Low Voltage Compandor

The SA575 is a precision dual gain control circuit designed for low voltage applications. The SA575's channel 1 is an expandor, while channel 2 can be configured either for expandor, compressor, or automatic level controller (ALC) application.

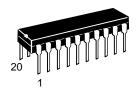
Features

- Operating Voltage Range from 3.0 V to 7.0 V
- Reference Voltage of 100 mV_{RMS} = 0 dB
- One Dedicated Summing Op Amp Per Channel and Two Extra Uncommitted Op Amps
- 600 Ω Drive Capability
- Single or Split Supply Operation
- Wide Input/Output Swing Capability
- Pb-Free Packages are Available*

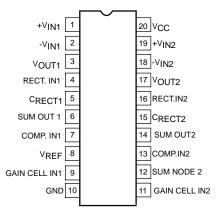
Applications

- Portable Communications
- Cellular Radio
- Cordless Telephone
- Consumer Audio
- Portable Broadcast Mixers
- Wireless Microphones
- Modems
- Electric Organs
- Hearing Aids

ON Semiconductor®


http://onsemi.com

SOIC-20 WB D SUFFIX CASE 751D


TSSOP-20 DTB SUFFIX CASE 948E

PDIP-20 N SUFFIX CASE 738

PIN CONNECTIONS

D* and DTB Packages

^{*}Available in large SOL package only.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 13 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

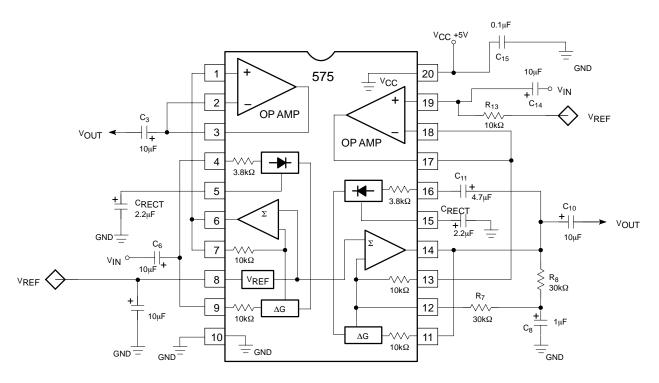


Figure 1. Block Diagram and Test Circuit

PIN FUNCTION DESCRIPTION

Pin	Symbol	Description		
1	+V _{IN1}	Non-Inverted Input 1		
2	-V _{IN1}	Inverted Input 1		
3	V _{OUT}	Output		
4	RECT. IN1	Rectifier 1 Input		
5	C _{RECT1}	External Capacitor Pinout for Rectifier 1		
6	SUM OUT1	Summation Output 1		
7	COMP. IN1	Compensator Pin		
8	V_{REF}	Voltage Reference		
9	GAIN CELL IN1	Variable Gain Cell Input 1		
10	GND	Ground		
11	GAIN CELL IN2	Variable Gain Cell Input 2		
12	SUM NODE 2	Summation Node 2		
13	COMP. IN2	Compensator Pin		
14	SUM OUT2	Summation Output 2		
15	C _{RECT2}	External Capacitor Pinout for Rectifier 2		
16	RECT. IN2	Rectifier 2 Input		
17	V _{OUT2}	Output 2		
18	-V _{IN2}	Inverted Input 2		
19	+V _{IN2}	Non-Inverted Input 2		
20	V _{CC}	Positive Power Supply		

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Single Supply Voltage		V _{CC}	-0.3 to 8.0	V
Voltage Applied to Any Other Pin		V _{IN}	-0.3 to (V _{CC} + 0.3)	V
Operating Ambient Temperature Range	T _A	-40 to +85	°C	
Operating Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	150	°C
Thermal Impedance	SOIC TSSOP PDIP	θ_{JA}	87 124 70	°C/W
Maximum Power Dissipation	SOIC TSSOP PDIP	P _D	1116 1068 1344	mW

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

DC ELECTRICAL CHARACTERISTICS Typical values are at $T_A = 25^{\circ}C$. Minimum and Maximum values are for the full operating temperature range: -40 to +85 $^{\circ}$ C for SA575, except SSOP package is tested at +25 $^{\circ}$ C only. V_{CC} = 5.0 V, unless otherwise stated. Both channels are tested in the Expandor mode (see Test Circuit).

