74LV4053-Q100

Triple single-pole double-throw analog switch
Rev. 1 - 25 March 2014
Product data sheet

1. General description

The 74LV4053-Q100 is a triple single-pole double-throw (SPDT) analog switch, suitable for use as an analog or digital multiplexer/demultiplexer. It is a low-voltage Si -gate CMOS device and is pin and function compatible with the 74HC4053-Q100 and 74HCT4053-Q100. Each switch has a digital select input (Sn), two independent inputs/outputs (nY0 and nY1) and a common input/output (nZ). All three switches share an enable input $(\overline{\mathrm{E}})$. A HIGH on $\overline{\mathrm{E}}$ causes all switches into the high-impedance OFF-state, independent of Sn .
$V_{C c}$ and GND are the supply voltage connections for the digital control inputs (Sn and $\overline{\mathrm{E}}$). The V_{Cc} to GND range is 1 V to 6 V . The analog inputs/outputs ($\mathrm{nYO}, \mathrm{nY1}$ and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 6 V . For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground). $\mathrm{V}_{\text {EE }}$ and V_{SS} are the supply voltage connections for the switches.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

■ Optimized for low-voltage applications: 1.0 V to 3.6 V

- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Low ON resistance:
-180 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0 \mathrm{~V}$
- 100Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$
$\rightarrow 75 \Omega$ (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- Logic level translation:
- To enable 3 V logic to communicate with $\pm 3 \mathrm{~V}$ analog signals
- Typical 'break before make' built in
- ESD protection:
- MIL-STD-883, method 3015 exceeds 2000 V
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds $200 \mathrm{~V}(\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega)$
- Multiple package options

Triple single-pole double-throw analog switch

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LV4053D-Q100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74LV4053PW-Q100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74LV4053BQ-Q100	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

4. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. IEC logic symbol

Fig 4. Schematic diagram (one switch)

5. Pinning information

5.1 Pinning

Fig 5. Pin configuration SOT109-1

74LV4053-Q100

Fig 6. Pin configuration SOT403-1

74LV4053-Q100

(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to V_{CC}.

Fig 7. Pin configuration for SOT763-1

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$\overline{\mathrm{E}}$	6	enable input (active LOW)
V_{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	$11,10,9$	select input
$1 \mathrm{YO}, 2 \mathrm{YO}, 3 \mathrm{Y} 0$	$12,2,5$	independent input or output
$1 \mathrm{Y}, 2 \mathrm{Y}, 3 \mathrm{Y} 1$	$13,1,3$	independent input or output
$1 Z, 2 Z, 3 Z$	$14,15,4$	common output or input
V_{CC}	16	supply voltage

6. Functional description

Table 3. Function table [1]

Inputs	Ch	Channel on
\mathbf{E}	L	
L	H	nY0 to nZ
L	X	nY1 to nZ
H	switches off	

[1] $\mathrm{H}=$ HIGH voltage level; $\mathrm{L}=$ LOW voltage level; $\mathrm{X}=$ don't care.

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {cc }}$	supply voltage	[1]	-0.5	+7.0	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{\mathrm{SW}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ [2]	-	± 20	mA
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} ;$ source or sink current	-	± 25	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		SO16 package	-	500	mW
		TSSOP16 package	-	500	mW
		DHVQFN16 package	-	500	mW

[1] To avoid drawing V_{cc} current from terminal nZ , when switch current flows into terminals $\mathrm{n} Y \mathrm{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no V_{Cc} current flows out of terminals nYn . In this case, there is no limit to the voltage drop across the switch. However, the voltages at $n Y n$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.
[2] The minimum input voltage rating may be exceeded if the input current rating is observed.
[3] For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$. For TSSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$. For DHVQFN16 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

Triple single-pole double-throw analog switch

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	Supply voltage	see Figure 8	1	3.3	6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	V_{CC}	V
V_{SW}	switch voltage		0	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ to 2.0 V	-	-	500	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 2.7 V	-	-	200	$\mathrm{~ns} / \mathrm{V}$
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	100	$\mathrm{~ns} / \mathrm{V}$	

[1] The static characteristics are guaranteed from $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to 6.0 V . However, LV devices are guaranteed to function down to $\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ (with input levels $G N D$ or V_{CC}).

