall be a pointer to an unsigned integer.

Matches a long unsigned decimal integer. The corresponding
argument shall be a pointer to a long unsigned integer.

Matches a signed decimal integer. The corresponding argument
shall be a pointer to a signed integer.

Matches a long signed decimal integer. The corresponding
argument shall be a pointer to a long signed integer.

Matches a signed or unsigned octal integer. The corresponding
argument shall be a pointer to a signed or unsigned integer.

Matches a long signed or unsigned octal integer. The
corresponding argument shall be a pointer to a long signed or
unsigned integer.

Matches a hexadecimal integer. The corresponding argument
shall be a pointer to a signed or unsigned integer.

Matches a long hexadecimal integer. The corresponding
argument shall be a pointer to a long signed or unsigned
integer.

Matches a signed or unsigned integer. The corresponding
argument shall be a pointer to a signed or unsigned integer.

275

PCD_May 2015

Availability:

Li

f,gore

All Devices

Matches a long signed or unsigned integer. The corresponding
argument shall be a pointer to a long signed or unsigned
integer.

Matches a floating point number in decimal or exponential format.
The corresponding argument shall be a pointer to a float.

Matches a non-empty sequence of characters from a set of
expected characters. The sequence of characters included in
the set are made up of all character following the left bracket ()
up to the matching right bracket (]). Unless the first character
after the left bracket is a #, in which case the set of characters
contain all characters that do not appear between the brackets.

If a - character is in the set and is not the first or second, where
the first is a *, nor the last character, then the set includes all
characters from the character before the - to the character after
the -.

For example, %][a-z] would include all characters from a to z in the
set and %["a-z] would exclude all characters from a to z from
the set. The corresponding argument shall be a pointer to the
initial character of an array long enough to accept the sequence
and a terminating null character, which will be added
automatically.

Assigns the number of characters read thus far by the call to
scanf() to the corresponding argument. The corresponding
argument shall be a pointer to an unsigned integer.

An optional assignment-suppressing character (*) can be used
after the format specifier to indicate that the conversion
specification is to be done, but not saved into a corresponding
variable. In this case, no corresponding argument variable
should be passed to the scanf() function.

A string composed of ordinary non-white space characters is
executed by reading the next character of the string. If one of
the inputted characters differs from the string, the function fails
and exits. If a white-space character precedes the ordinary
non-white space characters, then white-space characters are
first read in until a non-white space character is read.

White-space characters are skipped, except for the conversion
specifiers [, ¢ or n, unless a white-space character precedes
the [or c specifiers.

276

Built-in Functions

Requires: #USE RS232

Examples: char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &number, name, &time))

printf"\r\nName: %s, Number: %u, Time: %1d",name,number,time);

Example None
Files:
Also See: RS232 1/0 Overview, getc(), putc(), printf()

set_ccpl _compare_time()
set_ccp2_compare_time()
set_ccp3_compare_time()
set_ccp4_compare_time()
set_ccp5 _compare_time()

Syntax: set_ccpx_compare_time(time);
set_ccpx_compare_time(timeA, timeB);
Parameters: time - may be a 16 or 32-bit constant or varaible. If 16-bit, it sets the

CCPxRAL register to the value time and CCPxRBL to zero; used for
single edge output compare mode set for 16-bit timer mode. If 32-bit, it
sets the CCPxRAL and CCPxRBL register to the value time, CCPxRAL
least significant word and CCPRBL most significant word; used for single
edge output compare mode set for 32-bit timer mode.

timeA - is a 16-bit constant or variable to set the CCPxRAL register to
the value of timeA, used for dual edge output c ompare and PWM
modes.

timeB - is a 16-bit constant or variable to set the CCPxRBL register to
the value of timeB, used for dual edge output compare and PWM
modes.

277

PCD_May 2015

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

Undefined

This function sets the compare value for the CCP module. If the CCP
module is performing a single edge compare in 16-bit mode, then the
CCPxRBL register is not used. If 32-bit mode, the CCPxRBL is the most
significant word of the compare time. If the CCP module is performing
dual edge compare to generate an output pulse, then timeA, CCPxRAL
register, signifies the start of the pulse, and timeB, CCPxXRBL register
signifies the pulse termination time.

Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Nothing

setup ccpl (CCP_COMPARE PULSE) ;
set timer period ccpl(800);

set _ccpl compare time (200,300); //generate a pulse
starting at time

// 200 and ending at
time 300

None

set_pwmX_duty(), setup_ccpX(), set_timer_period_ccpX(),
set_timer_ccpX(),
get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

set_cog_blanking()

Syntax:

set_cog_blanking(falling_time, rising_time);

278

Built-in Functions

Parameters:

Returns:

Function:

Availability:

Examples:

Example Files:

Also See:

falling time - sets the falling edge blanking time.

rising time - sets the rising edge blanking time.

Nothing

To set the falling and rising edge blanking times on the Complementary
Output Generator (COG) module. The time is based off the source clock o
module, the times are either a 4-bit or 6-bit value, depending on the device
device's datasheet for the correct width.

All devices with a COG module.
set cog blanking(10,10);
None

setup_cog(), set_cog_phase(), set_cog_dead_band(), cog_status(), cog_re

set_cog dead band()

Syntax: set_cog_dead_band(falling_time, rising_time);

Parameters: falling time - sets the falling edge dead-band time.
rising time - sets the rising edge dead-band time.

Returns Nothing

Function: To set the falling and rising edge dead-band times on the Complementary
Output Generator (COG) module. The time is based off the source clock o
module, the times are either a 4-bit or 6-bit value, depending on the device
device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set cog dead band(16,32);

Example Files:

Also See:

None

setup_cog(), set_cog_phase(), set_cog_blanking(), cog_status(), cog_rest;

279

PCD_May 2015

set_cog _phase()

Syntax: set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters: falling time - sets the falling edge phase time.
rising time - sets the rising edge phase time.

Returns: Nothing

Function: To set the falling and rising edge phase times on the Complementary
Output Generator (COG) module. The time is based off the source clock o
module, the times are either a 4-bit or 6-hit value, depending on the device
Some devices only have a rising edge delay, refer to the device's datashee

Availability: All devices with a COG module.

Examples: set cog phase (10,10);

Example Files:

Also See:

None

setup_cog(), set_cog_dead_band(), set_cog_blanking(), cog_status(), cog,

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs]])

Parameters: x is 1-16 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used for
dual compare mode.

Returns: None

Function: This function sets the compare value for the output compare module. If
the output compare module is to perform only a single compare than the
ocrs register is not used. If the output compare module is using double
compare to generate an output pulse, the ocr signifies the start of the
pulse and ocrs defines the pulse termination time.

Availability: Only available on devices with output compare modules.

280

Built-in Functions

Requires:

Examples:

Example Files:
Also See:

Nothing

// Pin OCl will be set when timer 2 is equal to 0xF000
setup_timer2 (TMR INTERNAL | TIMER DIV BY 8);

setup compare time (1, O0xFO000);

setup_compare (1, COMPARE SET ON_MATCH | COMPARE TIMER2) ;

None
get_capture(), setup_compare(), Output Compare, PWM Overview

set_hspwm_duty()

Syntax: setup_hspwm_duty(duty);
set_hspwm_duty(unit, primary, [secondary]);

Parameters: duty - A 16-bit constant or variable to set the master duty cycle
unit - The High Speed PWM unit to set.
primary - A 16-bit constant or variable to set the primary duty cycle.
secondary - An optional 16-bit constant or variable to set the secondary
duty cycle. Secondary duty cycle is only used in Independent PWM
mode. Not available on all devices, refer to device datasheet for
availability.

Returns: undefined

Function: Sets up the specified High Speed PWM unit.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: set hspwm duty (0x7FFF) ; //sets the High Speed PWM
master duty cycle
set _hspwm duty(l, O0x3FFF); //sets unit 1's primary duty
cycle

Example Files: None

Also See:

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_event(),

281

PCD_May 2015

setup_hspwm_blanking(), setup_hspwm_trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

set_hspwm_event()
set_hspwm_event_secondary()

Syntax: set_hspwm_event(settings, compare_time);
set_shwpm_event_secondary(settings, compare_time); //if
available

Parameters: settings - special event timer setting or'd with a value from 1 to 16 to set
the prescaler. The following are the settings available for the special
event time:

HSPWM_SPECIAL_EVENT_INT_ENABLED
HSPWM_SPECIAL_EVENT_INT_DISABLED

compare_time - the compare time for the special event to occur.

Returns: undefined
Function: Sets up the specified High Speed PWM unit.
Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxXx,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: set hspwm event (HSPWM SPECIAL EVENT INT ENABLED, 0x1000) ;
Example Files: None

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

setup_hspwm_blanking(), setup_hspwm_trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

282

Built-in Functions

set_hspwm_override()

Syntax: set_hspwm_override(unit, setting);

Parameters: unit - the High Speed PWM unit to override.

settings - the override settings to use. The valid options vary depending on the
device. See the device's .h file for all options. Some typical options include:
HSPWM_FORCE_H_1
HSPWM_FORCE_H_0
HSPWM_FORCE_L 1
HSPWM_FORCE_L_0

Returns: Undefined
Function: Setup and High Speed PWM uoverride settings.
Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples; setup hspwm override (1, HSPWM FORCE H 1|HSPWM FORCE L 0);
Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), get_hspwm_capture(),
setup_hspwm_chop_clock(), setup_hspwm_unit_chop_clock()
setup_hspwm(), setup_hspwm_secondary()

set_hspwm_phase()

Syntax: set_hspwm_phase(unit, primary, [secondary]);

Parameters: unit - The High Speed PWM unit to set.

primary - A 16-bit constant or variable to set the primary duty cycle.

283

PCD_May 2015

secondary - An optional 16-bit constant or variable to set the secondary duty
cycle. Secondary duty cycle is only used in Independent PWM mode. Not
available on all devices, refer to device datasheet for availability.

Returns: undefined
Function: Sets up the specified High Speed PWM unit.
Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCXxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: set _hspwm(1,0x1000,0x8000);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_duty(), set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

set_motor_pwm_duty()

Syntax: set_motor_pwm_duty(pwm,group,time);

Parameters: pwm- Defines the pwm module used.
group- Output pair number 1,2 or 3.

time- The value set in the duty cycle register.

Returns: void

Function: Configures the motor control PWM unit duty.

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: set motor pmw duty(l,0,0x55); // Sets the PWMl Unit a duty

cycle value

284

Built-in Functions

Example Files: None

Also See: get_motor_pwm_count(), set_motor_pwm_event(), set_motor_unit(),
setup_motor_pwm()

set_motor_pwm_event()

Syntax: set_motor_pwm_event(pwm,time);

Parameters: pwm- Defines the pwm module used.
time- The value in the special event comparator register used for
scheduling other events.

Returns: void

Function: Configures the PWM event on the motor control unit.
Availability: Devices that have the motor control PWM unit.

Requires: None

Examples: set motor pmw_event (pwm, time) ;

Example Files: None

Also See: get_motor_pwm_count(), setup_motor_pwm(), set_motor_unit(),

set_motor_pwm_duty();

set_motor_unit()

Syntax: set_motor_unit(pwm,unit,options, active_deadtime,
inactive_deadtime);

Parameters: pwm- Defines the pwm module used
Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file
for all options

285

PCD_May 2015

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

active_deadtime- Set the active deadtime for the unit
inactive_deadtime- Set the inactive deadtime for the unit
void

Configures the motor control PWM unit.

Devices that have the motor control PWM unit

None

Setimotoriunit (pwm, unit, MPWM INDEPENDENT | MPWM FORCE L 1,
active deadtime, inactive deadtime);

None

get_motor_pwm_count(), set_motor_pwm_event(),
set_motor_pwm_duty(), setup_motor_pwm()

set_nco_inc_value()

Syntax: set_nco_inc_value(value);

Parameters: value- 16-bit value to set the NCO increment registers to (0 -
65535)

Returns: Undefined

Function: Sets the value that the NCO's accumulator will be incremented by
on each clock pulse. The increment registers are double buffered
so the new value won't be applied until the accumulator rolls-
over.

Availability: On devices with a NCO module.

Examples: set nco_inc value (inc value); //sets the new
increment value

Example None

Files:

Also See: setup_nco(), get_nco_accumulator(), get_nco_inc_value()

286

Built-in Functions

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

Syntax: set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)
set_open_drain_k(value)

Parameters: value — is a bitmap corresponding to the pins of the port. Setting a bit
causes the corresponding pin to act as an open-drain output.

Returns: Nothing
Function Enables/Disables open-drain output capability on port pins. Not all

ports or port pins have open-drain capability, refer to devices datasheet
for port and pin availability.

Availability On device that have open-drain capability.

Examples: set_open_drain_b(0x0001); //enables open-drain output on
PIN_BQO, disable on all //other port B pins.

Example Files: None.

set_pullup()

Syntax: set_Pullup(state, [pin])

287

PCD_May 2015

Parameters: Pins are defined in the devices .h file. If no pin is provided in the function call,
then all of the pins are set to the passed in state.

State is either true or false.

Returns: undefined

Function: Sets the pin's pull up state to the passed in state value. If no pin is included in the
function call, then all valid pins are set to the passed in state.

Availability: All devices.
Requires: Pin constants are defined in the devices .h file.

Exanuﬂes; set pullup(true, PIN BO);
//Sets pin BO's pull up state to true

set pullup (false);
//Sets all pin's pull up state to false

Example None
Files:
Also See: None

set_ pwml duty()
set_ pwm2_duty()
set_ pwm3_duty()
set_pwmd4 _duty()
set_ pwmb5_duty()

Syntax: set_pwmX_duty (value)

Parameters: value may be an 8 or 16 bit constant or variable.
Returns: undefined

Function:

iDIC24FxxKLxxx devices, writes the 10-bit value to the PWM to set
the duty. An 8-bit value may be used if the most significant bits are
not required. The 10-bit value is then used to determine the duty

288

Built-in Functions

Availability:

Requires:

Examples:

Example Files:

Also See:

cycle of the PWM signal as follows:

o[duty cycle =value/[4* (PRx +1)]

Where PRx is the maximum value timer 2 or 4 will count to before
rolling over.