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
FOR COMPANDOR, INCLUDING SUMMING AMPLIFIER						
Supply Voltage (Note 1)	V _{CC}	-	3.0	5.0	7.0	V
Supply Current	I _{CC}	No Signal	3.0	4.2	5.5	mA
Reference Voltage (Note 2)	V_{REF}	V _{CC} = 5.0 V	2.4	2.5	2.6	V
Summing Amp Output Load	R _L	-	10	-	-	kΩ
Total Harmonic Distortion	THD	1.0 kHz, 0 dB, BW = 3.5 kHz	-	0.12	1.5	%
Output Voltage Noise	E _{NO}	BW = 20 kHz, $R_S = 0 \Omega$	-	6.0	30	μV
Unity Gain Level	0dB	1.0 kHz	-1.5	-	1.5	dB
Output Voltage Offset	Vos	No Signal	-150	_	150	mV
Output DC Shift		No Signal to 0 dB	-100	_	100	mV
		Gain Cell Input = 0 dB, 1.0 kHz Rectifier Input = 6.0 dB, 1.0 kHz	-1.0	-	1.0	dB
Tracking Error Relative to 0 dB		Gain Cell Input = 0 dB, 1.0 kHz Rectifier Input = -30 dB, 1.0 kHz	-1.0	-	1.0	dB
Crosstalk		1.0 kHz, 0 dB, C _{REF} = 220 μF	-	-80	-65	dB
FOR OPERATIONAL AMPLIFIER						
Output Swing	Vo	$R_L = 10 \text{ k}\Omega$	V _{CC} -0.4	V _{CC}	_	V
Output Load	R _L	1.0 kHz	600	_	-	Ω
Input Common-Mode Range	CMR	-	0	_	V _{CC}	V
Common-Mode Rejection Ratio	CMRR	-	60	80	-	dB
Input Bias Current	I _B	V _{IN} = 0.5 V to 4.5 V	-1.0	_	1.0	μΑ
Input Offset Voltage	Vos	-	-	3.0	-	mV
Open-Loop Gain	A _{VOL}	$R_L = 10 \text{ k}\Omega$	-	80	-	dB
Slew Rate	SR	Unity Gain	-	1.0	-	V/μs
Bandwidth	GBW	Unity Gain	-	3.0	-	MHz
Input Voltage Noise	E _{NI}	BW = 20 kHz	-	2.5	-	μV
Power Supply Rejection Ratio	PSRR	1.0 kHz, 250 mV	_	60	_	dB

- 1. Operation down to V_{CC} = 2.0 V is possible, but performance is reduced. See curves in Figures 6 and 7. 2. Reference voltage, V_{REF} , is typically at 1/2 V_{CC} .

Functional Description

This section describes the basic subsystems and applications of the SA575 Compandor. More theory of operation on compandors can be found in AND8159 and AND8160. The typical applications of the SA575 low voltage compandor in an Expandor (1:2), Compressor (2:1) and Automatic Level Control (ALC) function are explained. These three circuit configurations are shown in Figures 2, 3, and 4 respectively.

The SA575 has two channels for a complete companding system. The left channel, A, can be configured as a 1:2 Expandor while the right channel, B, can be configured as either a 2:1 Compressor, a 1:2 Expandor or an ALC. Each channel consists of the basic companding building blocks of rectifier cell, variable gain cell, summing amplifier and V_{REF} cell. In addition, the SA575 has two additional high performance uncommitted op amps which can be utilized for application such as filtering, pre-emphasis/de-emphasis or buffering.

Figure 5 shows the complete schematic for the applications demo board. Channel A is configured as an expandor while channel B is configured so that it can be used either as a compressor or as an ALC circuit. The switch, S_1 , toggles the circuit between compressor and ALC mode. Jumpers J_1 and J_2 can be used to either include the additional op amps for signal conditioning or exclude them from the signal path. Bread boarding space is provided for R_1 , R_2 , C_1 , C_2 , R_{10} , R_{11} , C_{10} and C_{11} so that the response can be tailored for each individual need. The components as specified are suitable for the complete audio spectrum from 20 Hz to 20 kHz.

