General Description

The AAT4292 SmartSwitch ${ }^{\text {TM }}$ is a member of AnalogicTech's Application Specific Power MOSFETTM (ASPM ${ }^{T M}$) product family. The AAT4292 has seven P-channel MOSFETs configured for use as a high side microprocessor GPIO expander powered from a common supply source. Operating over a 1.8 V to 5.5 V range, the AAT4292 is ideal for portable Li-Ion/Polymer powered products. The state of each output channel is controlled with a single GPIO line via the EN/SET pin using AnalogicTech's Simple Serial Control ${ }^{T M}$ ($\mathrm{AS}^{2} \mathrm{Cwire}^{T M}$) interface.

The switch states are controlled by AnalogicTech's Simple Serial Control ($\mathrm{AS}^{2} \mathrm{C}$ wire) interface which permits ease of control and efficiency of size. The quiescent supply current is very low, typically $6.3 \mu \mathrm{~A}$. In shutdown mode, the supply current is reduced to less than $1 \mu \mathrm{~A}$.

The AAT4292 is offered in a Pb-free, 10-pin SC70JW package specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- $\mathrm{V}_{\text {IN }}$ Range: $1.8 \mathrm{~V}-5.5 \mathrm{~V}$
- 7 Independent Output Channels
- $1.1 \Omega \mathrm{R}_{\mathrm{DS}(0 \mathrm{O})}$ per Channel
- User Programmable AS^{2} Cwire Interface
- Low Quiescent Current
- $6.3 \mu \mathrm{~A}$ Operational
- $0.1 \mu \mathrm{~A}$ in shutdown
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range
- Available in SC70JW-10 Package

Applications

- Cell Phone Keypad, Backlight And Fashion Lighting Control
- I/O Expander
- Media Players
- Multiple Channel Low Power Switching
- Portable Electronic Devices

Typical Application

Pin Descriptions

Symbol	Pin \#	Function
OUT4	1	P-channel MOSFET drain; Channel 4 output pin.
OUT5	2	P-channel MOSFET drain; Channel 5 output pin.
OUT6	3	P-channel MOSFET drain; Channel 6 output pin.
OUT7	4	P-channel MOSFET drain; Channel 7 output pin.
GND	5	Ground connection.
EN/SET	6	Input control pin using AS² Cwire serial interface. The device records rising edges of the clock, and decodes them into 128 states controlling the ON/OFF states of the outputs. See Table 1 and Table 2 for output settings. In addition, a logic low forces the device into shutdown mode, reducing the supply cur- rent to less than 1 $\mu \mathrm{A}$. This pin should not be left floating.
OUT1	7	P-channel MOSFET drain; Channel 1 output pin.
OUT2	8	P-channel MOSFET drain, Channel 2 output pin.
OUT3	9	P-channel MOSFET drain, Channel 3 output pin.
VIN	10	Input supply voltage. VIN is connected to the P-channel MOSFET common sources. Connect a $1 \mu \mathrm{~F}$ ce- ramic capacitor from VIN to GND.

Pin Configuration

> SC70J W-10
> (Top View)

OUT4	10 VIN
OUT5 2	9 OUT3
OUT6 ${ }^{3}$	8 OUT2
OUT7 ${ }^{4}$	7 OUT1
GND 5	6 EN/SET

Absolute Maximum Ratings ${ }^{1}$

Symbol	Description	Value	Units
$\mathrm{V}_{\text {IN }}$	VIN to GND	-0.3 to 6.0	V
$\mathrm{~V}_{\text {OUT }}$	OUT to GND	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{~V}_{\text {EN/SET }}$	EN/SET to GND	-0.3 to 6.0	V
$\mathrm{I}_{\text {MAX }}$	Maximum Continuous Switch Current	250	mA
$\mathrm{~T}_{\mathrm{J}}$	Operating Junction Temperature Range	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Rating $-\mathrm{HBM}^{2}$	4000	V

