No. STSE-CM6042A < Cat. No. 060410> # SPECIFICATIONS FOR NICHIA CHIP TYPE FULL COLOR LED $\mathsf{MODEL}: \textbf{NSSM009BT}$ NICHIA CORPORATION # 1.SPECIFICATIONS (1) Absolute Maximum Ratings $(Ta=25^{\circ}C)$ | Item | Symbol | Absolute Maximum Rating | | Unit | | |-----------------------------|--------|------------------------------------|-------------|------------|------| | | | Blue | Green | Red | | | Forward Current | IF | 35 | 35 | 50 | mA | | Pulse Forward Current * | Ifp | 110 | 110 | 200 | mA | | Reverse Voltage | VR | 5 | | | V | | Power Dissipation ** | PD | 123 | 123 | 125 | mW | | Total Power Dissipation *** | Ptot | | 280 | | mW | | Operating Temperature | Topr | | -30 ~ + 85 | | °C | | Storage Temperature | Tstg | -40 ~ +100 °C | | | | | Soldering Temperature | Tsld | Reflow Soldering: 260°C for 10sec. | | | sec. | | | | Hand Solo | dering : 35 | 60°C for 3 | sec. | - IFP Conditions : Pulse Width ≤ 10 msec. and Duty $\leq 1/10$ * - Value for one LED device (Single color). - *** Value for total power dissipation when two and more devices are lit simultaneously. (2) Initial Electrical/Optical Characteristics $(Ta=25^{\circ}C)$ | () · · · · · · · · · · · · · · · · · · | | | | | | | | | | | |---|---|--------|--------------|-------|------|--------|-------|-------|------|-----| | Item | | Symbol | Condition | Bl | Blue | | Green | | Red | | | | | | | Тур. | Max. | Тур. | Max. | Тур. | Max. | | | Forward Voltage | | VF | IF=20[mA] | (3.2) | 3.5 | (3.2) | 3.5 | (2.1) | 2.5 | V | | Reverse Current | | Ir | $V_R = 5[V]$ | - | 50 | - | 50 | - | 50 | μA | | Luminous Intensity | | Iv | IF=20[mA] | (400) | - | (1200) | - | (700) | - | mcd | | * | X | - | IF=20[mA] | 0.133 | - | 0.189 | - | 0.700 | - | - | | Chromaticity Coordinate | У | - | IF=20[mA] | 0.075 | - | 0.718 | - | 0.299 | - | - | ^{*} Please refer to CIE 1931 chromaticity diagram. | (3) Ranking | | | | | | | | (Ta=2) | 25°C) | | | |--------------------|--------|-----------|------|------|------|---------|------|--------|-------|----|------| | Item | Symbol | Condition | Bl | Blue | | Blue G1 | | een | R | ed | Unit | | | | | Min. | Max. | Min. | Max. | Min. | Max. | | | | | Luminous Intensity | Iv | IF=20[mA] | 280 | 560 | 800 | 1600 | 380 | 1080 | mcd | | | ^{*} Luminous Intensity Measurement allowance is \pm 10%. Color Ranks $(I_F=20\text{mA}, T_a=25^{\circ}\text{C})$ Blue | | Rank W | | | | | | |---|--------|-------|-------|-------|-------|-------| | X | 0.139 | 0.129 | 0.113 | 0.134 | 0.145 | 0.152 | | у | 0.035 | 0.050 | 0.080 | 0.105 | 0.072 | 0.056 | Green | | Rank G0d | | | | | | |---|----------|-------|-------|-------|-------|-------| | X | 0.190 | 0.136 | 0.176 | 0.220 | 0.250 | 0.219 | | y | 0.628 | 0.739 | 0.750 | 0.745 | 0.638 | 0.637 | #### Red | | Rank R | | | | | |---|--------|-------|-------|-------|--| | X | 0.674 | 0.648 | 0.677 | 0.708 | | | У | 0.296 | 0.323 | 0.323 | 0.292 | | ^{*} Color Coordinates Measurement allowance is ± 0.01 . #### 2.INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS Please refer to figure's page. #### 3.OUTLINE DIMENSIONS AND MATERIALS Please refer to figure's page. Material as follows; Package : Heat-Resistant Polymer Encapsulating Resin : Epoxy Resin (Diffused) Electrodes : Ag Plating Copper Alloy #### 4.PACKAGING · The LEDs are packed in cardboard boxes after taping. Please refer to figure's page. The label on the minimum packing unit shows; Part Number, Lot Number, Quantity - · In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation. - The LEDs may be damaged if the boxes are dropped or receive a strong impact against them, so precautions must be taken to prevent any damage. - The boxes are not water resistant and therefore must be kept away from water and moisture. - · When the LEDs are transported, we recommend that you use the same packing method as Nichia. #### 5.LOT NUMBER The first six digits number shows **lot number**. The lot number is composed of the following characters; ○□×××× ○ - Year (5 for 2005, 6 for 2006) □ - Month (1 for Jan., 9 for Sep., A for Oct., B for Nov.) ×××× - Nichia's Product Number # **6.RELIABILITY** # (1) TEST ITEMS AND RESULTS | | Standard | | | Number of | |-----------------------------|---------------|----------------------------------|------------|-----------| | Test Item | Test Method | Test Conditions | Note | Damaged | | Resistance to | JEITA ED-4701 | Tsld=260°C, 10sec. | 2 times | 0/50 | | Soldering Heat | 300 301 | (Pre treatment 30°C,70%,168hrs.) | | | | (Reflow Soldering) | | | | | | Thermal Shock | JEITA ED-4701 | 0°C ~ 100°C | 100 cycles | 0/50 | | | 300 307 | 15sec. 15sec. | | | | Temperature Cycle | JEITA ED-4701 | -40°C ~ 25°C ~ 100°C ~ 25°C | 100 cycles | 0/50 | | | 100 105 | 