

2SC0435T2G1-17 Preliminary Datasheet

Dual-Channel Low-Cost SCALE[™]-2+ IGBT and MOSFET Driver Core

Abstract

The low-cost SCALE[™]-2+ dual-driver core 2SC0435T2G1-17 (Connector pin length of 3.1mm, suitable for PCB thickness of 2mm; increased EMI capability; SSD implemented; lead free) combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0435T2G1-17 drives all usual high-power IGBT modules up to 1700V. The embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies are also supported.

The 2SC0435T2G1-17 is the most compact driver core in its power range with a footprint of only 57.2 x 51.6mm and an insertion height of max. 20mm. It allows even the most restricted insertion spaces to be efficiently used. Compared with conventional drivers, the highly integrated SCALE-2+ chipset allows about 85% of components to be dispensed with. This advantage is impressively reflected in increased reliability at simultaneously minimized cost.

The 2SC0435T2G1-17 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, Soft Shut Down (SSD) or Advanced Active Clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and the other secondary channel.

An output current of 35A and 4W drive power is available per channel, making the 2SC0435T2G1-17 an ideal driver platform for universal usage in medium and high-power applications. The driver provides a gate voltage swing of +15V/-10V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level.

Its outstanding EMC allows safe and reliable operation in even hard industrial applications.

Product Highlights	Applications
 Ultra-compact dual-channel driver Highly integrated SCALE-2+ chipset Gate current ±35A, 4W output power per channel +15V/-10V gate driving Blocking voltages up to 1700V Safe isolation to EN 50178 Short delay and low jitter Interface for 3.3V 15V logic level Dedicated IGBT and MOSFET mode Soft Shut Down function (optional) Advanced Active Clamping (optional) UL recognition E321757 for UL508C (NMMS2/8) UL recognition E346491 for UL60950-1 (NWGQ2/8) 	 General purpose drives Uninterruptible power supplies (UPS) Solar and wind power converters Auxiliary converters for traction Electro/hybrid drive vehicles Driving parallel-connected IGBTs Medical (MRT, CT, X-Ray) Laser technology
✓ UL recognition E346491 for UL60950-1 (NWGQ2/8)	

Lead free

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and important information that apply to this product, please refer to "2SC0435T Description & Application Manual" on www.power.com/igbt-driver/go/2SC0435T.

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V _{DC}	VDC to GND	0	16	V
Supply voltage V _{cc}	VCC to GND	0	16	V
Logic input and output voltages	Primary side, to GND	-0.5	VCC+0.	5 V
SOx current	Failure condition, total current		20	mA
Gate peak current I _{out}	Note 1	-35	+35	А
External gate resistance	Turn-on and turn-off	0.5		Ω
Average supply current I_{DC}	Notes 2, 3		1050	mA
Output power	Ambient temperature <70°C (Notes 4, 5)		6	W
	Ambient temperature 85°C (Note 4)		4	W
Switching frequency f			100	kHz
Test voltage (50Hz/1min.)	Primary to secondary (Note 15)		5000	$V_{AC(eff)}$
	Secondary to secondary (Note 15)		4000	V _{AC(eff)}
dV/dt	Rate of change of input to output voltage		50	kV/µs
Operating voltage	Primary/secondary, secondary/secondary		1700	V_{peak}
Operating temperature	Note 5	-40	+85	°C
Storage temperature		-40	+90	°C

Recommended Operating Conditions

Power Supply	Remarks	Min	Тур	Max	Unit
Supply voltage V_{DC}	VDC to GND, IGBT mode	14.5	15	15.5	V
Supply voltage V_{CC}	VCC to GND	14.5	15	15.5	V

Electrical Characteristics (IGBT mode)

All data refer to +25°C and V_{CC} = V_{DC} = 15V unless otherwise specified.