PIC24FxxKMxxx devices, wires the 16-bit value to the PWM to set
the duty. The 16-bit value is then used to determine the duty cycle
of the PWM signal as follows:
o] duty cycle=value/(CCPxPRL+1)

Where CCPxPRL is the maximum value timer 2 will count to before
toggling the output pin.

This function is only available on devices with MCCP and/or SCCP
modules.

None

PIC24FxxKLxxx Devices:
// 32 MHz clock
unsigned intl6é duty;

setup timer2 (T2 DIV BY 4, 199, 1); //period=50us
setup ccpl (CCP_PWM) ;

duty=400;

//duty=400/[4* (199+1) 1=0
.5=50%
set pwml duty(duty);

PIC24FxxKMxxx Devices:
// 32 MHz clock
unsigned intl6 duty;

setup ccpl (CCP_PWM) ;
set_timer period ccpl(799); //period=50us

duty=400;
//duty=400/ (799+1)=0.5=50

&

o

set pwml duty (duty):;
ex_pwm.c
setup_ccpX(), set_ccpX_compare_time(), set_timer_period_ccpX(),

set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()

289

PCD_May 2015

set_rtcc()

set_timer0()
set_timerl()
set_timer2()
set_timer3()
set_timer4()
set_timer5()

Syntax:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX
where it needs a 16 bit int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

undefined

Sets the count value of a real time clock/counter. RTCC and TimerO
are the same. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255,
0,1,2.)

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set timer0(81); // 256-(.000035/(4/20000000))

290

Built-in Functions

Example Files:

ex_patg.c

Also See: set_timerl(), get_timerX() Timer0 Overview, TimerlOverview,
Timer2 Overview, Timer5 Overview

set_ticks()

Syntax: set_ticks([stream],value);

Parameters: stream — optional parameter specifying the stream defined in #USE
TIMER
value — a 8, 16, 32 or 64 bit integer, specifying the new value of the tick
timer. (int8, intl6, int32 or int64)

Returns: void

Function: Sets the new value of the tick timer. Size passed depends on the size of
the tick timer.

Availability: All devices.

Requires: #USE TIMER((options)

Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

Example Files:
Also See:

void main (void) {
unsigned intl6 value = 0x1000;

set_ticks(value);

}

None
#USE TIMER, get_ticks()

setup_sd_adc_calibration()

Syntax:

setup_sd_adc_calibration(model);

Parameters:

mode- selects whether to enable or disable calibration mode for the SD ADC

module. The following defines are made in the device's .h file:

1
2

SDADC_START_CALIBRATION_MODE
SDADC_END_CALIBRATION_MODE

291

PCD_May 2015

Returns:

Function:

Availability:

Examples:

Example
Files:
Also See:

Nothing

To enable or disable calibration mode on the Sigma-Delta Analog to
Digital Converter (SD ADC) module. This can be used to determine
the offset error of the module, which then can be subtracted from
future readings.

Only devices with a SD ADC module.

signed int 32 result, calibration;
set_sd_adc_calibration(SDADC_START_CALIBRATION_MODE);
calibration = read_sd_adc();
set_sd_adc_calibration(SDADC_END_CALIBRATION_MODE);
result = read_sd_adc() - calibration;

None

setup_sd_adc(), read_sd_adc(), set_sd_adc_channel()

set_sd_adc_channel()

Syntax: setup_sd_adc(channel);

Parameters: channel- sets the SD ADC channel to read. Channel can be 0 to read the
difference between CHO+ and CHO-, 1 to read the difference between CH1+ and
CH1-, or one of the following:
1 SDADC_CHI1SE_SVSS
2 SDADC_REFERENCE

Returns: Nothing

Function: To select the channel that the Sigma-Delta Analog to Digital Converter (SD ADC)
performs the conversion on.

Availability: Only devices with a SD ADC module.

Examples: set_sd_adc_channel(0);

Example None

Files:

Also See: setup_sd_adc(), read_sd_adc(), set_sd_adc_calibration()

292

set_timerA()

Built-in Functions

Syntax:

set_timerA(value);

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

An 8 bit integer. Specifying the new value of the timer. (int8)
undefined

Sets the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0,1, 2, ...).

This function is only available on devices with Timer A hardware.

Nothing

// 20 mhz clock, no prescaler, set timer A
// to overflow in 35us

set _timerA(81); // 256-(.000035/(4/20000000))
none

get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax:

set_timerB(value);

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

An 8 bit integer. Specifying the new value of the timer. (int8)
undefined

Sets the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0, 1, 2, ...).

This function is only available on devices with Timer B hardware.

Nothing

// 20 mhz clock, no prescaler, set timer B
// to overflow in 35us

293

PCD_May 2015

set_timerB(81); // 256-(.000035/(4/20000000))
Example Files: none

Also See: get_timerB(), setup_timer_B(), TimerB Overview

set_timerx()

Syntax: set_timerX(value)
Parameters: A 16 bit integer, specifiying the new value of the timer. (int16)
Returns: void
Function: Allows the user to set the value of the timer.
Availability: This function is available on all devices that have a valid timerX.
Requires: Nothing
Examples: if (EventOccured())
set timer2(0);//reset the timer.
Example None
Files:
Also See: Timer Overview, setup_timerX(), get_timerXY() , set_timerX() ,

set_timerXY()

set_timerxy()

Syntax: set_timerXY(value)

Parameters: A 32 bit integer, specifying the new value of the timer. (int32)

Returns: void

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY (which

may be 23, 45, 67 and 89)

Availability: This function is available on all devices that have a valid 32 bit
enabled timers. Timers 2 & 3,4 & 5, 6 & 7 and 8 & 9 may be used.
The target device must have one of these timer sets. The target timers
must be enabled as 32 bit.

294

Built-in Functions

Requires:

Examples:

Example Files:

Also See:

Nothing

if (get timer45() == THRESHOLD)
set timer (THRESHOLD + 0x1000);//skip those timer
values

None

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(),
set_timerXY()

set_rtcc()

set_timer0Q()
set_timerl()
set_timer2()
set_timer3()
set_timer4()
set_timer5()

Syntax:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 hit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX
where it needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

Returns: undefined

Function: Sets the count value of a real time clock/counter. RTCC and TimerO
are the same. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255,
0,1,2.)

Availability: Timer O - All devices

295

PCD_May 2015

Requires:

Examples:

Example Files:

Also See:

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set_timer0 (81); // 256-(.000035/(4/20000000))
ex_patg.c

set_timerl(), get_timerX() TimerO Overview, TimerlOverview,
Timer2 Overview, Timer5 Overview

set_timer_ccpl()
set_timer_ccp2()
set_timer_ccp3()
set_timer_ccp4()
set_timer_ccp5()

Syntax: set_timer_ccpx(time);
set_timer_ccpx(timeL, timeH);

Parameters: time - may be a 32-bit constant or variable. Sets the timer value for
the CCPx module when in 32-bit mode.
timeL - may be a 16-bit constant or variable to set the value of the
lower timer when CCP module is set for 16-bit mode.
timeH - may be a 16-bit constant or variable to set the value of the
upper timer when CCP module is set for 16-bit mode.

Returns: Undefined

296

Built-in Functions

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

This function sets the timer values for the CCP module. TimeH is
optional parameter when using 16-bit mode, defaults to zero if not
specified.

Available only on PIC24FxxKMxxx family of devices with a MCCP
and/or SCCP modules.

Nothing

setup ccpl (CCP_TIMER) ; //set for dual timer mode
set timer ccpl(100,200); //set lower timer value to 100
and upper timer

//value to 200

None

set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
get_capture_ccpX(), set_timer_period_ccpX(), get_timer_ccpx(),
get_captures32_ccpX()

set_timer_period_ccpl()
set_timer_period_ccp?2()
set_timer_period_ccp3()
set_timer_period_ccp4()
set_timer_period_ccp5()

Syntax:

set_timer_period_ccpx(time);
set_timer_period_ccpx(timeL, timeH);

297

PCD_May 2015

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

time - may be a 32-bit constant or variable. Sets the timer period for the
CCPx module when in 32-bit mode.

timeL - is a 16-bit constant or variable to set the period of the lower
timer when CCP module is set for 16-bit mode.

timeH - is a 16-bit constant or variable to set the period of the upper
timer when CCP module is set for 16-bit mode.

Undefined

This function sets the timer periods for the CCP module. When setting
up CCP module in 32-bit function is only needed when using Timer
mode. Period register are not used when module is setup for 32-bit
compare mode, period is always OxFFFFFFFF. TimeH is optional
parameter when using 16-bit mode, default to zero if not specified.

Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Nothing

setup ccpl (CCP_TIMER) ; //set for dual timer
mode
set timer period ccpl(800,2000); //set lower timer period
to 800 and

//upper timer period to
2000

None

set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()

298

set_tris_x()

Built-in Functions

Syntax:

set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value is an 16 bit int with each bit representing a bit of the I/O port.
undefined

These functions allow the I/O port direction (TRI-State) registers to be
set. This must be used with FAST_IO and when I/O ports are
accessed as memory such as when a # word directive is used to
access an I/0 port. Using the default standard 1/O the built in functions
set the 1/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input
and a 0 indicates it is output.

All devices (however not all devices have all I/O ports)
Nothing
SET TRIS B(O0xO0F);

// B7,B6,B5,B4 are outputs

// B15,B14,B13,B12,B11,B10,B9,B8, B3,B2,B1,B0 are
inputs

lcd.c

#USE FAST 10, #USE FIXED_10, #USE STANDARD_10, General
Purpose 110

set_uart_speed()

Syntax:

set_uart_speed (baud, [stream, clock])

Parameters:

baud is a constant representing the number of bits per second.

299

PCD_May 2015

stream is an optional stream identifier.
clock is an optional parameter to indicate what the current clock is if
it is different from the #use delay value

Returns: undefined

Function: Char)ges the baud rate of the built-in hardware RS232 serial port at
run-time.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

Examples: // Set baud rate based on setting

// of pins BO and Bl

switch(input b() & 3) {

case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 : set uart speed(19200); break;
}
Example Files: loader.c

Also See: #USE RS232, putc(), getc(), setup uart(), RS232 1/O Overview,

setimp()

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current environment

Returns: If the return is from a direct invocation, this function returns O.

If the return is from a call to the longjmp function, the setjmp function
returns a nonzero value and it's the same value passed to the longjmp
function.

Function: Stores information on the current calling context in a data object of type
jmp_buf and which marks where you want control to pass on a
corresponding longjmp call.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

300

Built-in Functions

Examples:

Example Files:

Also See:

result = setjmp (jmpbuf) ;
None

longjmp()

setup_adc(mode)
setup_adc2(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);

Parameters: mode- Analog to digital mode. The valid options vary depending on
the device. See the devices .h file for all options. Some typical
options include:

e ADC_OFF

e ADC_CLOCK_INTERNAL

e ADC_CLOCK_DIV_32

e ADC_CLOCK_INTERNAL — The ADC will use an internal
clock

e ADC_CLOCK_DIV_32 — The ADC will use the external
clock scaled down by 32

e ADC_TAD_MUL_16 — The ADC sample time will be 16
times the ADC conversion time

Returns: undefined

Function: Configures the ADC clock speed and the ADC sample time. The
ADC converters have a maximum speed of operation, so ADC clock
needs to be scaled accordingly. In addition, the sample time can be
set by using a bitwise OR to concatenate the constant to the
argument.

Availability: Only the devices with built in analog to digital converter.

Requires: Constants are defined in the devices .h file.

Examples: setup adc ports(ALL ANALOG);

Example Files:

setup_adc (ADC_CLOCK_INTERNAL) ;
set _adc_channel(0);

value = read adc();

setup adc(ADC OFF);

ex_admm.c

301

PCD_May 2015

Also See: setup_adc_ports(), set_adc_channel(), read_adc(), #DEVICE, ADC
Overview,
see header file for device selected

setup_adc_ports()
setup_adc_ports2()

Syntax: setup_adc_ports (value)
setup_adc_ports (ports, [reference])
setup_adc_ports (ports, [reference])

Parameters: value - a constant defined in the devices .h file

ports - is a constant specifying the ADC pins to use
reference - is an optional constant specifying the ADC reference to use
By default, the reference voltage are Vss and Vdd

Returns: undefined

Function: Sets up the ADC pins to be analog, digital, or a combination and the voltage
reference to use when computing the ADC value. The allowed analog pin
combinations vary depending on the chip and are defined by using the bitwise OR
to concatenate selected pins together. Check the device include file for a
complete list of available pins and reference voltage settings. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips. Some other example
pin definitions are:

* SAN1 | sAN2 — AN1 and AN2 are analog, remaining pins are digital
* SANO | sAN3 — ANO and AN3 are analog, remaining pins are digital

Availability: ~ Only available on devices with built in analog to digital converters

Requires: Constants are defined in the devices .h file.

Examples: // Set all ADC pins to analog mode
setup adc ports (ALL ANALOG) ;

// Pins ANO, ANl and AN3 are analog and all other pins
// are digital.
setup adc ports (sANO|sAN1|sAN3);

// Pins ANO and ANl are analog. The VrefL pin

// and Vdd are used for voltage references
setup adc ports (sANO|sAN1l, VREF VDD);

Example ex_admm.c

302

Built-in Functions

Files:
Also See: setup_adc(), read_adc(), set_adc_channel(), ADC Overview

setup_adc_reference()

Syntax: setup_adc_reference(reference)

Parameters: reference - the voltage reference to set the ADC. The valid options depend on
the device, see the device's .h file for all options. Typical options include:
. VSS_VDD
VSS_VREF
VREF_VREF
VREF_VDD

Returns: undefined

Function: To set the positive and negative voltage reference for the Analog to Digital
Converter (ADC) uses.

Availability: Only on devices with an ADC and has ANSELX, x being the port letter, registers
for setting which pins are analog or digital.

Requires: Nothing

Examples: set adc_ reference (VSS _VREF) ;

Example

Files:

Also See: set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(),
setup_adc_ports(),
ADC Overview

setup_at()

Syntax: setup_at(settings);

Parameters: settings - the setup of the AT module. See the device's header file for all
options. Some typical options include:
AT_ENABLED
AT_DISABLED
AT_MULTI_PULSE_MODE
AT_SINGLE_PULSE_MODE

303

PCD_May 2015

Returns:
Function:
Availability:
Requires:

Examples:
Example

Files:
Also See:

Nothing
To setup the Angular Timer (AT) module.
All devices with an AT module.