30min. 5min. 30min. 5min. | | | | Moisture Resistance Cyclic | JEITA ED-4701 | 25°C ~ 65°C ~ -10°C | 10 cycles | 0/50 | | | 200 203 | 90%RH 24hrs./1cycle | | | | High Temperature Storage | JEITA ED-4701 | Ta=100°C | 500hrs. | 0/50 | | | 200 201 | | | | | Temperature Humidity | JEITA ED-4701 | Ta=60°C, RH=90% | 500hrs. | 0/50 | | Storage | 100 103 | | | | | Low Temperature Storage | JEITA ED-4701 | Ta=-40°C | 500hrs. | 0/50 | | | 200 202 | | | | | Steady State Operating Life | | * Ta=25°C, B IF=13mA | 500hrs. | 0/50 | | | | G IF=32mA | | | | | | R IF=21mA | | | | Steady State Operating Life | | * 60°C, RH=90%, B IF=8.5mA | 500hrs. | 0/50 | | of High Humidity Heat | | G I _F =18mA | | | | | | R IF=14.5mA | | | | Steady State Operating Life | | * Ta=-30°C, B IF=13mA | 500hrs. | 0/50 | | of Low Temperature | | G IF=32mA | | | | | | R IF=21mA | | | ^{*} Value for one LED device (Single color). (2) CRITERIA FOR JUDGING DAMAGE (Value for one LED device (Single color).) | | | | Criteria for Judgement | | | |--------------------|--------|--------------------------|------------------------|--------------|--| | Item | Symbol | Test Conditions | Min. | Max. | | | Forward Voltage | VF | B,G,R IF=20mA | - | U.S.L.*)×1.1 | | | Reverse Current | Ir | B,G,R V _R =5V | - | U.S.L.*)×2.0 | | | Luminous Intensity | Iv | B,G,R IF=20mA | L.S.L.**)×0.7 | - | | ^{*)} U.S.L.: Upper Standard Level ^{**)} L.S.L.: Lower Standard Level #### 7.CAUTIONS ### (1) Moisture Proof Package - · When moisture is absorbed into the SMT package it may vaporize and expand during soldering. There is a possibility that this can cause exfoliation of the contacts and damage to the optical characteristics of the LEDs. For this reason, the moisture proof package is used to keep moisture to a minimum in the package. - The moisture proof package is made of an aluminum moisture proof bag. A package of a moisture absorbent material (silica gel) is inserted into the aluminum moisture proof bag. The silica gel changes its color from blue to pink as it absorbs moisture. #### (2) Storage · Storage Conditions Before opening the package: The LEDs should be kept at 30°C or less and 90%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material (silica gel) is recommended. After opening the package: The LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be soldered within 168 hours (7days) after opening the package. If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with packages of moisture absorbent material (silica gel). It is also recommended to return the LEDs to the original moisture proof bag and to reseal the moisture proof bag again. · If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment : more than 24 hours at $65 \pm 5^{\circ}$ C - · Nichia LED electrodes are silver plated copper alloy. The silver surface may be affected by environments which contain corrosive substances. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the User use the LEDs as soon as possible. - · Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur. # (3) Heat Generation - Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification. - · During operation of the LEDs the total power dissipation of the diode elements (red, green, and blue) within the LEDs must not exceed the maximum power dissipation. - The operating current should be decided after considering the ambient maximum temperature of LEDs. ## (4) Soldering Conditions • The LEDs can be soldered in place using the reflow soldering method. Nichia cannot make a guarantee on the LEDs after they have been assembled using the dip soldering method. · Recommended soldering conditions | | Reflow Soldering | | | Hand Soldering | | |-----------------------------|--------------------------|--|----------------|-----------------|--| | | Lead Solder | Lead-free Solder | | | | | Pre-heat | 120 ~ 150°C | 180 ~ 200°C | Temperature | 350°C Max. | | | Pre-heat time | 120 sec. Max. | 120 sec. Max. | Soldering time | 3 sec. Max. | | | Peak temperature | 240°C Max. | 260°C Max. | | (one time only) | | | Soldering time