Thermal Information

Symbol	Description	Value	Units
$\Theta_{J A}$	Thermal Resistance ${ }^{3}$	225	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	${\text { Maximum Power Dissipation }{ }^{4}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)}^{440}$	mW	

[^0]
Electrical Characteristics ${ }^{1}$

$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Description	Conditions	Min	Typ	Max	Units
Power Supply and MOSFETs						
$\mathrm{V}_{\text {IN }}$	Operation Voltage		1.8		5.5	V
I_{Q}	Quiescent Current	EN/SET $=\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {outn }}=0$, All Switches ON		6.3	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD(OFF) }}$	Shutdown Current	EN/SET $=$ GND, $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, OUTn $=0$		0.1	1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	P-Channel High-Side MOSFET On-State Resistance	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {Outn }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.1	1.7	Ω
		$\mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}, \mathrm{I}_{\text {OUTn }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2	1.8	
		$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}, \mathrm{I}_{\text {Outn }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	2.2	
		$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.5	3.8	
$\mathrm{T}_{\text {CRDS }}$	On-State Resistance Temperature Coefficient			2800		ppm/ ${ }^{\circ} \mathrm{C}$
Switch Timing						
$\mathrm{t}_{\mathrm{D} \text { (ON) }}$	Output Turn-On Delay Time ${ }^{2}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\text {OUT }}=100 \mathrm{nF}$		40		ns
t_{R}	Turn-On Rise Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\text {OUT }}=100 \mathrm{nF}$		270		
$\mathrm{t}_{\text {D(OFF) }}$	Output Turn-Off Delay Time ${ }^{3}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=500 \Omega$		40		
Control Logic (EN/ SET)						
$\mathrm{V}_{\text {EN(L) }}$	Enable Threshold Low	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$			0.4	V
$\mathrm{V}_{\text {EN(H) }}$	Enable Threshold High	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	1.6			V
t_{L}	EN/SET Low Time	$\mathrm{V}_{\text {EN/SET }}<0.4 \mathrm{~V}$	100			ns
t_{HI}	Minimum EN/SET High Time	$\mathrm{V}_{\text {IN }} \leq 2.5 \mathrm{~V}$			500	ns
		$\mathrm{V}_{\text {IN }}>2.5 \mathrm{~V}$			250	
$\mathrm{t}_{\text {OFF }}$	EN/SET Off Timeout			1.3	4.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {LAT }}$	EN/SET Latch Timeout			1.15	4.0	$\mu \mathrm{S}$
$\mathrm{I}_{\text {SINK }}$	EN/SET Input Leakage Current	$\mathrm{V}_{\text {EN/SET }}=5.5 \mathrm{~V}$		0.01	1.0	$\mu \mathrm{A}$

[^1]
Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {outn }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Quiescent Current vs. Input Voltage

$V_{E N(H)}$ and $V_{E N(L)}$ vs. Input Voltage

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature
$\left(\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}\right.$; $\left.\mathrm{I}_{\text {OUT } 1-7}=100 \mathrm{~mA}\right)$

Quiescent Current vs. Temperature

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Input Voltage
(lout $1.7=100 \mathrm{~mA}$)

$\mathrm{R}_{\mathrm{DS}\left(\frac{\mathrm{ON})}{}\right.}$ vs. Temperature
$\left(\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}\right.$; $\mathrm{l}_{\text {out } 1.7}=10 \mathrm{~mA}$)

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUTn }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

EN/SET Latch Timeout vs. Temperature

EN/SET Timeout vs. Input Voltage

Turn-On Characteristic
$\left(V_{1 N}=5 V ; R_{L 2}=R_{L 6}=R_{L 7}=50 \Omega ; C_{02}=C_{06}=C_{07}=0.1 \mu \mathrm{~F}\right)$