Fig 8. Guaranteed operating area as a function of the supply voltages

9. Static characteristics

Table 6. Static characteristics
At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ ${ }^{11]}$	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	0.9	-	-	0.9	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4	-	-	1.4	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	2.0	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	3.15	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.20	-	-	4.20	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	-	0.3	-	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.6	-	0.6	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.80	-	1.80	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; see $\underline{\text { Figure } 9}$						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; see Figure 10						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	2.0	-	2.0	$\mu \mathrm{A}$
ICC	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$						
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	20	-	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	40	-	80	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	$\begin{aligned} & \text { per input; } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}-0.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	500	-	850	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	-	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins nYn	-	5	-	-	-	pF
		common pins nZ	-	8	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

9.1 Test circuits

$V_{1}=V_{C C}$ or $V_{E E}$ and $V_{O}=V_{E E}$ or $V_{C C}$.
Fig 9. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or V_{EE} and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 10. Test circuit for measuring ON-state leakage current

9.2 ON resistance

Table 7. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 11 and Figure 12.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(} \text { (pak) }}$	ON resistance (peak)	$\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A} \quad \underline{[2]}$	-	-	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	180	365	-	435	Ω
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	115	225	-	270	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	100	200	-	245	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	75	150	-	180	Ω
		$\mathrm{V}_{\text {cC }}=6.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	70	140	-	165	Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance mismatch between channels	$\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad \underline{[2]}$	-	-	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	5	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	4	-	-	-	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	4	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	3	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	2	-	-	-	Ω

Table 7. ON resistance ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 11 and Figure 12.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON}(\text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{1}=\mathrm{GND}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad \underline{[2]}$	-	250	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	120	280	-	325	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	75	170	-	195	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	70	155	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	50	120	-	135	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	45	105	-	120	Ω
Ron(rail)	ON resistance (rail)	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$ [[2]	-	350	-	-	-	Ω
		$\mathrm{V}_{\text {cc }}=2.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	170	340	-	400	Ω
		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	105	210	-	250	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A} \end{aligned}$	-	95	190	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	70	140	-	165	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	65	125	-	150	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] When supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approach 1.2 V , the analog switch ON resistance becomes extremely non-linear. Use these devices only for transmitting digital signals, when using a supply of 1.2 V .

Triple single-pole double-throw analog switch

9.3 On resistance waveform and test circuit

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.
Fig 11. Test circuit for measuring R_{ON}

$$
\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}
$$

Fig 12. Typical $R_{O N}$ as a function of input voltage

10. Dynamic characteristics

Table 8. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V). For test circuit, see Figure 15.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	$n \mathrm{n}$, nZ to nZ , nYn; see Figure 13 [2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	25	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	9	17	-	20	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	6	13	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	5	10	-	12	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	4	9	-	10	ns
		$\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$	-	3	7	-	8	ns
ten	enable time	$\overline{\mathrm{E}}$ to nYn, nZ; see Figure 14 [2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	100	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	34	65	-	77	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	25	48	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ [3]	-	16	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	19	38	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	17	32	-	38	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	13	25	-	29	ns
		Sn to nYn, nZ; see Figure 14 [2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	125	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	43	82	-	97	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	31	60	-	71	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ [3]	-	20	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	24	48	-	57	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	21	41	-	48	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	16	31	-	37	ns

Table 8. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0$ V). For test circuit, see Figure 15.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ ${ }^{[1]}$	Max	Min	Max	
$\mathrm{t}_{\text {dis }}$	disable time	$\overline{\mathrm{E}}$ to nYn, nZ; see Figure 14 [2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	95	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	34	61	-	73	ns
		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	-	26	46	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ [3]	-	17	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V [3]	-	20	37	-	44	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	18	32	-	38	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	15	25	-	30	ns
		Sn to $\mathrm{nYn}, \mathrm{nZ}$; see Figure 14 [2]						
		$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	-	90	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	32	59	-	70	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	24	44	-	52	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ [3]	-	16	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V [3]	-	19	36	-	42	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	17	31	-	36	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	14	24	-	28	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	36	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHLL }}$.
$t_{\text {en }}$ is the same as $t_{p z L}$ and $t_{\text {pzH }}$.
$\mathrm{t}_{\text {dis }}$ is the same as tpLz and $\mathrm{t}_{\mathrm{PHz}}$.
[3] Typical values are measured at nominal supply voltage ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$).
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(\left(C_{L}+C_{S w}\right) \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz}, \mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$C_{L}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{SW}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts
$\mathrm{N}=$ number of inputs switching
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

10.1 Waveforms

Measurement points are given in Table 9.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig 13. $n Y n, n Z$ to $n Z, n Y n$ propagation delays

Measurement points are given in Table 9.
V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.
Fig 14. Enable and disable times

Table 9. Measurement points

Supply voltage	Input	Output		
\mathbf{V}_{CC}	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
$<2.7 \mathrm{~V}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}_{\mathrm{CC}}$
2.7 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
$>3.6 \mathrm{~V}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}_{\mathrm{CC}}$