Constants defined in the device's .h file

setup at (AT ENABLED|AT MULTI PULSE MODE|AT INPUT ATIN) ;

None

at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get_missing_pulse_delay(), at_get_period(), at_get_phase_counter(),
at_set_set_point(), at_get_set_point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_capture(),
at_get_status()

setup_capture()

Syntax: setup_capture(x, mode)
Parameters: x is 1-16 and defines which input capture module is being configured
mode is defined by the constants in the devices .h file
Returns: None
Function: This function specifies how the input capture module is going to function based
on the value of mode. The device specific options are listed in the device .h file.
Availability: Only available on devices with Input Capture modules
Requires: None
Exan“ﬂes; setup_timer3 (TMR_INTERNAL | TMR DIV BY 8);
setup capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) ({
timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: $LU”, timerValue);
}
Example None
Files:
Also See: get_capture(), setup_compare(), Input Capture Overview

304

Built-in Functions

setup_ccpl()
setup_ccp2()
setup_ccp3()
setup_ccp4()
setup_ccp5()
setup_ccp6()

Syntax: setup_ccpx(mode,[pwm]);//PIC24FxxKLxxx devices
setup_ccpx(model,[mode2],[mode3],[dead_time]);//PIC24FxxKMxxXx
devices

Parameters:

mode and model are constants used for setting up the CCP module.
Valid constants are defined in the device's .h file, refer to the device's .h
file for all options. Some typical options are as follows:

CCP_OFF

CCP_COMPARE_INT_AND_TOGGLE

CCP_CAPTURE_FE

CCP_CAPTURE_RE

CCP_CAPTURE_DIV_4

CCP_CAPTURE_DIV_16

CCP_COMPARE_SET _ON_MATCH

CCP_COMPARE_CLR_ON_MATCH

CCP_COMPARE_INT

CCP_COMPARE_RESET_TIMER

CCP_PWM

mode2 is an optional parameter for setting up more settings of the CCP
module. Valid constants are defined in the device's .h file, refer to the
device's .h file for all options.

mode3 is an optional parameter for setting up more settings of the CCP
module. Valid constants are defined in the device's .h file, refer to the
device's .h file for all options.

pwm is an optional parameter for devices that have an
ECCP module. this parameter allows setting the shutdown
time. The value may be 0-255.

dead_time is an optional parameter for setting the dead

305

PCD_May 2015

Returns:

Function:

time when the CCP module is operating in PWM mode
with complementary outputs. The value may be 0-63, 0 is
the default setting if not specified.

Undefined

Initializes the CCP module. For PIC24FxxKLxxx devices the CCP
module can operate in three modes (Capture, Compare or PWM).

Capture Mode - the value of Timer 3 is copied to the CCPRxH and
CCPRXxl registers when

an input event occurs.

Compare Mode - will trigger an action when Timer 3 and the CCPRxL
and CCPRxH registers

are equal.

PWM Mode - will generate a square wave, the duty cycle of the signal
can be adjusted using

the CCPRXxL register and the DCxB bits of the CCPxCON register.
The function

set_pwmx_duty() is provided for setting the duty cycle when in PWM
mode.

PIC24FxxKMxxx devices, the CCP module can operate in four mode
(Timer, Caputure, Compare or PWM). IN Timer mode, it functions as a
timer. The module has to basic modes, it can functions as two
independent 16-bit timers/counters or as a single 32-bit timer/counter.
The mode it operates in is controlled by the option
CCP_TIMER_32_BIT, with the previous options added, the module
operates as a single 32-bit timer, and if not added, it operates as two 16-
bit timers. The function set_timer_period_ccpx() is provided to set the
period(s) of the timer, and the functions set_timer_ccpx() and
get_timer_ccpx() are provided to set and get the current value of the
timer(s).

In Capture mode, the value of the timer is captured when an input event
occurs, it can operate in either 16-bit or 32-bit mode. The functions
get_capture_ccpx() and get_capture32_ccpx() are provided to get the
last capture value.

In Compare and PWM modes, the value of the timers is c ompared to
one or two compare registers, depending on its mode of operation, to
generate a single output transition or a train of output pulses. For signal
output edge modes, CCP_COMPARE_SET_ON_MATCH,
CCP_COMPARE_CLR_ON_MATCH, and CCP_COMPARE_TOGGLE,
the module can operate in 16 or 32-bit mode, all other modes can only
operate in 16-bit mode. However, when in 32-bit mode the timer source
will only rollover when it reaches OxFFFFFFFF or when reset from an
external synchronization source. Therefore, is a period of less than
OxFFFFFFFF is needed, as it requires an external synchronization

306

Built-in Functions

source to reset the timer. The functions set_ccpx_compare_time() and
set_pwmx_duty() are provided for setting the compare registers.

Availability: Only on devices with the MCCP and/or SCCP modules.
Requires: Constants are defined in the devices .h file.
Examples: setup_ccpl (CCP_CAPTURE_FE) ;

setup_ccpl (CCP_COMPARE TOGGLE) ;
setup ccpl (CCP_PWM) ;

Example Files: ex_pwm.c, ex_ccpmp.c, ex_ccpls.c
Also See: set_pwmX_duty(), set_ccpX_compare_time(), set_timer_period_ccpX(),

set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()

setup_clcl()
setup_clc2()
setup_clc3()
setup_clc4()

Syntax: setup_clcl(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters: mode — The mode to setup the Configurable Logic Cell (CLC)
module into. See the device's .h file for all options. Some typical
options include:

CLC_ENABLED
CLC_OUTPUT
CLC_MODE_AND_OR
CLC_MODE_OR_XOR

Returns: Undefined.

Function: Sets up the CLC module to performed the specified logic. Please
refer to the device datasheet to determine what each input to the
CLC module does for the select logic function

Availability: On devices with a CLC module.

Returns: Undefined.

307

PCD_May 2015

Examples:

Example Files:

Also See:

setup clcl (CLC_ENABLED | CLC_MODE_AND OR);
None

clex_setup_gate(), clex_setup_input()

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a bit-field comprised of the following constants:
NC_NC_NC_NC
A4_A5_NC_NC
A4_VR_NC_NC
A5_VR_NC_NC
NC_NC_A2_A3
NC_NC_A2_VR
NC_NC_A3_VR
A4_A5_A2 A3
A4_VR_A2_VR
A5_VR_A3_VR
C1_INVERT
C2_INVERT
C1_OUTPUT
C2_OUTPUT

Returns: void

Function: Configures the voltage comparator.
The voltage comparator allows you to compare two voltages and find
the greater of them. The configuration constants for this function
specify the sources for the comparator in the order C1- C1+, C2-,
C2+.The constants may be or'ed together if the NC’s do not overlap;
A4_A5_NC_NC | NC_NC_A3_VR is valid, however, A4_A5_NC_NC |
A4 _VR_NC_NC may produce unexpected results. The results of the
comparator module are stored in CLOUT and C20UT, respectively.
Cx_INVERT will invert the results of the comparator and Cx_OUTPUT
will output the results to the comparator output pin.

Availability: Some devices, consult your target datasheet.

308

Built-in Functions

Requires Constants are defined in the devices .h file.
Examples: setup comparator (A4 A5 NC NC);//use Cl, not C2

Example Files:

setup_compare()

Syntax: setup_compare(x, mode)

Parameters: mode is defined by the constants in the devices .h file
X is 1-16 and specifies which OC pin to use.

Returns: None
Function: This function specifies how the output compare module is going to

function based on the value of mode. The device specific options are
listed in the device .h file.

Availability: Only available on devices with output compare modules.
Requires: None
Examples: // Pin OCl will be set when timer 2 is equal to 0xF000

setup_timer2(TMR INTERNAL | TIMER DIV BY 16);
set compare time (1, 0xF000);
setup_compare (1, COMPARE SET ON MATCH | COMPARE TIMER2) ;

Example Files: None
Also See: set_compare_time(), set_pwm_duty(), setup_capture(), Output Compare
/ PWM Overview

setup_crc(mode)

Syntax: setup_crc(polynomial terms)

Parameters: polynomial - This will setup the actual polynomial in the CRC engine.
The power of each term is passed separated by a comma. 0 is allowed,
but ignored. The following define is added to the device's header file
(32-bit CRC Moduel Only), to enable little-endian shift direction:

- CRC_LITTLE_ENDIAN

309

PCD_May 2015

Returns: undefined

Function: Configures the CRC engine register with the polynomial
Availability: Only the devices with built in CRC module

Requires: Nothing

Examples: setup crc (12, 5);

// CRC Polynomial is X + X° + 1

setup crc(l6, 15, 3, 1);
// CRC Polynomial is X' + X7 + x° + x'+ 1

Example Files: ex.c

Also See: crc_init(); crc_calc(); crc_calc8()

setup_cog()

Syntax: setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters: mode- the setup of the COG module. See the device's .h file for all
options.
Some typical options include:

COG_ENABLED
COG_DISABLED
COG_CLOCK_HFINTOSC
COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG
module.

See the device's .h file for all the options. Some typical options
include:

COG_AUTO_RESTART
COG_SHUTDOWN_ON_C10UT
. COG_SHUTDOWN_ON_C20UT

310

Built-in Functions

Returns:

Function:

Availability:
Examples:
Example

Files:
Also See:

steering- optional parameter for steering the PWM signal to COG
output pins and/or selecting

the COG pins static level. Used when COG is set for steered PWM
or synchronous steered

PWM modes. Not available on all devices, see the device's .h file if
available and for all options.

Some typical options include:

. COG_PULSE_STEERING_A
. COG_PULSE_STEERING_B
. COG_PULSE_STEERING_C
. COG_PULSE_STEERING_D

undefined

Sets up the Complementary Output Generator (COG) module, the aut
the module and if available steers the signal to the different output pin:

All devices with a COG module.

setup cog (COG ENABLED | COG PWM | COG FALLING SOURCE PWM3
COG_RISING SOURCE PWM3, COG NO AUTO SHUTDOWN,
COG PULSE STEERING A | COG PULSE STEERING B);

None

set_cog_dead_band(), set_cog_phase(), set_cog_blanking(), cog_stai

setup_crc()

Syntax:

setup_crc(polynomial terms)

Parameters:

Returns:

polynomial- This will setup the actual polynomial in the CRC
engine. The power of each
term is passed separated by a comma. O is allowed, but ignored.
The following define
is added to the device's header file to enable little-endian shift
direction:

CRC_LITTLE_ENDIAN

Nothing

311

PCD_May 2015

Function:
Availability:
Examples:

Example
Files:
Also See:

Configures the CRC engine register with the polynomial.
Only devices with a built-in CRC module.

setup crc(l2, 5); // CRC Polynomial is
x4 +1

setup crc(l6, 15, 3, 1); // CRC Polynomial is
X x Pkt

None

crc_init(), crc_calc(), crc_calc8()

setup_cwg()

Syntax:

setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters:

Returns:

mode- the setup of the CWG module. See the device's .h file for all
options.
Some typical options include:

CWG_ENABLED
CWG_DISABLED

CWG_OUTPUT B
CWG_OUTPUT A

shutdown- the setup for the auto-shutdown feature of CWG module.
See the device's .h file for all the options. Some typical options
include:

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and B
on the
rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and B
on the
falling edge. (0-63)

undefined

312

Built-in Functions

Function:

Availability:

Examples:

Example Files:

Also See:

Sets up the CWG module, the auto-shutdown feature of module and
the rising

and falling dead times of the module.

All devices with a CWG module.

setup cwg (CWG ENABLED|CWG OUTPUT A|CWG OUTPUT B
CWG_INPUT PWMI1,CWG SHUTDOWN ON FLT, 60,30) ;

None

cwg_status(), cwg_restart()

setup_dac()

Syntax: setup_dac(mode);
setup_dac(mode, divisor);

Parameters: mode- The valid options vary depending on the device. See the devices
.h file for all options. Some typical options include:
- DAC_OUTPUT
divisor- Divides the provided clock

Returns: undefined

Function: Configures the DAC including reference voltage. Configures the DAC
including channel output and clock speed.

Availability: Only the devices with built in digital to analog converter.

Requires: Constants are defined in the devices .h file.

Examples: setup_dac (DAC_VDD | DAC OUTPUT) ;

Example Files:

Also See:

dac _write(value);
setup dac (DAC_RIGHT ON, 5);

None

dac_write(), DAC Overview, See header file for device selected

313

PCD_May 2015

setup_dci()

Syntax: setup_dci(configuration, data size, rx config, tx config, sample
rate);

Parameters: configuration - Specifies the configuration the Data Converter Interface
should be initialized into, including the mode of transmission and bus
properties. The following constants may be combined (OR’d) for this
parameter:

- CODEC_MULTICHANNEL

- CODEC_|2S- CODEC_AC16

- CODEC_AC20- JUSTIFY_DATA. DCI_MASTER

- DCI_SLAVE- TRISTATE_BUS- MULTI_DEVICE_BUS

- SAMPLE_FALLING_EDGE- SAMPLE_RISING_EDGE

- DCI_CLOCK_INPUT: DCI_CLOCK_OUTPUT
data size — Specifies the size of frames and words in the transmission:

- DCI_xBIT_WORD: x may be 4 through 16

- DCI_XWORD_FRAME: x may be 1 through 16

- DCI_XWORD_INTERRUPT: x may be 1 through 4
rx config- Specifies which words of a given frame the DCI module will
receive (commonly used for a multi-channel, shared bus situation)

- RECEIVE_SLOTx: x May be 0 through 15

- RECEIVE_ALL- RECEIVE_NONE
tx config- Specifies which words of a given frame the DCI module will
transmit on.

- TRANSMIT_SLOTx: x May be 0 through 15

- TRANSMIT _ALL

- TRANSMIT _NONE
sample rate-The desired number of frames per second that the DCI
module should produce. Use a numeric value for this parameter. Keep
in mind that not all rates are achievable with a given clock. Consult the
device datasheet for more information on selecting an adequate clock.

Returns: undefined

Function: Configures the DCI module

Availability: Only on devices with the DCI peripheral

Requires: Constants are defined in the devices .h file.