Power supply	Remarks	Min	Тур	Max	Unit
Supply current I _{DC}	Without load		32		mA
Supply current I _{cc}	f = 0Hz		22		mA
Supply current I _{cc}	f = 100kHz		32		mA
Coupling capacitance C _{io}	Primary to output, total		22		pF
Power Supply Monitoring	Remarks	Min	Тур	Max	Unit
Supply threshold V_{CC}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 12)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold V_{ISOx} - V_{Ex}	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 13)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold V_{Ex} - V_{COMx}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 13)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Logic Inputs and Outputs	Remarks	Min	Тур	Max	Unit
Input bias current	V(INx) > 3V		190		μA
Turn-on threshold	V(INx)		2.6		V
Turn-off threshold	V(INx)		1.3		V
SOx output voltage	Failure condition, I(SOx)<20mA			0.7	V
Short-Circuit Protection	Remarks	Min	Тур	Max	Unit
Current through pin REFx	R(REFx, VEx)<70kΩ		150		μA
Minimum response time	Note 9		1.2		μs
Minimum blocking time	Note 10		9		μs
Timing Characteristics	Remarks	Min	Тур	Max	Unit
Turn-on delay t _{d(on)}	Note 6		75		ns
Turn-off delay t _{d(off)}	Note 6		70		ns
Jitter of turn-on delay	Note 17		±3		ns
Jitter of turn-off delay	Note 17		±3		ns
, Output rise time t _{r(out)}	Note 7		20		ns
Output fall time $t_{f(out)}$	Note 7		20		ns
Transmission delay of fault state	Note 14		400		ns

Soft Shut Down (SSD)	Remarks	Implementation			
SSD function	Note 11		Yes		
Electrical Isolation	Remarks	Min	Тур	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 15)	5000	5050	5100	V_{eff}
	Secondary to secondary side (Note 15)	4000	4050	4100	V_{eff}
Partial discharge extinction volt.	Primary to secondary side (Note 16)	1768			V_{peak}
	Secondary to secondary side (Note 16)	1700			V_{peak}
Creepage distance	Primary to secondary side	15.7			mm
	Secondary to secondary side	12			mm
Clearance distance	Primary to secondary side	15.7			mm
	Secondary to secondary side	7.3			mm
Output	Remarks	Min	Тур	Max	Unit
Blocking capacitance	VISOx to VEx (Note 8)		9.4		μF
	VEx to COMx (Note 8)		9.4		μF

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V_{GHx} between pins GHx and VEx. V_{GHx} is regulated and maintained at a constant level for all output power values and frequencies.

The second segment of the output voltage swing is the turn-off voltage V_{GLx} . V_{GLx} is measured between pins GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable voltage drop across the internal DC/DC converter.

Output Voltage	Remarks	Min Typ	Max Unit
Turn-on voltage, V _{GHx}	Any load condition	15.0	V
Turn-off voltage, V _{GLx}	No load	-10.1	V
Turn-off voltage, V _{GLx}	1W output power	-9.8	V
Turn-off voltage, V _{GLx}	4W output power	-9.5	V
Turn-off voltage, V_{GLx}	6W output power	-9.3	V

Footnotes to the Key Data

- 1) The maximum peak gate current refers to the highest current level occurring during the product lifetime. It is an absolute value and does also apply for short pulses.
- 2) The average supply input current is limited for thermal reasons. Higher values than specified by the absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.
- 3) There is no means of actively controlling or limiting the input current in the driver. In the case of start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.

- 4) The maximum output power must not be exceeded at any time during operation. The absolute maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.
- 5) An extended output power range is specified in the output power section for maximum ambient temperatures of 70°C. In that case, the absolute maximum rating for the operating temperature changes to (-40°C 70°C) and the absolute maximum output power rating changes to 6W.
- 6) The delay time is measured between 50% of the input signal and 10% voltage swing of the corresponding output. The delay time is independent of the output loading.
- 7) Output rise and fall times are measured between 10% and 90% of the nominal output swing with an output load of 4.7Ω and 270nF. The values are given for the driver side of the gate resistors. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.
- 8) External blocking capacitors are to be placed between VISOx and VEx as well as VEx and COMx for gate charges exceeding 3µC. Ceramic capacitors are recommended. A minimum external blocking capacitance of 3µF is recommended for every 1µC of gate charge beyond 3µC. Insufficient external blocking can lead to reduced driver efficiency and thus to thermal overload.
- 9) The minimum response time given is valid for the circuit given in the description and application manual (Fig. 7) with the values of table 1 ($C_{ax}=0pF$, $R_{thx}=43k\Omega$).
- 10) The blocking time sets a minimum time span between the end of any fault state and the start of normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin TB. The specified blocking time is valid if TB is connected to GND.
- 11) The SSD function can be activated by connecting the ACLx pin to COMx. It reduces the turn-off di/dt at turn-off to limit the Vce overvoltage as soon as a short-circuit condition is detected. Refer to "2SC0435T Description & Application Manual" for more information.
- 12) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to both SOx outputs and the power semiconductors are switched off.
- 13) Undervoltage monitoring of the secondary-side supply voltage (VISOx to VEx and VEx to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding SOx output.
- 14) Transmission delay of fault state from the secondary side to the corresponding primary status output.
- 15) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than $1200V_{AC(eff)}$ may lead to insulation degradation. No degradation has been observed over 1min. testing at $5000V_{AC(eff)}$. Every production sample shipped to customers has undergone 100% testing at the given value for 1s.
- 16) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.
- 17) Jitter measurements are performed with input signals INx switching between 0V and 5V referred to GND, with a corresponding rise time and fall time of 15ns.