EN/SET Off Timeout vs. Temperature

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L} 6}=\mathrm{R}_{\mathrm{L} 7}=50 \Omega ; \mathrm{C}_{\mathrm{O} 2}=\mathrm{C}_{06}=\mathrm{C}_{\mathrm{O} 7}=0.1 \mu \mathrm{~F}\right)$

Turn-On Characteristic

$\left(V_{1 N}=5 V ; R_{L 2}=R_{L 6}=R_{L 7}=50 \Omega ; C_{02}=C_{06}=C_{07}=0.1 \mu F\right)$

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUTn }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L} 6}=\mathrm{R}_{\mathrm{L} 7}=50 \Omega ; \mathrm{C}_{\mathrm{O} 2}=\mathrm{C}_{\mathrm{O} 6}=\mathrm{C}_{\mathrm{O} 7}=0.1 \mu \mathrm{~F}\right)$

Time ($10 \mu \mathrm{~s} / \mathrm{div}$)

Transition of Outputs
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L} 6}=\mathrm{R}_{\mathrm{L} 7}=50 \Omega ; \mathrm{C}_{\mathrm{O} 2}=\mathrm{C}_{06}=\mathrm{C}_{\mathrm{O} 7}=0.1 \mu \mathrm{~F}\right)$

Turn-On Characteristic
$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L} 6}=\mathrm{R}_{\mathrm{L} 7}=50 \Omega ; \mathrm{C}_{\mathrm{O} 2}=\mathrm{C}_{06}=\mathrm{C}_{\mathrm{O} 7}=0.1 \mu \mathrm{~F}\right)$

Time ($10 \mu \mathrm{~s} / \mathrm{div}$)

Turn-Off Characteristic

$\left(V_{\mathrm{IN}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L} 6}=\mathrm{R}_{\mathrm{L} 7}=50 \Omega ; \mathrm{C}_{\mathrm{O} 2}=\mathrm{C}_{06}=\mathrm{C}_{07}=0.1 \mu \mathrm{~F}\right)$

Time (10 $\mu \mathrm{s} / \mathrm{div}$)

Functional Block Diagram

Functional Description

The AAT4292 consists of seven P-channel MOSFET power switches designed for I/O expansion applications. The device operates with input voltages ranging from 1.8 V to 5.5 V which, along with its extremely low operating current, makes it ideal for battery-powered applications. In cases where the input voltage drops below 1.8 V , the AAT4292 MOSFETs are protected from entering the linear region of operation by automatically shutting down.

In addition, the TTL-compatible EN/SET pin makes the AAT4292 an ideal level-shifted load switch. An optional slew rate controlling feature eliminates inrush current when a MOSFET is turned on, allowing the AAT4292 to be implemented with a small input capacitor or no capacitor at all, while maintaining isolation between channels. During slewing, the current ramps linearly until it reaches the level required for the output load condition. The proprietary control method works by careful control and monitoring of the MOSFET gate volt-

SmartSwitch ${ }^{\text {TM }}$

Seven Channel High-Side I/O Expander

age. When the device is switched ON, the gate voltage is quickly increased to the threshold level of the MOSFET. Once at this level, the current begins to slew as the gate voltage is slowly increased until the MOSFET becomes fully enhanced. Once it has reached this point, the gate is quickly increased to the full input voltage and $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is minimized.

The ON/OFF states of the seven MOSFET switches are controlled by the EN/SET serial clock input. An internal control counter is clocked on the rising edges of the EN/ SET pin and is decoded into 128 possible states of the MOSFET (see Table 1 and Table 2). The counter can be clocked at speeds up to 1 MHz , but the count value is not latched until clocking has stopped and the EN/SET pin has remained high for the $t_{\text {LAT }}$ timeout (approximate $1.15 \mu \mathrm{~s}$ typical). The first rising edge of EN/SET enables the AAT4292 and is counted as the first clock.