Examples; dci _initialize((I2S_MODE | DCI _MASTER | DCI_CLOCK_OUTPUT |

314

Built-in Functions

Example Files:

Also See:

SAMPLE_RISING EDGE | UNDERFLOW LAST

MULTI DEVICE BUS),

DCI_1WORD FRAME | DCI_16BIT WORD |
DCI 2WORD INTERRUPT,

RECEIVE SLOTO | RECEIVE SLOTI,
TRANSMIT SLOTO | TRANSMIT SLOTI,
44100) ;

None

DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(),
dci data received()

setup_dma()

Syntax: setup_dma(channel, peripheral,mode);

Parameters: Channel- The channel used in the DMA transfer
peripheral - The peripheral that the DMA wishes to talk to.
mode- This will specify the mode used in the DMA transfer

Returns: void

Function: Configures the DMA module to copy data from the specified peripheral
to RAM allocated for the DMA channel.

Availability: Devices that have the DMA module.

Requires Nothing

Examples: setup_dma (2, DMA IN SPI1, DMA BYTE);

Example Files:
Also See

// This will setup the DMA channel 1 to talk to
// SPI1 input buffer.

None

dma_start(), dma_status()

setup_high_speed _adc()

Syntax:

setup_high_speed_adc (mode);

315

PCD_May 2015

Parameters: mode — Analog to digital mode. The valid options vary depending on the device.
See the devices .h file for all options. Some typical options include:
- ADC_OFF
- ADC_CLOCK_DIV_1
- ADC_HALT _IDLE — The ADC will not run when PIC is idle.

Returns: Undefined

Function: Configures the High-Speed ADC clock speed and other High-Speed ADC options
including, when the ADC interrupts occurs, the output result format, the
conversion order, whether the ADC pair is sampled sequentially or
simultaneously, and whether the dedicated sample and hold is continuously
sampled or samples when a trigger event occurs.

Availability: ~ Only on dsPIC33FJIxxGSxxx devices.

Requires: Constants are define in the device .h file.

Examples; setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc (ADC_CLOCK DIV 4);
read high speed adc (0, START AND READ, result);
setup_high speed adc (ADC_OFF) ;

Example None
Files:
Also See: setup_high_speed_adc_pair(), read_high_speed_adc(), high_speed_adc_done()

setup_high_speed _adc_pair()

Syntax: setup_high_speed_adc_pair(pair, mode);

Parameters: pair — The High-Speed ADC pair number to setup, valid values are 0 to total
number of ADC pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC pair
AN2 and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the device. See
the devices .h file for all options. Some typical options include:

- INDIVIDUAL_SOFTWARE_TRIGGER
- GLOBAL_SOFTWARE_TRIGGER

- PWM_PRIMARY_SE_TRIGGER

- PWM_GEN1_PRIMARY_TRIGGER

- PWM_GEN2_PRIMARY_TRIGGER

316

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

Undefined

Sets up the analog pins and trigger source for the specified ADC pair. Also sets
up whether ADC conversion for the specified pair triggers the common ADC
interrupt.

If zero is passed for the second parameter the corresponding analog pins will be
set to digital pins.

Only on dsPIC33FJxxGSxxx devices.
Constants are define in the device .h file.

setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc pair(l, GLOBAL SOFTWARE TRIGGER) ;

setup high speed adc pair(2, 0) - sets AN4 and AN5 as digital pins.
None

setup_high_speed_adc(), read_high_speed_adc(), high_speed_adc_done()

setup_hspwm_blanking()

Syntax:

setup_hspwm_blanking(unit, settings, delay);

Parameters:

Returns:

Function:

unit - The High Speed PWM unit to set.

start_delay - Optional value from 0 to 63 specifying then umber of PWM cycles

to wait before generating the first trigger event. For some devices, one of the

following may be optional or'd in with the value:
HSPWM_COMBINE_PRIMARY_AND_SECONDARY_TRIGGER
HSPWM_SEPERATE_PRIMARY_AND_SECONDARY_TRIGGER

divider - optional value from 1 to 16 specifying the trigger event divisor.

trigger_value - optional 16-bit value specifying the primary trigger compare time.

strigger_value - optional 16-bit value specifying the secondary trigger compare
time. Not available on all devices, see the device datasheet for availability.

undefined

Sets up the High Speed PWM Trigger event.

317

PCD_May 2015

Availability: ~ Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples: setup_hspwm trigger (1, 10, 1, 0x2000);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

setup_hspwm_chop_clock()

Syntax: setup_hspwm_chop_clock(settings);
Parameters: settings - a value from 1 to 1024 to set the chop clock divider. Also one of the
following can be or'd with the value:
HSPWM_CHOP_CLK_GENERATOR_ENABLED
HSPWM_CHOP_CLK_GENERATOR_DISABLED
Returns: Undefined
Function: Setup and High Speed PWM Chop Clock Generator and divisor.
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: None
Examples: setup_hspwm_chop_clock (HSPWM_CHOP_ CLK_GENERATOR ENABLED|32) ;
Example None
Files:
Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

318

Built-in Functions

set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

setup_hspwm_trigger()

Syntax: setup_hspwm_trigger(unit, [start_ delay], [divider], [trigger_value],
[strigger_value]);
Parameters: unit - The High Speed PWM unit to set.
settings - Settings to setup the High Speed PWM Leading-Edge Blanking. The
valid options vary depending on the device. See the device's header file for all
optlons Some typical options include:
HSPWM_RE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_FE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_RE_PWML_TRIGGERS_LE_BLANKING
HSPWM_FE_PWML_TRIGGERS_LE_BLANKING
HSPWM_LE_BLANKING_APPLIED_TO_FAULT_INPUT
HSPWM_LE_BLANKING_APPLIED_TO_CURRENT_LIMIT_INPUT
delay - 16-bit constant or variable to specify the leading-edge blanking time.
Returns: undefined
Function: Sets up the Leading-Edge Blanking and leading-edge blanking time of the High
Speed PWM.
Availability: ~ Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXMCxxXx,
and dsPIC33EVxxxGMxxx devices)
Requires: None
Examples: setup_hspwm_blanking (HSPWM RE_ PWMH TRIGGERS_LE_BLANKING, 10);
Example None
Files:
Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),
setup_hspwm_blanking(), set_hspwm_override(),

319

PCD_May 2015

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()
setup_hspwm(), setup_hspwm_secondary()

setup_hspwm_unit()

Syntax: setup_hspwm_unit(unit, mode, [dead_time], [alt_dead_time]);
set_hspwm_duty(unit, primary, [secondary]);
Parameters: unit - The High Speed PWM unit to set.
mode - Mode to setup the High Speed PWM unit in. The valid option vary
depending on the device. See the device's header file for all options. Some
typlcal options include:
HSPWM_ENABLE
HSPWM_ENABLE_H
HSPWM_ENABLE_L
HSPWM_COMPLEMENTARY
HSPWM_PUSH_PULL
dead_time - Optional 16-bit constant or variable to specify the dead time for this
PWM unit, defaults to 0 if not specified.
alt_dead_time - Optional 16-bit constant or variable to specify the alternate dead
time for this PWM unit, default to 0 if not specified.
Returns: undefined
Function: Sets up the specified High Speed PWM unit.
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: Constants are defined in the device's .h file
Examples; setup _hspwm unit (1, HSPWM ENABLE | SHPWM COMPLEMENTARY, 100,100);
Example None
Files:
Also See: set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

320

Built-in Functions

setup_hspwm(), setup_hspwm_secondary()

setup_hspwm()
setup_hspwm_secondary()

Syntax: setup_hspwm(mode, value);
setup_hspwm_secondary(mode, value); /lif available

Parameters: mode - Mode to setup the High Speed PWM module in. The valid options vary
depending on the device. See the device's .h file for all options. Some typical
options include:

HSPWM_ENABLED
HSPWM_HALT_WHEN_IDLE
HSPWM_CLOCK_DIV_1

value - 16-bit constant or variable to specify the time bases period.
Returns: undefined

Function: To enable the High Speed PWM module and set up the Primary and Secondary
Time base of the module.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples; setup hspwm (HSPWM ENABLED | HSPWM CLOCK DIV BY4, 0x8000);
Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm_secondary()

setup_hspwm _unit_chop_clock()

321

PCD_May 2015

Syntax: setup_hspwm_unit_chop_clock(unit, settings);

Parameters: unit - the High Speed PWM unit chop clock to setup.

settings - a settings to setup the High Speed PWM unit chop clock. The valid

options vary depending on the device. See the device's .h file for all options.

Some typical options include:
HSPWM_PWMH_CHOPPING_ENABLED
HSPWM_PWML_CHOPPING_ENABLED
HSPWM_CHOPPING_DISABLED
HSPWM_CLOP_CLK_SOURCE_PWM2H
HSPWM_CLOP_CLK_SOURCE_PWM1H
HSPWM_CHOP_CLK_SOURCE_CHOP_CLK_GENERATOR

Returns: Undefined

Function: Setup and High Speed PWM unit's Chop Clock

Availability: ~ Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXXXMCXxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples: setup_hspwm unit chop clock(1l,HSPWM PWMH CHOPPING ENABLED]
HSPWM PWML CHOPPIJNG ENABLED]
HSPWM CLOP_CLK_SOURCE_ PWM2H) ;

Example None
Files:
Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),

setup_hspwm(), setup_hspwm_secondary()

322

Built-in Functions

setup_low_volt_detect()

Syntax:

setup_low_volt_detect(mode)

Parameters:

Returns:

Function:

Availability:

Requires

Examples:

mode may be one of the constants defined in the devices .h file.
LVD_LVDIN, LVD_45, LVD_42, LVD_40, LVD_38, LVD_36,
LVvD_35, LVD_33, LVD_30, LVD_28, LVD_27, LVD_25, LVD_23,
LVD_21, LVD_19

One of the following may be or'ed(via |) with the above if high voltage
detect is also available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

undefined

This function controls the high/low voltage detect module in the
device. The mode constants specifies the voltage trip point and a
direction of change from that point (available only if high voltage
detect module is included in the device). If the device experiences a
change past the trip point in the specified direction the interrupt flag is
set and if the interrupt is enabled the execution branches to the
interrupt service routine.

This function is only available with devices that have the high/low
voltage detect module.

Constants are defined in the devices.h file.

setup_low volt detect(LVD_TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_motor_pwm()

Syntax: setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)
Parameters: Pwm- Defines the pwm module used.

Options- The mode of the power PWM module. See the devices
.h file for all options

timebase- This parameter sets up the PWM time base pre-scale
and post-scale.

prescale- This will select the PWM timebase prescale setting

323

PCD_May 2015

Returns:
Function:
Availability:
Requires:
Examples:
Example

Files:
Also See:

postscale- This will select the PWM timebase postscale setting
void

Configures the motor control PWM module

Devices that have the motor control PWM unit.

None

setup motor pwm(l,MPWM FREE RUN | MPWM SYNC OVERRIDES,
timebase) ;

None

get motor pwm count(), set motor pwm event(), set motor unit(),
set motor pwm duty();

setup_oscillator()

Syntax:

setup_oscillator(mode, target [,source] [,divide])

Parameters:

Mode is one of:

* OSC_INTERNAL

* OSC_CRYSTAL

*+ OSC_CLOCK
*OSC_RC

* OSC_SECONDARY

Target is the target frequency to run the device it.

Source is optional. It specifies the external crystal/oscillator frequency. If
omitted the value from the last #USE DELAY is used. If mode is
OSC_INTERNAL, source is an optional tune value for the internal
oscillator for PICs that support it. If omitted a tune value of zero will be
used.

Divide in optional. For PICs that support it, it specifies the divide ration
for the Display Module Interface Clock. A number from 0 to 64 divides
the clock from 1 to 17 increasing in increments of 0.25, a number from
64 to 96 divides the clock from 17 to 33 increasing in increments of 0.5,
and a number from 96 to 127 divides the clock from 33 to 64 increasing
in increments of 1. If omitted zero will be used for divide by 1.

324

Built-in Functions

Returns: None

Function: Configures the oscillator with preset internal and external source
configurations. If the device fuses are set and #use delay() is specified,
the compiler will configure the oscillator. Use this function for explicit
configuration or programming dynamic clock switches. Please consult
your target data sheets for valid configurations, especially when using
the PLL multiplier, as many frequency range restrictions are specified.

Availability: This function is available on all devices.
Requires: The configuration constants are defined in the device’s header file.
Examples: setup oscillator(OSC_CRYSTAL, 4000000, 16000000) ;

setup oscillator(OSC INTERNAL, 29480000);
Example Files: None

Also See: setup_wdt(), Internal Oscillator Overview

setup_pid()

Syntax: setup_pid(,pde.[mode,[K1],[K2],[K3]);

Parameters: mode- the setup of the PID module. The options for setting up the
module are defined in the device's header file as:

. PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_SIGNED_ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED
PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if
not specified. The K1 coefficient is used in the PID and ADD_MULTIPLY
modes. When in PID mode the K1 coefficient can be calculated with the
following formula:

K1=Kp+Ki*T + Kd/T
When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if
not specified. The K2 coefficient is used in the PID mode only and is

325

PCD_May 2015

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

calculated with the following formula:
K2 = -(Kp + 2Kd/T)

K3 - optional parameter specifying the K3 coefficient, defaults to zero if
not specified. The K3 coefficient is used in the PID mode, only and is
calculated with the following formula:

K3 = Kd/T
T is the sampling period in the above formulas.
Nothing

To setup the Proportional Integral Derivative (PID) module, and to set the
input coefficients (K1, K2 and K3).

All devices with a PID module.

Constants are defined in the device's .h file.

setup_pid(PID MODE_PID, 10, -3, 50);

None

pid_get_result(), pid_read(), pid_write(), pid_busy()

setup_pmp(option,address_mask)

Syntax:

setup_pmp(options,address_mask);

Parameters:

options- The mode of the Parallel Master Port that allows to set the
Master Port mode, read-write strobe options and other functionality of the
PMPort module. See the device's .h file for all options. Some typical
options include:

PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /lInterrupt on read write
- PAR_INC_ADDR /lincrement address by 1
every
/lread/write cycle
PAR_MASTER_MODE_1 //Master Mode 1
PAR_WAITE4 /l4 Tcy Wait for data hold
after

326

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

/[strobe

address_mask- this allows the user to setup the address enable register
with a 16-bit value. This value determines which address lines are active
from the available 16 address lines PMAO:PMA15.