The most common configuration is as a unity gain non-inverting buffer where $R_1, C_1, C_2, R_{10}, C_{10}$ and C_{11} are eliminated and R_2 and R_{11} are shorted. Capacitors C_3, C_5, C_8 , and C_{12} are for DC blocking. In systems where the inputs and outputs are AC coupled, these capacitors and resistors can be eliminated. Capacitors C_4 and C_9 are for setting the attack and release time constant.

 C_6 is for decoupling and stabilizing the voltage reference circuit. The value of C_6 should be such that it will offer a very low impedance to the lowest frequencies of interest. Too small a capacitor will allow supply ripple to modulate the audio path. The better filtered the power supply, the smaller this capacitor can be. R_{12} provides DC reference voltage to the amplifier of channel B. R_6 and R_7 provide a DC feedback path for the summing amp of channel B, while C_7 is a short-circuit to ground for signals. C_{14} and C_{15} are for power supply decoupling. C_{14} can also be eliminated if the power supply is well regulated with very low noise and ripple.

Demonstrated Performance

The applications demo board was built and tested for a frequency range of 20 Hz to 20 kHz with the component values as shown in Figure 5 and $V_{CC}=5.0$ V. In the expandor mode, the typical input dynamic range was from -34 dB to +12 dB where 0 dB is equal to 100 mV_{RMS}. The typical unity gain level measured at 0 dB @ 1.0 kHz input was ± 0.5 dB and the typical tracking error was ± 0.1 dB for input range of -30 to +10 dB.

In the compressor mode, the typical input dynamic range was from -42 dB to \pm 18 dB with a tracking error +0.1 dB and the typical unity gain level was \pm 0.5 dB.

In the ALC mode, the typical input dynamic range was from -42 dB to +8.0 dB with typical output deviation of $\pm\,0.2$ dB about the nominal output of 0 dB. For input greater than +9.0 dB in ALC configuration, the summing amplifier sometimes exhibits high frequency oscillations. There are several solutions to this problem. The first is to lower the values of R_6 and R_7 to 20 k Ω each. The second is to add a current limiting resistor in series with C12 at Pin 13. The third is to add a compensating capacitor of about 22 to 30 pF between the input and output of summing amplifier (Pins 12 and 14). With any one of the above recommendations, the typical ALC mode input range increased to +18 dB yielding a dynamic range of over 60 dB.

Expandor

The typical expandor configuration is shown in Figure 2. The variable gain cell and the rectifier cell are in the signal input path. The V_{REF} is always 1/2 V_{CC} to provide the maximum headroom without clipping. The 0 dB ref is 100 mV_{RMS} . The input is AC coupled through C_5 , and the output is AC coupled through C_3 . If in a system the inputs and outputs are AC coupled, then C_3 and C_5 can be eliminated, thus requiring only one external component, C_4 . The variable gain cell and rectifier cell are DC coupled so any offset voltage between Pins 4 and 9 will cause small offset error current in the rectifier cell. This will affect the

accuracy of the gain cell. This can be improved by using an extra capacitor from the input to Pin 4 and eliminating the DC connection between Pins 4 and 9.

The expandor gain expression and the attack and release time constant is given by Equation 1 and Equation 2, respectively.

Expandor gain =
$$\left(\frac{4V_{IN}(avg)}{3.8 \text{ k}\Omega \text{ x } 100 \text{ } \mu\text{A}}\right)^2$$
 (eq. 1)

where $V_{IN}(avg) = 0.95V_{IN(RMS)}$

$$\tau_R = \tau_A = 10 \text{ k}\Omega \text{ x C}_{RECT} = 10 \text{ k}\Omega \text{ x C}_4$$
 (eq. 2)

Figure 2. Typical Expandor Configuration

Compressor

The typical compressor configuration is shown in Figure 3. In this mode, the rectifier cell and variable gain cell are in the feedback path. R₆ and R₇ provide the DC feedback to the summing amplifier. The input is AC coupled through C₁₂ and output is AC coupled through C₈. In a system with inputs and outputs AC coupled, C₈ and C₁₂ could be eliminated and only R₆, R₇, C₇, and C₁₃ would be required. If the external components R₆, R₇ and C₇ are eliminated, then the output of the summing amplifier will motor-boat in absence of signals or at extremely low signals. This is because there is no DC feedback path from

the output to input. In the presence of an AC signal this phenomenon is not observed and the circuit will appear to function properly.