There are four address switch bank in AAT4292, which is selected by the corresponding rising edges 33 to 36, after remaining the EN/SET high for the $\mathrm{t}_{\text {LAT }}$ timeout, then the clock number is latched and the relevant address switch bank (0 to 3) is asserted. Next, the corresponding rising edges of Data from 1 to 32 can be serial submitted, and closed by the EN/SET remaining high for $t_{\text {LAT }}$ timeout. After the timeout $t_{\text {LAT, }}$ the outputs status is updated accordingly.

The AAT4292 is disabled after the EN/SET pin has transitioned and remained in a logic low for $t_{\text {OFF }}$ timeout, and the quiescent current drops to $0.1 \mu \mathrm{~A}$ typically.

AS ${ }^{2}$ Cwire Serial I nterface

The ON/OFF states of the seven output channels are controlled by the EN/SET serial data input. An internal control counter is clocked on the rising edge of the EN/SET pin and is decoded into one of 128 possible states using a short address and data word (see Tables 1 and 2).

AS ${ }^{2}$ Cwire relies on the number of rising edges of the EN/ SET pin to address and load the registers, as illustrated in Figure 1. AS ${ }^{2}$ Cwire latches data (1 to 32 edges) or address (33 to 36 edges) after the EN/SET pin has been held high for time $t_{\text {LAT }}$. The interface records rising edges of the EN/SET pin and decodes them into one of four addresses corresponding to the address table (Table 1), or 1 of 32 data settings corresponding to the switch code table (Table 2). The combined address and data is used to decode one of 128 possible switch states. Address and Data are differentiated by the number of rising edges on the EN/SET pin. 1 to 32 rising edges signifies Data, and 33 to 36 rising edges signifies Address. The counter can be clocked at speeds up to 1 MHz , such that intermediate states are not visible. The first rising edge of EN/SET enables the IC and turns the switches OUT3-OUT7 on. Once the final clock cycle is received, the EN/SET pin is held high to maintain the device setting. The device is disabled after the EN/SET pin transitions to a logic low state for $\mathrm{t}_{\text {off }}$ timeout (approximate $1.3 \mu \mathrm{~s}$ typical).

Address Code

Address Switch Bank Code	EN/ SET Rising Edges
0	33
1	34
2	35
3	36

Table 1: AS²Cwire Address Table.

Data Code

Table 2: AS²Cwire Data Code Table.

Application Information

Thermal Considerations

The AAT4292 is designed to deliver continuous output load currents. Due to its high integration, care must be taken in designing for higher load conditions. If greater loads are required, outputs can be tied together to deliver higher power to a given load.

For the thermal calculation, assuming that the total current capability of the seven channels is $\mathrm{I}_{\text {TOTAL, }}$ each channel has the same current which is $l_{\text {out }}=\frac{I_{\text {Total }}}{7}$, then
$\mathrm{P}_{\text {TOTAL }}=7 \mathrm{I}_{\mathrm{OUT}}{ }^{2} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=7\left(\frac{\mathrm{I}_{\text {TOTAL }}}{7}\right)^{2} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\text {DERATE }}\left(\mathrm{T}_{\mathrm{A}}-25\right)$
Where:
$P_{D}=440 \mathrm{~mW}$ when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {derate }}=4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$R_{\mathrm{DS}(0 \mathrm{O})}=1.7 \Omega$ (maximum) when $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$
For example, at $25^{\circ} \mathrm{C}$ ambient, the AAT4292 power capability is $\mathrm{P}_{\text {TOTAL }}=440 \mathrm{~mW}$, then $\mathrm{I}_{\text {TOTAL }} \cong 1.35 \mathrm{~A}$ at $\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$. The current capability for each channel is $\mathrm{I}_{\text {OUt }}=192 \mathrm{~mA}$.

At $85^{\circ} \mathrm{C}$ ambient, the AAT4292 power capability is $\mathrm{P}_{\text {TOTAL }}$ $=440-(85-25) 4.4=176 \mathrm{~mW}$, then $\mathrm{I}_{\text {TOTAL }} \cong 0.85 \mathrm{~A}$ at $\mathrm{V}_{\text {IN }}$ $=5.0 \mathrm{~V}$. The current capability for each channel is $\mathrm{I}_{\text {OUT }}=$ 121 mA .