Undefined.

Configures various options in the PMP module. The options are present
in the device's .h file and they are used to setup the module. The PMP
module is highly configurable and this function allows users to setup
configurations like the Slave module, Interrupt options, address
increment/decrement options, Address enable bits, and various strobe
and delay options.

Only the devices with a built-in Parallel Master Port module.

Constants are defined in the device's .h file.

setup_psp (PAR_ENABLE | //Sets up Master mode with
address
PAR MASTER MODE 1 |PAR //lines PMAQ:PMA7

STOP IN IDLE, 0x00FF);
None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full('), pmp_input_full(), pmp_overflow()

See header file for device selected

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)
Parameters: For each module (two pins) specify:
PWM_PINS_DISABLED, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY
Returns: undefined
Function: Configures the pins of the Pulse Width Modulation (PWM) device.
Availability: All devices equipped with a power control PWM.

327

PCD_May 2015

Requires:

Examples:

Example Files:

Also See:

None

setup_power pwm pins (PWM_PINS DISABLED, PWM PINS DISABLED,
PWM_PINS DISABLED,
PWM_PINS_ DISABLED) ;
setup power pwm pins (PWM_COMPLEMENTARY,
PWM_COMPLEMENTARY, PWM PINS DISABLED,
PWM_PINS DISABLED) ;

None

setup_power_pwm(),
set_power_pwm_override(),set_power_pwmX_duty()

setup_psp(option,address_mask)

Syntax: setup_psp (options,address_mask);
setup_psp(options);
Parameters: Option- The mode of the Parallel slave port. This allows to set the
slave port mode, read-write strobe options and other functionality of the
PMP/EPMP module. See the devices .h file for all options. Some
typical options include:
- PAR_PSP_AUTO_INC
- PAR_CONTINUE_IN_IDLE
- PAR_INTR_ON_RW /lInterrupt on read write
- PAR_INC_ADDR /lincrement address by 1
every
/lread/write cycle
- PAR_WAITE4 //4 Tcy Wait for data
hold after
/Istrobe
address_mask- This allows the user to setup the address enable
register with a 16 bit or 32 bit (EPMP) value. This value determines
which address lines are active from the available 16 address lines
PMAO: PMA15 or 32 address lines PMAO:PMA31 (EPMP only).
Returns: Undefined.
Function: Configures various options in the PMP/EPMP module. The options are

present in the device.h file and they are used to setup the module. The
PMP/EPMP module is highly configurable and this function allows
users to setup configurations like the Slave mode, Interrupt options,

328

Built-in Functions

address increment/decrement options, Address enable bits and various
strobe and delay options.

Availability: Only the devices with a built in Parallel Port module or Enhanced
Parallel Master Port module.

Requires: Constants are defined in the devices .h file.
Examples: setup_psp (PAR PSP _AUTO INC| //Sets up legacy slave
//mode with
PAR STOP_IN IDLE,O0x00FF); //read and write buffers

//auto increment.

Example Files: None

Also See: setup_pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() ,
pmp_write() , psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full() , pmp_input_full() , pmp_overflow()
See header file for device selected.

setup_pwml()
setup_pwm2()
setup_pwm3()
setup_pwmd4()

Syntax: setup_pwml(settings);
setup_pwmz2(settings);
setup_pwma3(settings);
setup_pwmdé(settings);

Parameters: settings- setup of the PWM module. See the device's .h file for all
options.
Some typical options include:

PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW

Returns: Undefined

Function: Sets up the PWM module.

Availability: On devices with a PWM module.
Examples: setup_pwml (PWM_ENABLED|PWM OUTPUT) ;

329

PCD_May 2015

Example None
Files:
Also See: set_pwm_duty()
setup_gei()
Syntax: setup_gei([unit,]Joptions, filter, maxcount);
Parameters: Options- The mode of the QEI module. See the devices .h file for all
options
Some common options are:
- QEI_MODE_X2
- QEI_TIMER_GATED
- QEI_TIMER_DIV_BY_1
filter - This parameter is optional and the user can specify the digital filter
clock divisor.
maxcount - This will specify the value at which to reset the position
counter.
unit - Optional unit number, defaults to 1.
Returns: void
Function: Configures the Quadrature Encoder Interface. Various settings
like modes, direction can be setup.
Availability: Devices that have the QEI module.
Requires: Nothing.
Examples: setup_gei (QEI_MODE_X2|QEI_TIMER INTERNAL,QEI FILTER DIV 2,

Example Files:

Also See:

QE IiFORWARD) ;
None

gei_set_count() , gei_get_count() , gei_status()

330

Built-in Functions

setup_rtc()

Syntax: setup_rtc() (options, calibration);

Parameters: Options- The mode of the RTCC module. See the devices .h file for all options
Calibration- This parameter is optional and the user can specify an 8 bit value
that will get written to the calibration configuration register.

Returns: void

Function: Configures the Real Time Clock and Calendar module. The module requires an
external 32.768 kHz clock crystal for operation.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples; setup rtc(RTC_ENABLE | RTC_OUTPUT SECONDS, 0x00);

// Enable RTCC module with seconds clock and no calibration

Example None

Files:

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),

rtc_write(, setup_rtc()

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);

Parameters: options- The mode of the RTCC module. See the devices .h file for all options
mask- specifies the alarm mask bits for the alarm configuration.
repeat- Specifies the number of times the alarm will repeat. It can have a max
value of 255.

Returns: void

Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

331

PCD_May 2015

Examples:
Example Files:

Also See:

setup rtc alarm(RTC_ALARM ENABLE, RTC ALARM HOUR, 3);
None

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),
setup_rtc()

setup_sd_adc()

Syntax:

setup_sd_adc(settings1, settings 2, settings3);

Parameters:

Returns:
Function:
Availability:

Examples:

settings1- settings for the SD1CONL1 register of the SD ADC module. See the
device's .h file for all options. Some options include:

1 SDADC_ENABLED

SDADC_NO_HALT

SDADC_GAIN_1

SDADC_NO_DITHER

SDADC_SVDD_SVSS

SDADC_BW_NORMAL

OO WN

settings2- settings for the SD1CON2 register of the SD ADC module. See the
device's .h file for all options. Some options include:

7 SDADC_CHOPPING_ENABLED

8 SDADC_INT_EVERY_ SAMPLE

9 SDADC _RES_UPDATED EVERY_INT

10 SDADC_NO_ROUNDING

settings3- settings for the SD1CONS register of the SD ADC module. See the
device's .h file for all options. Some options include:

11 SDADC_CLOCK_DIV_1

12 SDADC_OSR_1024

13 SDADC_CLK_SYSTEM

Nothing

To setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.
Only devices with a SD ADC module.

setup_sd_adc(SDADC_ENABLED | SDADC_DITHER_LOW,

SDADC_CHOPPING_ENABLED |
SDADC_INT_EVERY_5TH_SAMPLE |

332

Built-in Functions

Example
Files:
Also See:

SDADC_RES_UPDATED_EVERY_INT, SDADC_CLK_SYSTEM |
SDADC_CLOCK_DIV_4);

None

set_sd_adc_channel(), read_sd_adc(), set_sd_adc_calibration()

setup_smtx()

Syntax: setup_smtl(mode,[period]);
setup_smt2(mode,[period]);
Parameters: mode - The setup of the SMT module. See the device's .h file for al
typical options include:
SMT_ENABLED
SMT_MODE_TIMER
SMT_MODE_GATED_TIMER
SMT_MODE_PERIOD_DUTY_CYCLE_ACQ
period - Optional parameter for specifying the overflow value of the
to maximum value if not specified.
Returns: Nothing
Function: Configures the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.
Examples: setup smtl (SMT_ENABLED | SMT MODE_PERIOD DUTY CYCLE ACQ|
SMT_REPEAT DATA ACQ MODE | SMT CLK_FOSC) ;
Example None
Files:
Also See: smtx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_res

smtx_read(), smtx_write()

setup_spi() setup_spi2()

Syntax:

setup_spi (mode)
setup_spi2 (mode)

333

PCD_May 2015

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

mode may be:
o SPI_MASTER, SPI_SLAVE, SPI_SS DISABLED

o SPI_ L_TO H, SPI_H TO L
o SPI_CLK_DIV_4, SPI_CLK_DIV_186,
o SPI_CLK_DIV_64, SPI_CLK_T2
3 SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
3 SPI_MODE_16B, SPI_XMIT_L TO_H
o Constants from each group may be or'ed together
with |.
undefined

Configures the hardware SPI™ module.

* SPI_MASTER will configure the module as the bus master

» SPI_SLAVE will configure the module as a slave on the SPI™ bus
» SPI_SS_DISABLED will turn off the slave select pin so the slave
module receives any transmission on the bus.

» SPI_x_to_y will specify the clock edge on which to sample and
transmit data

» SPI_CLK_DIV_x will specify the divisor used to create the SCK
clock from system clock.

This function is only available on devices with SPI hardware.
Constants are defined in the devices .h file.

setup spi(SPI MASTER | SPI L TO H | SPI DIV BY 16);
ex_spi.c

spi_write(), spi_read(), spi_data_is_in(), SPI Overview

setup_timerx()

Syntax: setup_timerX(mode)
setup_timerX(mode,period)
Parameters: Mode is a bit-field comprised of the following configuration constants:

* TMR_DISABLED: Disables the timer operation.

* TMR_INTERNAL: Enables the timer operation using the system clock.
Without divisions, the timer will increment on every instruction cycle. On
PCD, this is half the oscillator frequency.

334

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

* TMR_EXTERNAL: Uses a clock source that is connected to the
SOSCI/SOSCO pins

* T1_EXTERNAL_SYNC: Uses a clock source that is connected to the
SOSCI/SOSCO pins. The timer will increment on the rising edge of the
external clock which is synchronized to the internal clock phases. This
mode is available only for Timer1.

* T1_EXTERNAL_RTC: Uses a low power clock source connected to the
SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode is
used, the low power oscillator will be enabled by the setup_timer
function. This mode is available only for Timer1.

* TMR_DIV_BY_X: X is the number of input clock cycles to pass before
the timer is incremented. X may be 1, 8, 64 or 256.

* TMR_32_BIT: This configuration concatenates the timers into 32 bit
mode. This constant should be used with timers 2, 4, 6 and 8 only.

* Period is an optional 16 bit integer parameter that specifies the timer
period. The default value is OXFFFF.

void

Sets up the timer specified by X (May be 1 —9). X must be a valid timer
on the target device.

This function is available on all devices that have a valid timer X. Use
getenv or refer to the target datasheet to determine which timers are
valid.

Configuration constants are defined in the device's header file.

/* setup a timer that increments every 64th instruction
cycle with an overflow period of 0xAQ10 */
setup_timer2 (TMR INTERNAL | TMR DIV BY 64, 0xA010);

/* Setup another timer as a 32-bit hybrid with a period of
OxXFFFFFFFF and a interrupt that will be fired when that
timer overflows*/

setup_timer4 (TMR 32 BIT); //use get timer45() to get the
timer value

enableiinterrupts(intitimer5);//use the odd number timer for
the interrupt

None

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(),

335

PCD_May 2015

set_timerXY()

setup_timer_A()

Syntax: setup_timer_A (mode);

Parameters: mode values may be:
- TA_OFF, TA_INTERNAL, TA_EXT_H_TO L, TA EXT L TO H
-TA_DIV_1, TA_DIV_2, TA DIV_4, TA_DIV_8, TA_DIV_16,
TA_DIV_32,
TA_DIV_64, TA DIV_128, TA DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer A.

Availability: This function is only available on devices with Timer A hardware.
Requires: Constants are defined in the device's .h file.

Examples: setup timer A(TA OFF);

setup timer A(TA INTERNAL | TA DIV 256);
setup_timer A(TA EXT L TO H | TA DIV_1);

Example Files: none

Also See: get_timerA(), set_timerA(), TimerA Overview

setup_timer_B()

Syntax: setup_timer_B (mode);

Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT_H_TO_L, TB_EXT L_TO_H
- TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16,
TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined

336

Built-in Functions

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

sets up Timer B
This function is only available on devices with Timer B hardware.

Constants are defined in device's .h file.
setup_timer B(TB OFF);

setup_timer B(TB_INTERNAL | TB DIV 256);
setup timer B(TA EXT L TO H | TB DIV 1);

none

get_timerB(), set_timerB(), TimerB Overview

setup_timer_0O()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h
file. RTCC_INTERNAL, RTCC_EXT_L_TO _H or
RTCC_EXT_H TO L
RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_186,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256
PIC18XXX only: RTCC_OFF, RTCC_8_BIT
One constant may be used from each group or'ed together with the |
operator.

Returns: undefined

Function: Sets up the timer 0 (aka RTCC).

Warning: On older PIC16 devices, set-up of the prescaler may undo the WDT
prescaler.

Availability: All devices.

Requires: Constants are defined in the devices .h file.

Examples: setup timer 0 (RTCC_ DIV 2|RTCC _EXT L TO H);

Example Files:

337

PCD_May 2015

Also See:

get_timer0(), set_timer0(), setup counters()

setup_timer_1()

Syntax: setup_timer_1 (mode)
Parameters: mode values may be:
. T1 DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1 EXTERNAL_SYNC
. T1 CLK_OUT
° T1 DIV_BY_1,T1 DIV_BY_2,T1 DIV_BY 4,
T1 DIV_BY_8
. constants from different groups may be or'ed
together with |.
Returns: undefined
Function: Initializes timer 1. The timer value may be read and written to using
SET_TIMER1() and GET_TIMER1()Timer 1 is a 16 bit timer.
With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the
timer will increment every 1.6us. It will overflow every 104.8576ms.
Availability: This function is only available on devices with timer 1 hardware.
Requires: Constants are defined in the devices .h file.
Examples; setup timer 1 (T1 DISABLED);

Example Files:
Also See:

setup timer 1 (T1 INTERNAL | T1 DIV BY 4);
setup timer 1 (T1 INTERNAL | T1 DIV BY 8);

get_timer1(), Timerl Overview

setup_timer_2()

Syntax:

setup_timer_2 (mode, period, postscale)

Parameters:

mode may be one of:
. T2_DISABLED
. T2 _DIV_BY_1,T2 DIV_BY 4, T2 DIV_BY_16

338

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Period is a int 0-255 that determines when the clock value is reset
Postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, an so on)

undefined

Initializes timer 2. The mode specifies the clock divisor (from the
oscillator clock).