RoHS Statement

On the basis of Annexes II and III of European Directive 2011/65/EC of 08 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), we hereby state that the products described in this datasheet do not contain lead (Pb), mercury (Hg), hexavalent chromium (Cr VI), cadmium (Cd), polibrometo of biphenyl (PBB) or polibrometo diphenyl ether (PBDE) in concentrations exceeding the restrictions set forth in Annex II of 2011/65/EC with due consideration of the applicable exemptions as listed in Annex III of 2011/65/EC.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Ordering Information

The general terms and conditions of delivery of Power Integrations Switzerland GmbH apply.

Type Designation	Description
2SC0435T2G1-17	Dual-channel SCALE-2+ driver core (Connector pin length of 3.1mm, increased EMI capability, SSD implemented, lead free)

Product home page: www.power.com/igbt-driver/go/2SC0435T

Refer to <u>www.power.com/igbt-driver/go/nomenclature</u> for information on driver nomenclature

Information about Other Products

For other drivers, product documentation, and application support

Please click: www.power.com

Manufacturer

Power Integrations Switzerland GmbH Johann-Renfer-Strasse 15 2504 Biel-Bienne, Switzerland

 Phone
 +41 32 344 47 47

 Fax
 +41 32 344 47 40

 Email
 igbt-driver.sales@power.com

 Website
 www.power.com/igbt-driver

© 2009...2015 Power Integrations Switzerland GmbH. All rights reserved. We reserve the right to make any technical modifications without prior notice. Version 1.3 from 2015-04-07

Power Integrations Worldwide High Power Customer Support Locations

World Headquarters

5245 Hellyer Avenue San Jose, CA 95138 | USA Main +1 408 414 9200 Customer Service: Phone +1 408 414 9665 Fax +1 408 414 9765 Email <u>usasales@power.com</u>

Switzerland (Biel)

Johann-Renfer-Strasse 15 2504 Biel-Bienne | Switzerland Phone +41 32 344 47 47 Fax +41 32 344 47 40 Email <u>igbt-driver.sales@power.com</u>

Germany (Ense)

HellwegForum 1 59469 Ense | Germany Phone +49 2938 643 9990 Email <u>igbt-driver.sales@power.com</u>

Germany (Munich)

Lindwurmstrasse 114 80337 Munich | Germany Phone +49 895 527 39110 Fax +49 895 527 39200 Email eurosales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88North Caoxi RoadShanghai, PRC 200030Phone+86 21 6354 6323Fax+86 21 6354 6325Emailchinasales@power.com

China (Shenzhen)

17/F, Hivac Building, No 2, Keji South 8th Road, Nanshan District Shenzhen | China, 518057 Phone +86 755 8672 8725 Fax +86 755 8672 8690 Hotline +86 400 0755 669 Email <u>chinasales@power.com</u>

Italy (Milano)

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni | Italy Phone +39 024 550 8701 Fax +39 028 928 6009 Email <u>eurosales@power.com</u>

UK (Herts)

First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts SG1 2EF | United Kingdom Phone +44 1252 730 141 Fax +44 1252 727 689 Email eurosales@power.com

India (Bangalore)

#1, 14th Main Road Vasanthanagar Bangalore 560052 | India Phone +91 80 4113 8020 Fax +91 80 4113 8023 Email indiasales@power.com

Japan (Kanagawa)

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 | Japan Phone +81 45 471 1021 Fax +81 45 471 3717 Email japansales@power.com

Korea (Seoul)

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu Seoul 135-728 | Korea Phone +82 2 2016 6610 Fax +82 2 2016 6630 Email <u>koreasales@power.com</u>

Taiwan (Taipei)

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493 | Taiwan R.O.C. Phone +886 2 2659 4570 Fax +886 2 2659 4550 Email <u>taiwansales@power.com</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Power Integrations: 2SC0435T2G1-17

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.