Condition | 10 sec. Max. refer to | 10 sec. Max. refer to | | | | | | Temperature - profile ①. | Temperature - profile \bigcirc . (N ₂ reflow is recommended.) | | | | - * Although the recommended soldering conditions are specified in the above table, reflow or hand soldering at the lowest possible temperature is desirable for the LEDs. - * A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. [Temperature-profile (Surface of circuit board)] <①: Lead Solder> Use the conditions shown to the under figure. <② : Lead-free Solder> $\begin{array}{c} 2.5 \sim 5^{\circ}\text{C / sec.} \\ \hline 2.5 \sim 5^{\circ}\text{C / sec.} \end{array}$ Pre-heating $\begin{array}{c} 120 \sim 150^{\circ}\text{C} \\ \hline 120\text{sec.Max.} \end{array}$ Above 200°C 1 ~ 5°C / sec. Pre-heating 1 ~ 5°C / sec. 260°C Max. 10sec. Max. Above 220°C [Recommended soldering pad design] Use the following conditions shown in the figure. (Unit: mm) - · Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere during air reflow. It is recommended that the User use the nitrogen reflow method. - · Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing. - · Reflow soldering should not be done more than two times. - · When soldering, do not put stress on the LEDs during heating. - · After soldering, do not warp the circuit board. # (5) Cleaning - · It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations. - · Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur. #### (6) Static Electricity - · Static electricity or surge voltage damages the Blue/Green LEDs. It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs. - · All devices, equipment and machinery must be properly grounded. It is recommended that precautions be taken against surge voltage to the equipment that mounts the LEDs. - · When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended). - · Damaged LEDs will show some unusual characteristics such as the leak current remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low current. Criteria: (VF > 2.0V at IF=0.5mA) #### (7) Others - · NSSM009B complies with RoHS Directive. - · Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating when using the LEDs with matrix drive. - The LED light output is strong enough to injure human eyes. Precautions must be taken to prevent looking directly at the LEDs with unaided eyes for more than a few seconds. - · Flashing lights have been known to cause discomfort in people; you can prevent this by taking precautions during use. Also, people should be cautious when using equipment that has had LEDs incorporated into it. - The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult Nichia's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices). - · User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from Nichia. When defective LEDs are found, the User shall inform Nichia directly before disassembling or analysis. - · The formal specifications must be exchanged and signed by both parties before large volume purchase begins. - The appearance and specifications of the product may be modified for improvement without notice. * Color Coordinates Measurement allowance is ± 0.01 . ■ Forward Voltage vs. Forward Current ■ Ambient Temperature vs. Forward Voltage ■ Forward Current vs. Relative Luminosity ■ Ambient Temperature vs. Relative Luminosity ■ Duty Ratio vs. Allowable Forward Current ■ Ambient Temperature vs. Power Dissipation * ■ Ambient Temperature vs. Power Dissipation ** (NOTE) * The value for one device should be within the absolute maximum rating when one or two and more devices are lit (Full color). ** Total value should be within the absolute maximum rating when two and more devices are lit (Full color). | NICHIA CORPORATION | |------------------------| | THE TIME COIL CHAILION | | | Model | NSSM009B | \setminus | |---|-------|-----------------|-------------| | 1 | Title | CHARACTERISTICS | | | | No. | 060403651181 | | Nichia STSE-CM6042A <Cat.No.060410> # ■ Spectrum # Directivity | | Model | NSSM009B | |--------------------|-------|-----------------| | NICHIA CORPORATION | Title | CHARACTERISTICS | Model No. 060403651191 Unit 10/1[\] Allow ±0.2 \mm NSSM009B 060403651201 **OUTLINE DIMENSIONS** Model | * | Red LED die and blue LED die are mounted on the cathode side, | |---|---| | | green LED die is mounted on the anode side. | (1.9) 1.17 ± 0.3 | NICHIA CORPORATION | | |--------------------|-----| | | No. | 3,000pcs/Reel Taping is based on the **JIS C 0806**: Packaging of Electronic Components on Continuous Tapes. | | Model | NSSM009xT | Unit | |--------------------|-------|-------------------|-------| | NICHIA CORPORATION | Title | TAPING DIMENSIONS | Scale | | | No. | 050413309253 | Allow | The reel and moisture absorbent material are put in the moisture proof foil bag and then heat sealed. Packing unit | | Reel/bag | Quantity/bag (pcs) | |-------------------------|----------|--------------------| | Moisture proof foil bag | 1reel | 3,000 MAX. | | Cardboard box | Dimensions (mm) | Reel/box | Quantity/box (pcs) | |-----------------|---------------------------------|------------|--------------------| | Cardboard box S | $391\times379\times149\times8t$ | 5reel MAX. | 15,000 MAX. | | | Model | NSSM009xT | | |--------------------|-------|--------------|--| | NICHIA CORPORATION | Title | PACKING | | | | No. | 050524540321 | | Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.