The timer value may be read and written to using GET_TIMER2() and
SET_TIMER2().

2 is a 8-bit counter/timer.

This function is only available on devices with timer 2 hardware.

Constants are defined in the devices .h file.

setup timer 2 (T2 DIV BY 4, 0xcO, 2) //at 20mhz, the
timer will

//increment every
800ns

//will overflow
every 154.4us,

//and will
interrupt every 308.us

get_timer2(), set_timer2() Timer2 Overview

setup_timer_3()

Syntax: setup_timer_3 (mode)
Parameters: Mode may be one of the following constants from each group or'ed
(via |) together:
. T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
. T3_DIV_BY_1, T3 DIV_BY_2, T3_DIV_BY_4,
T3_DIV_BY_8
Returns: undefined
Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the
oscillator clock). The timer value may be read and written to using
GET_TIMER3() and SET_TIMERS3(). Timer 3 is a 16 bit counter/timer.
Availability: This function is only available on devices with timer 3 hardware.

339

PCD_May 2015

Requires:
Examples:
Example Files:

Also See:

Constants are defined in the devices .h file.
setup timer 3 (T3 INTERNAL | T3 DIV BY 2);
None

get_timer3(), set_timer3()

setup_timer_4()

Syntax: setup_timer_4 (mode, period, postscale)
Parameters: mode may be one of:
3 T4 _DISABLED, T4_DIV_BY_1, T4_DIV_BY_4,
T4 _DIV_BY_16
period is a int 0-255 that determines when the clock value is reset,
postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, and so on).
Returns: undefined
Function: Initializes timer 4. The mode specifies the clock divisor (from the oscillator
clock).
The timer value may be read and written to using GET_TIMER4() and
SET_TIMERA4().
Timer 4 is a 8 bit counter/timer.
Availability: This function is only available on devices with timer 4 hardware.
Requires: Constants are defined in the devices .h file
Examples: setup_timer 4 (T4 DIV _BY 4, 0xc0O, 2);

Example Files:
Also See:

// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,
// and will interrupt every 307.2us.

get_timer4(), set_timer4()

340

Built-in Functions

setup_timer_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or
T5_EXTERNAL_SYNC
T5 DIV_BY_1,T5 DIV_BY_ 2, T5 DIV_BY 4, T5 DIV_BY_8
T5_ONE_SHOT, T5_DISABLE_SE_RESET, or
T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the
oscillator clock). The timer value may be read and written to using
GET_TIMERS5() and SET_TIMERS(). Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on devices with timer 5 hardware.

Requires: Constants are defined in the devices .h file.

EX&H“MES: setup_timer 5 (T5_INTERNAL | TS5 DIV _BY 2);

Example Files:

Also See:

None

get_timer5(), set_timer5(), Timer5 Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or zero
may also be passed to control the on/off status.
Stream is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

341

PCD_May 2015

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to
match.

UART_AUTODETECT_NOWAIT Same as above function, except returns before
0x55 is received. KBHIT() will be true when the match is made. A call to GETC()
will clear the character.

UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from
high to low

clock - If specified this is the clock rate this function should assume. The default
comes from the #USE DELAY.

undefined

Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is
turned on, and if 0 is passed, UART is turned off. If a BAUD rate is passed to it,
the UART is also turned on, if not already on.

This function is only available on devices with a built in UART.

#USE RS232

setup_uart (9600) ;
setup_uart (9600, rsOut);

None

#USE RS232, putc(), getc(), RS232 I/0O Overview

setup_vref()

Syntax: setup_vref (mode)
Parameters: mode is a bit-field comprised of the following constants:
* VREF_DISABLED
« VREF_LOW (Vdd * value / 24)
* VREF_HIGH (Vdd * value / 32 + VVdd/4)
* VREF_ANALOG
Returns: undefined
Function: Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the
comparator module may use. You may use the Vdd and Vss voltages as your

342

Built-in Functions

reference or you may specify VREF_ANALOG to use supplied Vdd and Vss.
Voltages may also be tuned to specific values in steps, 0 through 15. That value
must be or’ed to the configuration constants.

Availability: Some devices, consult your target datasheet.

Requires: Constants are defined in the devices .h file.

Examples: /* Use the 15th step on the course setting */
setup vref (VREF_LOW | 14);

Example None

Files:

setup_wdt()

Syntax: setup_wdt (mode)

Parameters: Mode is a bit-field comprised of the following constants:
+WDT_ON
+ WDT_OFF
Specific Time Options vary between chips, some examples
are:
WDT_2ms
WDT_64MS
WDT_1S
WDT_16S

Function: Configures the watchdog timer.
The watchdog timer is used to monitor the software. If the software
does not reset the watchdog timer before it overflows, the device is
reset, preventing the device from hanging until a manual reset is
initiated. The watchdog timer is derived from the slow internal timer.

Availability:

Examples: setup_wdt (WDT_ON) ;
Example ex_wdt.c

Files:

Also See: Internal Oscillator Overview

343

PCD_May 2015

setup_zdc()

Syntax:

setup_zdc(mode);

Parameters:

Returns:
Function:

Availability:
Examples:
Example Files:

Also See:

mode- the setup of the ZDC module. The options for setting up the
module include:

ZCD_ENABLED
ZCD_DISABLED
ZCD_INVERTED
ZCD_INT_L_TO_H
ZCD_INT_H_TO L

Nothing
To set-up the Zero_Cross Detection (ZCD) module.

All devices with a ZCD module.
setup zcd (ZCD _ENABLE|ZCD INT H TO L);
None

zcd_status()

shift_left()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory.
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated
as the LSB.

Availability: All devices

Requires: Nothing

Examples: byte buffer[3];
for (i=0; i<=24; ++i) {

344

Built-in Functions

// Wait for clock high

while (!input (PIN_A2));

shift left (buffer, 3, input (PIN A3));

// Wait for clock low

while (input (PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example ex_extee.c, 9356.c
Files:
Also See: shift_right(), rotate_right(), rotate_left(),

shift_right()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated
as the LSB.

Availability: All devices

Requires: Nothing
Examples: // reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2
struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=1l6; ++i) {
while (!input (PIN_A2));
shift right (&msg, 3, input (PIN_Al));
while (input (PIN_A2)) ;}

// This shifts 8 bits out PIN A0, LSB first.

for (i=0;1i<8;++1)
output bit (PIN_AQ,shift right(&data,1,0));

Example ex_extee.c, 9356.c

345

PCD_May 2015

Files:
Also See:

shift_left(), rotate_right(), rotate_left(),

sleep()

Syntax: sleep(mode)

Parameters: mode configures what sleep mode to enter, mode is optional. If mode
is SLEEP_IDLE, the PIC will stop executing code but the peripherals
will still be operational. If mode is SLEEP_FULL, the PIC will stop
executing code and the peripherals will stop being clocked,
peripherals that do not need a clock or are using an external clock
will still be operational. SLEEP_FULL will reduce power consumption
the most. If no parameter is specified, SLEEP_FULL will be used.

Returns: Undefined

Function: Issues a SLEEP instruction. Details are device dependent. However,
in general the part will enter low power mode and halt program
execution until woken by specific external events. Depending on the
cause of the wake up execution may continue after the sleep
instruction. The compiler inserts a sleep() after the last statement in
main().

Availability: All devices

Requires: Nothing

Examples: disable interrupts (INT_GLOBAL) ;

Example Files:

Also See:

enable interrupt (INT_EXT) ;

clear interrupt();

sleep (SLEEP FULL) ; //sleep until an INT EXT interrupt
//after INT EXT wake-up, will resume operation from this
point

ex_wakup.c

reset cpu()

346

Built-in Functions

sleep_ulpwu()

Syntax: sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low
power wakeup pin (by outputting a high on PIN_BO).

Returns: undefined
Function: Charges the ultra-low power wake-up capacitor on PIN_BO for time

microseconds, and then puts the PIC to sleep. The PIC will then wake-
up on an 'Interrupt-on-Change' after the charge on the cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example,
PIC124F32KA302)

Requires: #USE DELAY

Examples: while (TRUE)

{
if (input (PIN_Al))
//do something

else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep
}
Example Files: None
Also See: #USE DELAY

smtx_read()

Syntax: value_smtl_read(which);
value_smt2_read(which);

Parameters: which - Specifies which SMT registers to read. The following defines
have been made
in the device's header file to select which registers are read:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG
SMT_TMR_REG
SMT_PERIOD_REG

347

PCD_May 2015

Returns:

Function:

Availability:

Examples:

Example Files:

Also See:

32-bit value

To read the Capture Period Registers, Capture Pulse Width Registers,
Timer Registers or Period Registers of the Signal Measurement Timer
module.

Only devices with a built-in SMT module.

unsigned int32 Period;
Period = smtliread(SMT7CAPTURED7PERIOD7REG);

None
smix_status(), stmx_start(), smtx_stop(), smtx_update(),

smtx_reset_timer(),
setup_SMTx(), smtx_write()

smtx_reset_timer()

Syntax: smtl_reset_timer();
smt2_reset_timer();

Parameters: None

Returns: Nothing

Function: To manually reset the Timer Register of the Signal Measurement Timer
module.

Availability: Only devices with a built-in SMT module.

Examples: smtl reset timer();

Example Files:

Also See:

None

setup_smitx(), stmx_start(), smtx_stop(), smtx_update(),
smtx_status(),
smtx_read(), smtx_write()

348

Built-in Functions

smtx_start()

Syntax: smtl_start();
smt2_start();

Parameters: None

Returns: Nothing

Function: To have the Signal Measurement Timer (SMT) module start acquiring
data.

Availability: Only devices with a built-in SMT module.

Examples: smtl_start();

Example Files: None

Also See: smix_status(), setup_smitx(), smtx_stop(), smtx_update(),

smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_status()

Syntax: value = smtl_status();
value = smt2_status();

Parameters: None

Returns: The status of the SMT module.

Function: To return the status of the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.

Examples: status = smtl status();

Example Files: None

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_update(),

smtx_reset_timer(),
smix_read(), smtx_write()

349

PCD_May 2015

smtx_stop()

Syntax: smtl_stop();
smt2_stop();

Parameters: None

Returns: Nothing

Function: Configures the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.

Examples: smtl_stop ()

Example Files: None

Also See: smitx_status(), stmx_start(), setup_smtx(), smtx_update(),

smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_write()

Syntax: smtl_write(which,value);
smt2_write(which,value);

Parameters: which - Specifies which SMT registers to write. The following defines
have been made
in the device's header file to select which registers are written:
SMT_TMR_REG
SMT_PERIOD_REG

value - The 24-bit value to set the specified registers.

Returns: Nothing

350

Built-in Functions

Function: To write the Timer Registers or Period Registers of the Signal
Measurement
Timer (SMT) module

Availability: Only devices with a built-in SMT module.

Examples; smtl write (SMT PERIOD REG, 0x100000000) ;

Example Files: None

Also See: smtx_status(), stmx_start(), setup_smtx(), smtx_update(),

smtx_reset_timer(),
smtx_read(), setup_smtx()

smtx_update()

Syntax: smtl_update(which);
smt2_update(which);

Parameters: which - Specifies which capture registers to manually update. The
following defines have been made in the device's header file to
select which registers are updated:

SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

Returns: Nothing

Function: To manually update the Capture Period Registers or the Capture
Pulse Width
Registers of the Signal Measurement Timer module.

Availability: Only devices with a built-in SMT module.

Examples: smtl update (SMT CAPTURED PERIOD REG) ;

Example Files: None

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_status(),

smtx_reset_timer(),
smtx_read(), smtx_write()

351

PCD_May 2015

spi_data is_in()
spi_data is_in2()

Syntax: result = spi_data_is_in()
result = spi_data_is_in2()

Parameters: None

Returns: 0 (FALSE) or 1 (TRUE)

Function: Returns TRUE if data has been received over the SPI.
Availability: This function is only available on devices with SPI hardware.
Requires: Nothing

Examples: (!spi data is in() && input (PIN B2));

if (spi_data_is in())
data = spi read();

Example Files: None

Also See: spi_read(), spi_write(), SPI Overview

spi_init()

Syntax: spi_init(baud);
spi_init(stream,baud);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
band- the band rate to initialize the SPI module to. If FALSE it will
disable the SPI module, if TRUE it will enable the SPI module to the
band rate specified in #use SPI.

Returns: Nothing.

Function: Initializes the SPI module to the settings specified in #USE SPI.
Availability: This function is only available on devices with SPI hardware.
Requires: #USE SPI

Examples: #use spi (MATER, SPI1, baud=1000000, mode=0,

352

Built-in Functions

Example Files:

Also See:

stream=SPI1 MODEO)

spi init (SPI1 MODEO, TRUE); //initialize and enable SPI1 to
setting in #USE SPI

spi_init (FALSE); //disable SPIl

spi_init (250000);//initialize and enable SPI1 to a baud rate
of 250K

None

#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi_prewrite(data);

Syntax:

spi_prewrite(data);
spi_prewrite(stream, data);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.

data- the variable or constant to transfer via SPI

Nothing.

Writes data into the SPI buffer without waiting for transfer to be
completed. Can be used in conjunction with spi_xfer() with no
parameters to transfer more then 8 bits for PCM and PCH device, or
more then 8 bits or 16 bits (XFER16 option) for PCD. Function is useful
when using the SSP or SSP2 interrupt service routines for PCM and
PCH device, or the SPIx interrupt service routines for PCD device.

This function is only available on devices with SPI hardware.

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as
a SPI slave device

spi_prewrite(data_out);

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_xfer in(), spi_init(), spi_speed()

spi_read()

spi_read2()
spi_read3()
spi_read4()

Syntax:

value = spi_read ([data])

353

PCD_May 2015

value = spi_read?2 ([data])
value = spi_read3([data])
value = spi_read4 ([data])

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example Files:

Also See:

data — optional parameter and if included is an 8 bit int.
An 8 bit int

Return a value read by the SPI. If a value is passed to the spi_read()
the data will be clocked out and the data received will be returned. If
no data is ready, spi_read() will wait for the data is a SLAVE or return
the last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data) followed
by a spi_read() or do a spi_read(data). These both do the same thing
and will generate a clock. If there is no data to send just do a
spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the
clock and data or use_spi_data_is_in() to determine if data is ready.
This function is only available on devices with SPI hardware.