Test data is given in Table 10.
Definitions for test circuit:
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 15. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
V_{cc}	V_{1}	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
$<2.7 \mathrm{~V}$	$\mathrm{V}_{\text {cc }}$	$\leq 6 \mathrm{~ns}$	50 pF	$1 \mathrm{k} \Omega$	open	$V_{\text {EE }}$	$2 \mathrm{~V}_{\text {CC }}$
2.7 V to 3.6 V	2.7 V	$\leq 6 \mathrm{~ns}$	$15 \mathrm{pF}, 50 \mathrm{pF}$	$1 \mathrm{k} \Omega$	open	$V_{\text {EE }}$	$2 \mathrm{~V}_{\text {CC }}$
> 3.6 V	V_{cc}	$\leq 6 \mathrm{~ns}$	50 pF	$1 \mathrm{k} \Omega$	open	$V_{\text {EE }}$	$2 \mathrm{~V}_{\text {CC }}$

Triple single-pole double-throw analog switch

10.2 Additional dynamic parameters

Table 11. Additional dynamic characteristics
At recommended operating conditions. Voltages are referenced to GND (ground $=0 \mathrm{~V}$). $V_{1}=G N D$ or $V_{C C}$ (unless otherwise specified). $t_{r}=t_{f} \leq 6.0 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see $\underline{\text { Figure } 20}$				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{I}}=2.75 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.8	-	\%
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.4	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.75 \mathrm{~V}$ (p-p)	-	2.4	-	\%
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ (p-p)	-	1.2	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 16 [1]				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	180	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	200	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$; see Figure 18 [2]				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-	-50	-	dB
V_{ct}	crosstalk voltage	between digital inputs and switch; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega \text {; see Figure } 21$				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.11	-	V
		$\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$	-	0.12	-	V
Xtalk	crosstalk	between switches; $f_{i}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=600 \Omega$; see Figure 22				
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-60	-	dB

[1] To obtain 0 dBm level at output for 1 MHz , adjust f_{i} voltage ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 50Ω).
[2] To obtain 0 dBm level at output for 1 MHz , adjust f_{i} voltage ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).

10.2.1 Test circuits

Fig 18. Test circuit for measuring isolation (OFF-state)

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$;
$R_{\text {SOURCE }}=1 \mathrm{k} \Omega$.
Fig 19. Typical isolation (OFF-state) as function of frequency

Fig 20. Test circuit for measuring total harmonic distortion

a. Test circuit

b. Input and output pulse definitions
V_{1} may be connected to Sn or $\overline{\mathrm{E}}$.
Fig 21. Test circuit for measuring crosstalk voltage between digital inputs and switch

a. Switch closed condition

b. Switch open condition

Fig 22. Test circuit for measuring crosstalk between switches

11. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & \hline 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{array}{l\|} \hline 0.019 \\ 0.014 \end{array}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \\ \hline \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{array}{\|l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-99-12-27$ $03-02-19 ~$

Fig 23. Package outline SOT109-1 (SO16)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{2})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	5.1	4.5	0.6	6.6		0.75	0.4					
	0.05	0.80	0.25	0.19	0.1	4.9	4.3	0.13	0.1	0.40	8°							

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT403-1		MO-153		\square ¢	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

Fig 24. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ max.	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$
mm	1	0.05	0.30	0.2	3.6	2.15	2.6	1.15	0.5	2.5	0.5	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-02-10-17$
SOT763-1	\ldots	MO-241	\ldots		$03-01-27$	

Fig 25. Package outline SOT763-1 (DHVQFN16)

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LV4053_Q100 v.1	20140325	Product data sheet	-	-

14. Legal information

14.1 Data sheet status

Document status $\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.
Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia
accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

Triple single-pole double-throw analog switch

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com

16. Contents

1 General description 1
2 Features and benefits 1
3 Ordering information 2
4 Functional diagram 2
5 Pinning information 4
5.1 Pinning 4
5.2 Pin description 4
6 Functional description 5
7 Limiting values 5
8 Recommended operating conditions. 6
9 Static characteristics. 7
9.1 Test circuits 8
9.2 ON resistance 8
9.3 On resistance waveform and test circuit. 10
10 Dynamic characteristics 11
10.1 Waveforms 13
10.2 Additional dynamic parameters 15
10.2.1 Test circuits 16
11 Package outline 19
12 Abbreviations 22
13 Revision history 22
14 Legal information 23
14.1 Data sheet status 23
14.2 Definitions 23
14.3 Disclaimers 23
14.4 Trademarks. 24
15 Contact information 24
16 Contents 25

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