The compressor gain expression and the attack and release time constant is given by Equation 3 and Equation 4, respectively.

$$\tau_R = \tau_A = 10 \text{ k}\Omega \text{ x } C_{RECT} = 10 \text{ k}\Omega \text{ x } C_4 \tag{eq. 4} \label{eq:eq. 4}$$

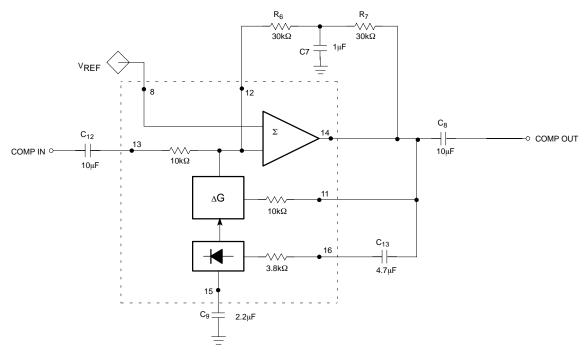


Figure 3. Typical Compressor Configuration

Automatic Level Control

The typical Automatic Level Control circuit configuration is shown in Figure 4. It can be seen that it is quite similar to the compressor schematic except that the input to the rectifier cell is from the input path and not from the feedback path. The input is AC coupled through C_{12} and C_{13} and the output is AC coupled through C_8 . Once again, as in the previous cases, if the system input and output signals are already AC coupled, then C_{12} , C_{13} and C_8 could be eliminated. Concerning the compressor, removing R_6 , R_7 and C_7 will cause motor-boating in

absence of signals. C_{COMP} is necessary to stabilize the summing amplifier at higher input levels. This circuit provides an input dynamic range greater than 60 dB with the output within ± 0.5 dB typical. The necessary design expressions are given by Equation 5 and Equation 6, respectively.

ALC gain =
$$\frac{3.8 \text{ k}\Omega \text{ x } 100 \text{ }\mu\text{A}}{4\text{V}_{\text{IN}}(\text{avg})}$$
 (eq. 5)

$$\tau_R = \tau_A = 10 \text{ k}\Omega \text{ x C}_{RECT} = 10 \text{ k}\Omega \text{ x C}_9$$
 (eq. 6)