Nothing

data in = spi read(out data);

ex_spi.c

spi_write(), spi_write_16(), spi_read_16(), spi_data_is_in(), SPI
Overview

spi_read_16()

spi_read2 16()
spi_read3 16()
spi_read4 16()

Syntax: value = spi_read_16([data]);
value = spi_read2_16([data]);
value = spi_read3_16([data]);
value = spi_read4_16([data]);
Parameters: data — optional parameter and if included is a 16 bit int

354

Built-in Functions

Returns: A 16 bitint
Function: Return a value read by the SPI. If a value is passed to the spi_read_16() the
data will be clocked out and the data received will be returned. If no data is
ready, spi_read_16() will wait for the data is a SLAVE or return the last DATA
clocked in from spi_write_16().
If this device is the MASTER then either do a spi_write_16(data) followed by a
spi_read_16() or do a spi_read_16(data). These both do the same thing and will
generate a clock. If there is no data to send just do a spi_read_16(0) to get the
clock.
If this device is a slave then either call spi_read_16() to wait for the clock and
data or use_spi_data_is_in() to determine if data is ready.
Availability: This function is only available on devices with SPI hardware.
Requires: NThat the option SPI_MODE_16B be used in setup_spi() function, or that the
option XFER16 be used in #use SPI(
Examples: data in = spi read 16 (out data);
Example None
Files:
Also See: spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI Overview
spi_speed
Syntax: spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.
If not specified it uses the value specified in #use delay ().
Returns: Nothing.
Function: Sets the SPI module's baud rate to the specified value.
Availability: This function is only available on devices with SPI hardware.
Requires: #USE SPI
Examples: spi_speed(250000);

spi_speed(SPI1_MODEQO, 250000);

355

PCD_May 2015

spi_speed(SPI1_MODEO, 125000, 8000000);

Example Files: None

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()
spi_write()

spi_write2()

spi_write3()

spi_write4()

Syntax: spi_write([wait],value);

spi_write2([wait],value);
spi_write3([wait],value);
spi_write4([wait],value);

Parameters: value is an 8 bit int
wait- an optional parameter specifying whether the function will wait
for the SPI transfer to complete before exiting. Default is TRUE if not

specified.
Returns: Nothing
Function: Sends a byte out the SPI interface. This will cause 8 clocks to be

generated. This function will write the value out to the SPI. At the
same time data is clocked out data is clocked in and stored in a
receive buffer. spi_read() may be used to read the buffer.

Availability: This function is only available on devices with SPI hardware.
Requires: Nothing
Examples: spi write(data out);

data_in = spi_read();
Example Files: ex_spi.c

Also See: spi_read(), spi_data_is_in(), SPI Overview, spi_write_16(),
spi_read_16()

356

spi_xfer()

Built-in Functions

Syntax:

spi_xfer(data)

spi_xfer(stream, data)
spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

data is the variable or constant to transfer via SPI. The pin used to
transfer data is defined in the DO=pin option in #use spi. stream is the
SPI stream to use as defined in the STREAM=name option in #USE
SPI.

bits is how many bits of data will be transferred.

The data read in from the SPI. The pin used to transfer result is defined
in the DI=pin option in #USE SPI.

Transfers data to and reads data from an SPI device.
All devices with SPI support.

#USE SPI

int i = 34;

spi_xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi_xfer (trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI
None

#USE SPI

SPII_XFER_IN()

Syntax: value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
bits — is how many bits of data to be received.
Returns: The data read in from the SPI

357

PCD_May 2015

Function:
Availability:
Requires:
Examples:
Example Files:

Also See:

Reads data from the SPI, without writing data into the transmit buffer first.

This function is only available on devices with SPI hardware.
#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a
SPI slave device.

data_in = spi xfer in();

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax:

sprintf(string, cstring, values...);
bytes=sprintf(string, cstring, values...)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

string is an array of characters.

cstring is a constant string or an array of characters null terminated.

Values are a list of variables separated by commas. Note that format specifies
do not work in ram band strings.

Bytes is the number of bytes written to string.

This function operates like printf() except that the output is placed into the
specified string. The output string will be terminated with a null. No checking is
done to ensure the string is large enough for the data. See printf() for details on
formatting.

All devices.

Nothing

char mystring([20];
long mylong;

mylong=1234;
sprintf (mystring, "<%1lu>",mylong) ;

// mystring now has:
// <1234>\0

None

printf()

358

sqrt()

Built-in Functions

Syntax: result = sqrt (value)

Parameters: value is any float type

Returns: Returns a floating point value with a precision equal to value

Function: Computes the non-negative square root of the float value x. If the
argument is negative, the behavior is undefined.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.
Domain error occurs in the following cases:
sqrt: when the argument is negative

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: distance = sqrt(pow((x1-x2),2)+pow((yl-y2),2));

Example Files: None

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand.

Returns: No value.

Function: The srand() function uses the argument as a seed for a new sequence

of pseudo-random numbers to be returned by subsequent calls to
rand. If srand() is then called with same seed value, the sequence of
random numbers shall be repeated. If rand is called before any call to
srand() have been made, the same sequence shall be generated as

359

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

when srand() is first called with a seed value of 1.

All devices.

#INCLUDE <STDLIB.H>

srand (10) ;
I=rand();

None

rand()

STANDARD STRING FUNCTIONS()
memchr() memcmp()
strcat() strchr() strcmp()

strcoll() strcspn() strerror()

stricmp() strlen() striwr()

strncat() strncmp() strncpy()

strpbrk() strrchr() strspn() strstr() strxfrm()

Syntax:

ptr=strcat (sl, s2)

Concatenate s2 onto sl

ptr=strchr (s1, c)
ptr=strrchr (s1, c)
cresult=strcmp (s1, s2)

iresult=strncmp (s1,s2,n)

iresult=stricmp (s1, s2)
ptr=strncpy (s1, s2, n)
iresult=strcspn (s1, s2)
iresult=strspn (s1, s2)
iresult=strlen (s1)
ptr=striwr (s1)
ptr=strpbrk (s1, s2)
ptr=strstr (s1, s2)
ptr=strncat(s1,s2, n)

iresult=strcoll(s1,s2)

res=strxfrm(s1,s2,n)

Find c in s1 and return &s1]i]

Same but search in reverse

Compare sl to s2

Compare sl to s2 (n bytes)

Compare and ignore case

Copy up to n characters s2->s1

Count of initial chars in s1 not in s2
Count of initial chars in s1 also in s2
Number of characters in s1

Convert string to lower case

Search s1 for first char also in s2
Search for s2 in sl

Concatenates up to n bytes of s2 onto
sl

Compares sl to s2, both interpreted as
appropriate to the current locale.
Transforms maximum of n characters of
s2 and places them in s1, such that

360

Built-in Functions

strcmp(s1,s2) will give the same result
as strcoll(s1,s2)
iresult=memcmp(m1,m2,n) Compare mlto m2 (n bytes)

ptr=memchr(m1,c,n) Find c in first n characters of m1 and
return &m1[i]
ptr=strerror(errnum) Maps the error number in errnum to an

error message string. The parameters
‘errnum'’ is an unsigned 8 bit int.
Returns a pointer to the string.

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

s1 and s2 are pointers to an array of characters (or the name of an
array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n is a count of the maximum number of character to operate on.
c is a 8 bit character

m1 and m2 are pointers to memory.

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Functions are identified above.

All devices.

#include <string.h>

char stringl[10], string2[10];

strcpy(stringl,"hi ");
strcpy (string2, "there");
strcat (stringl,string2);

printf ("Length is %ul\r\n", strlen(stringl));
// Will print 8

ex_str.c

strepy(), strtok()

361

PCD_May 2015

strepy() strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings are terminated
with a 0.

Availability: All devices.

Requires: Nothing

Exanuﬂes; char string[10], string2[10];

strcpy (string, "Hi There");

strcpy (string2, string);
Example Files: ex_str.c

Also See: Strxxxx()

strtod()
strtof()
strtof48()

Syntax: result=strtod(nptr,& endptr)
result=strtof(nptr,& endptr)
result=strtof48(nptr,& endptr)

Parameters: nptr and endptr are strings

Returns: strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.
returns the converted value in result, if any. If no conversion could be

362

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

performed, zero is returned.

The strtod function converts the initial portion of the string pointed to
by nptr to a float representation. The part of the string after conversion
is stored in the object pointed to endptr, provided that endptr is not a
null pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

All devices.

#INCLUDE <stdlib.h>

double result;

char str[12]="123.45hello";
char *ptr;
result=strtod(str, &ptr) ;

//result is 123.45 and ptr is "hello"

None

Also See: strtol(), strtoul()

strtok()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the name of an
array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1
may be 0 to indicate a continue operation.

Returns: ptr points to a character in sl oris 0

Function: Finds next token in s1 delimited by a character from separator string

s2 (which can be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT
contained in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function
then searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and
subsequent searches for a token will return null.

If one is found, it is overwritten by "\0', which terminates current

363

PCD_May 2015

Availability:
Requires:

Examples:

Example Files:

Also See:

token. Function saves pointer to following character from which next
search will start.

Each subsequent call, with O as first argument, starts searching from
the saved pointer.

All devices.
#INCLUDE <string.h>

char string[30], term[3], *ptr;

strcpy (string, "one, two, three;");
strcpy (term,",;");

ptr = strtok(string, term);
while (ptr!=0) {
puts (ptr);
ptr = strtok (0, term);
}
// Prints:
one
two
three

ex_str.c

strxxxx(), strcpy()

strtol()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is a signed long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

Function: The strtol function converts the initial portion of the string pointed to

by nptr to a signed long int representation in some radix determined
by the value of base. The part of the string after conversion is stored
in the object pointed to endptr, provided that endptr is not a null
pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

364

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

All devices.

#INCLUDE <stdlib.h>

signed long result;

char str[9]="123hello";

char *ptr;
result=strtol (str, &ptr, 10);
//result is 123 and ptr is "hello"

None

Also See: strtod(), strtoul()

strtoul()

Syntax: result=strtoul(nptr,endptr, base)

Parameters: nptr and endptr are strings pointers and base is an integer 2-36.

Returns: result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

Function: The strtoul function converts the initial portion of the string pointed to
by nptr to a long int representation in some radix determined by the
value of base. The part of the string after conversion is stored in the
object pointed to endptr, provided that endptr is not a null pointer. If
nptr is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: STDLIB.H must be included

Examples: long result;

char str[9]="123hello";

char *ptr;
result=strtoul (str, &ptr, 10);
//result is 123 and ptr is "hello"

365

PCD_May 2015

Example Files:

None

Also See: strtol(), strtod()
swap()
Syntax: swap (lvalue)
result = swap(lvalue)
Parameters: Ivalue is a byte variable
Returns: A byte
Function: Swaps the upper nibble with the lower nibble of the specified
byte. This is the same as:
byte = (byte << 4) | (byte >> 4);
Availability: All devices.
Requires: Nothing
Examples: x=0x45;
swap (x) ;

Example Files:

Also See:

//x now is 0x54
int x = 0x42;
int result;

result = swap(x);
// result is 0x24;

None

rotate_right(), rotate_left()

tolower() toupper()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)
Parameters: cvalue is a character

366

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

An 8 bit character
These functions change the case of letters in the alphabet.
TOLOWER(X) will return 'a"..'’z' for X in 'A".."Z" and all other characters

are unchanged. TOUPPER(X) will return 'A'..'Z' for X in 'a’..'z' and all
other characters are unchanged.

All devices.

Nothing

switch(toupper (getc())) {
case 'R' : read cmd(); Dbreak;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

}

ex_str.c

None

touchpad_getc()

Syntax: input = TOUCHPAD_GETC();

Parameters: None

Returns: char (returns corresponding ASCII number is “input” declared as int)

Function: Actively waits for firmware to signal that a pre-declared Capacitive
Sensing Module (CSM) or charge time measurement unit (CTMU) pin is
active, then stores the pre-declared character value of that pin in
“input”.
Note: Until a CSM or CTMU pin is read by firmware as active, this
instruction will cause the microcontroller to stall.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Exan“ﬂes; //When the pad connected to PIN BO is activated, store the

letter 'A’

#USE TOUCHPAD (PIN BO='A')

367

PCD_May 2015

Example Files:

Also See:

void main (void) {
char c;
enable interrupts (GLOBAL) ;

c = TOUCHPAD GETC();

//will wait until one of declared pins is detected
//if PIN BO is pressed, c will get value 'A'

None

#USE TOUCHPAD, touchpad_state()

touchpad_hit()

Syntax: value = TOUCHPAD_HIT()

Parameters: None

Returns: TRUE or FALSE

Function: Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time
Measurement Unit (CTMU) key has been pressed. If TRUE, then a call to
touchpad_getc() will not cause the program to wait for a key press.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Examples: // When the pad connected to PIN BO is activated, store the

Example Files:

letter 'A'

#USE TOUCHPAD (PIN_BO='A')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

while (TRUE) {
if (TOUCHPAD HIT())
//wait until key on PIN BO is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'

None

368

Built-in Functions

Also See:

#USE TOUCHPAD (), touchpad_state(), touchpad_getc()

touchpad_state()

Syntax: TOUCHPAD_STATE (state);
Parameters: state is a literal 0, 1, or 2.
Returns: None
Function: Sets the current state of the touchpad connected to the Capacitive
Sensing Module (CSM). The state can be one of the following three
values:
0 : Normal state
1 : Calibrates, then enters normal state
2 : Test mode, data from each key is collected in the intl6 array
TOUCHDATA
Note: If the state is set to 1 while a key is being pressed, the touchpad
will not calibrate properly.
Availability: All PIC's with a CSM Module
Requires: #USE TOUCHPAD (options)
Examples: #USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN B0='C')

Example Files:

Also See:

void main (void) {

char c;

TOUCHPAD STATE (1) ; //calibrates, then enters normal
state

enable interrupts (GLOBAL) ;

while (1) {

c = TOUCHPAD GETC() ;
//will wait until one of declared pins is

detected
}
//if PIN BO is pressed, c will get value 'C'
} //if PIN D5 is pressed, c will get value '5'
None

#USE TOUCHPAD, touchpad_getc(), touchpad_hit()

369

PCD_May 2015

tx_buffer_available()

Syntax: value = tx_buffer_available([stream]);

Parameters: stream — optional parameter specifying the stream defined
in #USE RS232.