Output Sequencing

If output sequencing is not necessary, then a pulse burst of 33 address clocks followed by 1 data clock will switch on all of the outputs simultaneously. Alternately, the OUT3 to OUT7 will be switched on simultaneously on the first rising edge of the EN/SET pin after the $t_{\text {LAT }}$ timeout.

Output sequencing is accomplished via a series of pulses on the EN/SET pin. Each time a new pulse burst is asserted on EN/SET, the AAT4292 internal clock counter starts to count and sends the counted clock number to the register. After the $t_{\text {Lat }}$ timeout, the internal clock counter is reset and waits for the next pulse burst. For example, to sequence the outputs in order from OUT1 to OUT7, seven clock bursts are input on the EN/SET pin. From Table 1 and Table 2, the first bust of 34 address clocks followed by 32 data clocks turns on OUT1. The next burst of 33 address clocks followed by 32 data clocks will add OUT2. Then the burst of 33 address clocks followed by 16 data clocks will add OUT3; the burst of 33 address clocks followed by 8 data clocks will add OUT4; the burst of 33 address clocks followed by 4 data clocks will add OUT5; the burst of 33 address clocks followed by 2 data clocks will add OUT6; the burst of 33 address clocks followed by 1 data clock will add OUT7. Likewise, the outputs can be turned on/off in any order by adding the corresponding clock bursts.

I nput Capacitor

Normally, the input capacitor value could be ten times that of the total load capacitors. If the device outputs OUT1 to OUT7 have capacitor loads, depending on the load capacitor value, it is recommended that a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F} 0603$ or 0805 ceramic capacitor be placed as close as possible between VIN and GND. For example, if the capacitor load at each output is $0.1 \mu \mathrm{~F}$, the Murata GRM21BR61C106K ceramic capacitor ($10 \mu \mathrm{~F} / 16 \mathrm{~V} / 0805 /$ X5R) or a similar capacitor could be used. This helps to provide a low impendence loop to charge the load capacitors during the MOSFET switches' turn-on transient and keep the $\mathrm{V}_{\text {IN }}$ voltage stable.

Timing Diagram

Figure 1: AS² ${ }^{2}$ wire Timing Diagram.

Application Circuits

Figure 2: GPIO I/ O Expander (condense seven GPIO control lines to one).

Figure 3: Keypad, Backlighting, or Fashion Lighting Control.

Evaluation Board Schematic

Figure 4: AAT4292 Evaluation Board Schematic.

Evaluation Board Layout

Figure 5: AAT4292 Evaluation Board Layout Top Layer (not to scale).

Figure 6: AAT4292 Evaluation Board Layout Bottom Layer (not to scale).

Ordering I nformation

Package	Marking 1	Part Number (Tape \& Reel) ${ }^{2}$
SC70JW-10	$4 W X Y Y$	AAT4292IJQ-T1

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at http://www.analogictech.com/about/quality.aspx.

Packaging Information

SC70J W-10

Side View

End View

[^2][^3]Advanced Analogic Technologies, Inc.

[^4]

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: specified is not implied. Only one Absolute Maximum rating should be applied at any one time.
 2. Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor to each pin.
 3. Mounted on a FR4 board.
 4. Derate $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

[^1]: tion with statistical process controls
 2. $\mathrm{t}_{\mathrm{D}(0 \mathrm{~N})}$ is the time after latch timeout to 90% of the output voltage.
 3. $\mathrm{t}_{\mathrm{D}(\mathrm{OFF})}$ is the time after off timeout to 10% of the output voltage.

[^2]: All dimensions in millimeters.

[^3]: 1. $X Y Y=$ assembly and date code.
 2. Sample stock is generally held on part numbers listed in BOLD.
[^4]: Advanced Analogic Technologies, Inc.

 正 brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