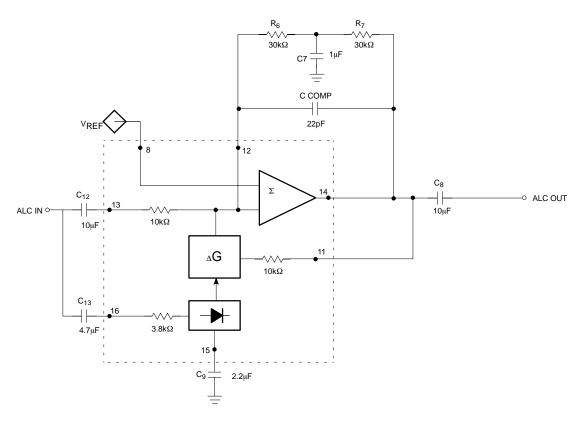


Figure 4. Typical ALC Configuration

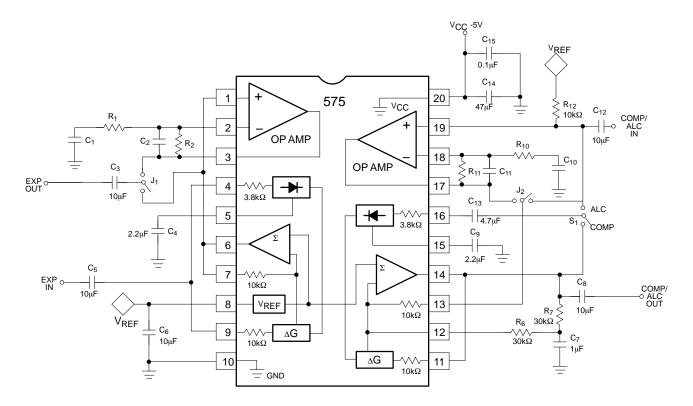


Figure 5. SA575 Low Voltage Expandor/Compressor/ALC Demo Board

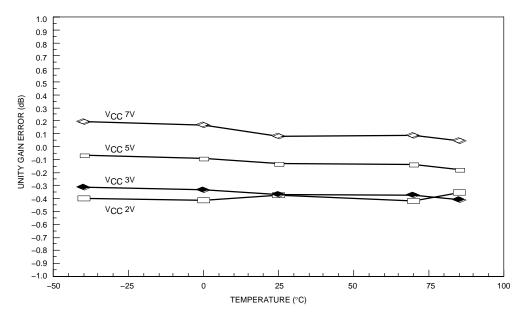


Figure 6. Unity Gain Error vs. Temperature and $\rm V_{\rm CC}$

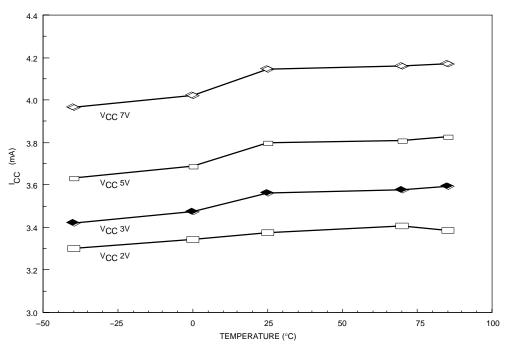
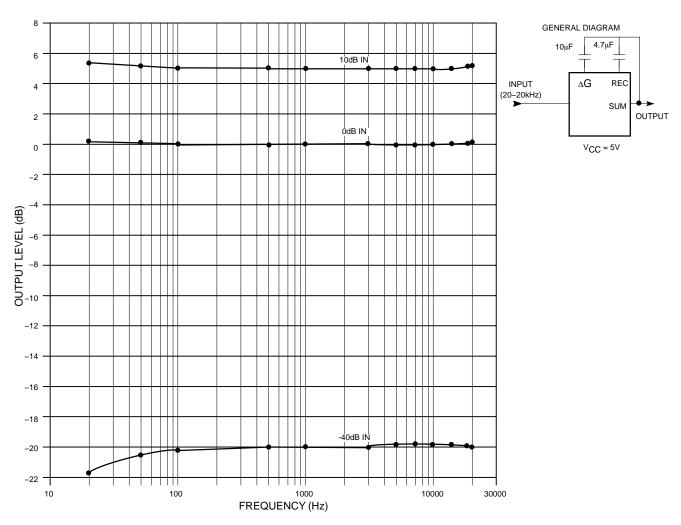



Figure 7. $I_{\mbox{\footnotesize CC}}$ vs. Temperature and $V_{\mbox{\footnotesize CC}}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Compressor Output Frequency Response