Returns: Number of bytes that can still be put into transmit buffer

Function: Function to determine the number of bytes that can still be put into
transmit buffer before it overflows. Transmit buffer is implemented has a
circular buffer, so be sure to check to make sure there is room for at least
one more then what is actually needed.

Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232 (UART1,BAUD=9600, TRANSMIT BUFFER=5

Example Files:

Also See:

0)
void main (void) {
unsigned int8 Count = 0;

while (TRUE) {

if (tx buffer available()>13)
printf ("/r/nCount=%3u",Count++) ;

}
None

_USE_RS232(), rev(), TX_BUFFER_FULL(), RCV_BUFFER_BYTES(
), GET(), PUTC() ,PRINTF(), SETUP_UART(), PUTC_SEND()

370

Built-in Functions

tx_buffer_bytes()

Syntax: value = tx_buffer_bytes([stream]);

Parameters: stream — optional parameter specifying the stream defined
in #USE RS232.

Returns: Number of bytes in transmit buffer that still need to be sent.

Function: Function to determine the number of bytes in transmit buffer that still
need to be sent.

Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=
50)

void main(void) {
char string[] = “Hello”;
if(tx_buffer_bytes() <= 45)
printf(“%s”,string);

Example Files: None
Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),

RCV_BUFFER_BYTES(), GET(), PUTC() ,PRINTF(), SETUP_UART(
), PUTC_SEND()

tx_buffer_full()

Syntax: value = tx_buffer_full([stream])

Parameters: stream — optional parameter specifying the stream defined

371

PCD_May 2015

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

in #USE RS232
TRUE if transmit buffer is full, FALSE otherwise.

Function to determine if there is room in transmit buffer for another
character.

All devices
#USE RS232
#USE_RS232(UART1,BAUD=9600, TRANSMIT_BUFFER=
50)
void main(void) {
char c;
if('tx_buffer_full())
putc(c);

None

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL().,
RCV_BUFFER_BYTES(), GETC(), PUTC(), PRINTF(),
SETUP_UART()., PUTC_SEND()

va_arg()

Syntax: va_arg(argptr, type)

Parameters: argptr is a special argument pointer of type va_list
type — This is data type like int or char.

Returns: The first call to va_arg after va_start return the value of the parameters
after that specified by the last parameter. Successive invocations return
the values of the remaining arguments in succession.

Function: The function will return the next argument every time it is called.

Availability: All devices.

372

Built-in Functions

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)
{
int sum = 0;
int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)
sum = sum + va arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}

Example Files: None

Also See: nargs(), va_end(), va_start()

va_end()

Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.

Returns: None

Function: A call to the macro will end variable processing. This will facillitate a

normal return from the function whose variable argument list was
referred to by the expansion of va_start().

Availability: All devices.
Requires: #INCLUDE <stdarg.h>
Exanuﬂes; int foo(int num, ...)

{

int sum = 0;

int i;
va_list argptr; // create special argument pointer
va_ start (argptr,num); // initialize argptr

for (i=0; i<num; i++)

sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}

Example Files: None

373

PCD_May 2015

Also See: nargs(), va_start(), va_arg()

va_start

Syntax: va_start(argptr, variable)

Parameters: argptr is a special argument pointer of type va_list

variable — The second parameter to va_start() is the name of the last
parameter before the variable-argument list.

Returns: None
Function: The function will initialize the argptr using a call to the macro va_start().
Availability: All devices.
Requires: #INCLUDE <stdarg.h>
Exan“ﬂes; int foo(int num, ...)
{
int sum = 0;
int i;
va_list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;
}
Example Files: None

Also See: nargs(), va_start(), va_arg()

write_configuration_memory()

Syntax: write_configuration_memory ([offset], dataptr,count)

Parameters: dataptr: pointer to one or more bytes
count: a 8 bit integer
offset is an optional parameter specifying the offset into configuration

374

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

memory to start writing to, offset defaults to zero if not used.
undefined

Erases all fuses and writes count bytes from the dataptr to the
configuration memory.

All PIC24 Flash devices

Nothing

int datal[6];
write configuration memory (data, 6)

None

WRITE_PROGRAM_MEMORY(), Configuration Memory Overview

write_eeprom()

Syntax:

write_eeprom (address, value)
write_eeprom (address , pointer , N)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

address is the 0 based starting location of the EEPROM write
N specifies the number of EEPROM bytes to write

value is a constant or variable to write to EEPROM

pointer is a pointer to location to data to be written to EEPROM

undefined

This function will write the specified value to the given address of
EEPROM. If pointers are used than the function will write n bytes of
data from the pointer to EEPROM starting at the value of address.

In order to allow interrupts to occur while using the write operation, use
the #DEVICE option WRITE_EEPROM = NOINT. This will allow
interrupts to occur while the write_eeprom() operations is polling the
done bit to check if the write operations has completed. Can be used as
long as no EEPROM operations are performed during an ISR.

This function is only available on devices with supporting hardware on
chip.

Nothing

#define LAST VOLUME 10 // Location in EEPROM

volume++;

375

PCD_May 2015

write eeprom(LAST VOLUME,volume) ;
Example Files: None

Also See: read_eeprom(), write_program_eeprom(), read_program_eeprom(),
data Eeprom Overview

write_extended _ram()

Syntax: write_extended_ram (page,address,data,count);

Parameters: page — the page in extended RAM to write to
address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)

Returns: undefined

Function: To write data to the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing

Examples: unsigned int8 data[8] =

{0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1l,0x0000,data,8);
Example Files: None

Also See: read_extended_ram(), Extended RAM Overview

376

Built-in Functions

write_program_memory/()

Syntax:

write_program_memory(address, dataptr, count);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

address is 32 bits .
dataptr is a pointer to one or more bytes
count is a 16 bit integer on PIC16 and 16-bit for PIC18

undefined

Writes count bytes to program memory from dataptr to address. This
function is most effective when count is a multiple of
FLASH_WRITE_SIZE, but count needs to be a multiple of four. Whenever
this function is about to write to a location that is a multiple of
FLASH_ERASE_SIZE then an erase is performed on the whole block. Due
to the 24 bit instruction length on PCD parts, every fourth byte of data is
ignored. Fill the ignored bytes with 0x00.

See Program EEPROM Overview for more information on program
memory access

Only devices that allow writes to program memory.

Nothing

for (1=0x1000;i<=0x1fff;i++) {
value=read_adc();
write program memory (i, value, 2);
delay ms (1000);

}

int8 write dataf4] = {0x10,0x20,0x30,0x00};
write program memory (0x2000, write data, 4);
None

377

PCD_May 2015

zdc_status()

Syntax:

value=zcd_status()

Parameters:

Returns:

Function:

Availability:
Examples:

Example
Files:
Also See:

None

value - the status of the ZCD module. The following defines are
made in the device's
header file and are as follows:

. ZCD_IS_SINKING
. ZCD_IS_SOURCING

To determine if the Zero-Cross Detection (ZCD) module is currently
sinking or sourcing current.

If the ZCD module is setup to have the output polarity inverted, the
value return will be reversed.

All devices with a ZCD module.

value=zcd status() :

None

setup_zcd()

378

STANDARD C INCLUDE FILES

errno.h

errno.h

EDOM Domain error value

ERANGE Range error value

errno error value

float.h

float.h

FLT RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q
decimal digits.

FLT MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that

FLT_MIN_10_EXP:
FLT_MAX_EXP:
FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT _DIG:
DBL_DIG:

DBL_MIN_EXP:

DBL_MIN_10_EXP:

DBL_MAX_EXP:

power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the double significant

Number of decimal digits, g, such that any double number with g
decimal digits can be rounded into a double number with p radix b
digits and back again without change to the g decimal digits.
Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized double number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized double numbers.

Maximum negative integer such that FLT_RADIX raised to that

379

PCD_May 2015

DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:

LDBL_MANT DIG:
LDBL_DIG:

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:

LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

power minus 1 is a representable finite double number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite double numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive double number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q
decimal digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating-point numbers.
Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG MAX: Maximum value for an object of type unsigned long int

380

Standard C Include Files

locale.h
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h
setjmp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point

stddef.h

stddef.h

ptrdiff_t: The basic type of a pointer

size_t: The type of the sizeof operator (int)

wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE RS232)

stdout The standard output stream (USE RS232 specified as stream last USE RS232)
stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

381

PCD_May 2015

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and
rem).

Idiv_t structure type that contains two signed longs (quot and rem

EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

Multibyte character and string
functions:

Multibyte characters not supported

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

382

SOFTWARE LICENSE AGREEMENT

SOFTWARE LICENSE AGREEMENT

Carefully read this Agreement prior to opening this package. By opening
this package, you agree to abide by the following provisions.

If you choose not to accept these provisions, promptly return the
unopened package for a refund.

All materials supplied herein are owned by Custom Computer
Services, Inc. (“CCS”) and is protected by copyright law and
international copyright treaty. Software shall include, but not limited
to, associated media, printed materials, and electronic documentation.

These license terms are an agreement between You (“Licensee”) and
CCS for use of the Software (“Software”). By installation, copy,
download, or otherwise use of the Software, you agree to be bound by
all the provisions of this License Agreement.

1. LICENSE - CCS grants Licensee a license to use in one of the
two following options:
1) Software may be used solely by single-user on multiple
computer systems;
2) Software may be installed on single-computer system for use
by multiple users. Use of Software by additional users or on a
network requires payment of additional fees.

Licensee may transfer the Software and license to a third party;
and such third party will be held to the terms of this Agreement.
All copies of Software must be transferred to the third party or
destroyed. Written notification must be sent to CCS for the
transfer to be valid.

2. APPLICATIONS SOFTWARE - Use of this Software and
derivative programs created by Licensee shall be identified as

383

PCD_May 2015

3.

384

Applications Software, are not subject to this Agreement.
Royalties are not be associated with derivative programs.

WARRANTY - CCS warrants the media to be free from defects in
material and workmanship, and that the Software will substantially
conform to the related documentation for a period of thirty (30)
days after the date of purchase. CCS does not warrant that the
Software will be free from error or will meet your specific
requirements. If a breach in warranty has occurred, CCS will
refund the purchase price or substitution of Software without the
defect.

LIMITATION OF LIABILITY AND DISCLAIMER OF
WARRANTIES - CCS and its suppliers disclaim any expressed
warranties (other than the warranty contained in Section 3 herein),
all implied warranties, including, but not limited to, the implied
warranties of merchantability, of satisfactory quality, and of fithess
for a particular purpose, regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or
any incidental, special, indirect or consequential damages
whatsoever, including, without limitation, damages for loss of
profits, loss of data, business interruption, or any other
commercial damages or losses, arising out of or related to your
use or inability to use the Software.

Licensee is responsible for determining whether Software is
suitable for Applications.

©1994-2015 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE
PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

@Iasﬂ U

KomnaHus ((3J'IeKTpO|_|J'|aCT» npeanaraeT 3akKn4vyeHmne onrocpoYHbIX OTHOLLIEHUN npu
NOoCTaBKaxX MMMNOPTHbIX 3NTEKTPOHHbIX KOMMOHEHTOB Ha B3aMMOBbLIFO4HbIX yCJ'IOBI/lFlX!

Hawwn npeumyuiectsa:

e OnepaTuBHbIE NOCTABKM LUMPOKOrO CMeKTpa 3NeKTPOHHbIX KOMMNOHEHTOB OTEYECTBEHHOIO U
MMMOPTHOrO NPON3BOACTBA HANPAMYO OT MPOM3BOAMTENEN U C KPYNMHENLLNX MUPOBbLIX
CKNaaos.;

MocTaBka 6onee 17-TM MUNIIMOHOB HAMMEHOBAHWUIN 3NEKTPOHHbLIX KOMMNOHEHTOB;

MocTaBka CNoXHbIX, AeULNTHBIX, MMOO CHATLIX C MPOM3BOACTBA NO3ULIUIA;

OnepaTtunBHbIE CPOKM NOCTABKM Nof 3aka3 (0T 5 pabounx gHewn);

OKcnpecc goctaska B Nnobyto Touky Poccuu;

TexHnyeckas nogaepkka npoekTa, NomMoLLlb B nogdope aHanoros, NocTaBka NPOTOTUMOB;

Cuctema MeHeXMeHTa KavyecTBa cepTuduumnposaHa no MexayHapogHomy ctaHgapTty 1ISO

9001;

o JlnueHausa ®CH Ha ocyulecTBneHne paboT ¢ NCNONb30BaHWEM CBEOEHUIN, COCTABAOLLINX
rocygapCTBEHHYIO TalHy;

o [locTaBka cneumnanmampoBaHHbIX KOMNoHeHToB (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics v gp.);

MoMMMO 3TOro, O4HMM M3 HanpaBnNeHU koMnaHum «AnekTpollnacT» ABNseTca HanpaBneHne

«UcTouHmkn nutaHua». Mel npeanaraem Bam nomoub KoHCTpyKTOpCKOro otaena:

e [logGop onTuManeHOro peleHus, TexHn4eckoe 060CHOBaHME Npu BbIOOpPE KOMMOHEHTA;
Monbop aHanoros.;
KoHcynbTaumm no NpUMEHEHMIO KOMMOHEHTA;
MocTaBka 06pa3yoB M NPOTOTUMNOB;
TexHn4veckasn noaaepka npoekTa;
3awmTa OT CHATMSA KOMMOHEHTA C NPON3BOACTBA.

Kak c Hamu cBfizaTbCcA

TenedoH: 8 (812) 309 58 32 (MHOrokaHanbHbIN)
Pakc: 8 (812) 320-02-42

OnekTpoHHas nouTta: org@eplastl.ru

Aapec: 198099, r. Cankt-INeTepbypr, yn. KannHuHa,
Oom 2, kopnyc 4, nutepa A.

mailto:org@eplast1.ru