TYPICAL PERFORMANCE CHARACTERISTICS

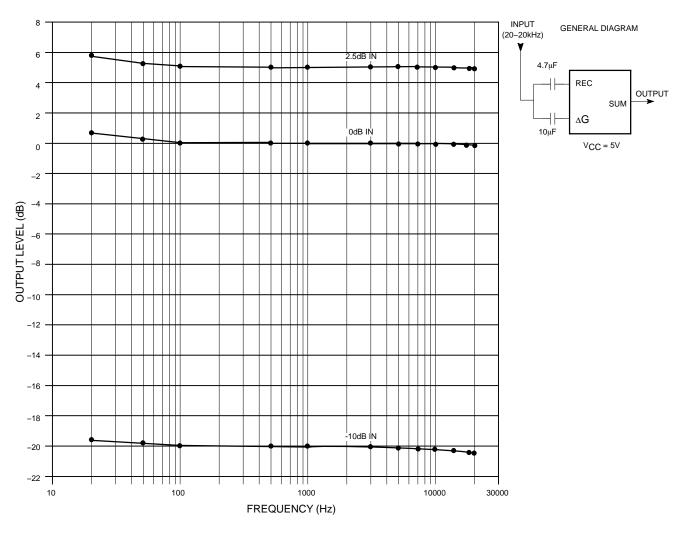


Figure 9. Expandor Output Frequency Response

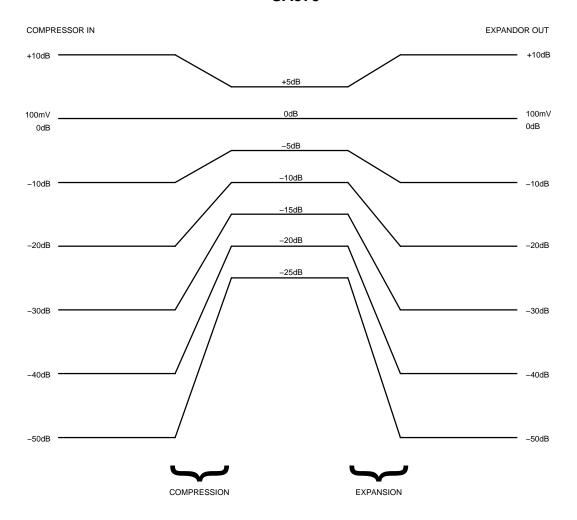
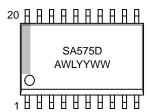
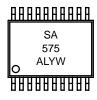


Figure 10. The Companding Function


ORDERING INFORMATION

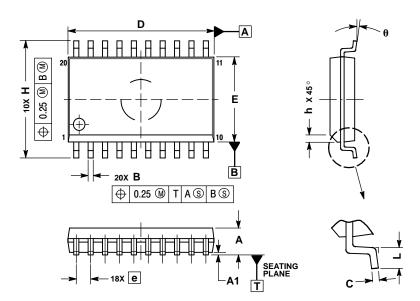
Device	Package	Temperature Range	Shipping [†]
SA575D	SOIC-20 WB	−40 to +85°C	38 Units / Rail
SA575DR2	SOIC-20 WB	−40 to +85°C	1000 / Tape & Reel
SA575DR2G	SOIC-20 WB (Pb-Free)	−40 to +85°C	1000 / Tape & Reel
SA575DTB	TSSOP-20*	−40 to +85°C	75 Units / Rail
SA575DTBR2	TSSOP-20*	−40 to +85°C	2500 Tape & Reel
SA575N	PDIP-20	−40 to +85°C	18 Units / Rail


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MARKING DIAGRAMS

TSSOP-20 DTB SUFFIX CASE 948E

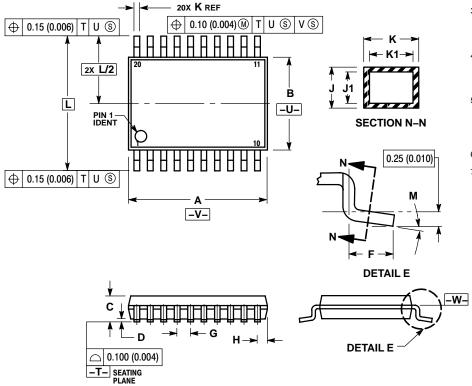
A = Assembly Location WL, L = Wafer Lot


YY, Y = Year WW, W = Work Week PDIP-20 N SUFFIX CASE 738

^{*}This package is inherently Pb-Free.

PACKAGE DIMENSIONS

SO-20 WB CASE 751D-05 ISSUE G



- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27 BSC			
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

PACKAGE DIMENSIONS

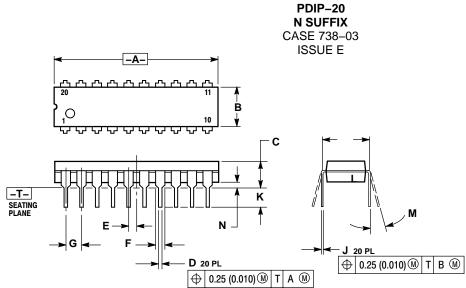
TSSOP-20 **DTB SUFFIX** CASE 948E-02 **ISSUE B**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION:
- MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE
 MOLD FLASH, PROTRUSIONS OR GATE
 BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.


 6. TERMINAL NILMBERS ARE SHOWN FOR
- CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
O		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
ſ	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
٦	6.40 BSC		0.252	BSC
M	0°	8°	0°	8°

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER

 ANSI V14 5M 1982
- ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
E	0.050	BSC	1.27 BSC		
F	0.050	0.070	1.27	1.77	
G	0.100	BSC	2.54 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300 BSC		7.62	BSC	
M	0°	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

ON Semiconductor and a products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any iability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 **Japan Customer Focus Center**Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.