

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

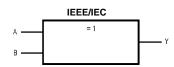
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

NC7ST86 TinyLogic® HST 2-Input Exclusive-OR Gate

General Description

FAIRCHILD

SEMICONDUCTOR


The NC7ST86 is a single 2-Input high performance CMOS Exclusive-OR Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and outputs with respect to the V_{CC} and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with ½ the output current drive of HC/HCT.

Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- \blacksquare High Speed; t_{PD} <8 ns typ, V_{CC} = 5V, C_L = 15 pF
- E Low Quiescent Power; I_{CC} <1 μ A typ, V_{CC} = 5.5V
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- TTL-compatible inputs

Ordering Code: Order Package Product Code Package Description Supplied As Number Number Top Mark NC7ST86M5X MA05B 8S86 5-Lead SOT23, JEDEC MO-178, 1.6mm 3k Units on Tape and Reel NC7ST86P5X MAA05A T86 5-Lead SC70, EIAJ SC-88a, 1.25mm Wide 3k Units on Tape and Reel NC7ST86L6X MAC06A D6 6-Lead MicroPak, 1.0mm Wide 5k Units on Tape and Reel

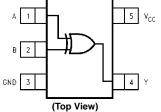
Logic Symbol

Pin Descriptions

Pin Names	Descriptions				
A, B	Input				
Y	Output				
NC	No Connect				

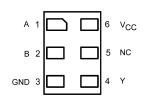
Function Table

	$\mathbf{Y}=\mathbf{A}\oplus\mathbf{B}$					
Inp	Inputs					
Α	В	Y				
L	L	L				
L	н	Н				
н	L	Н				
Н	н	L				


 $\mathsf{L} = \mathsf{LOW} \ \mathsf{Logic} \ \mathsf{Level}$

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2004 Fairchild Semiconductor Corporation DS012183



Connection Diagrams

Pin Assignments for SOT23 and SC70

Pad Assignments for MicroPak

(Top Thru View)

www.fairchildsemi.com

NC7ST86 TinyLogic® HST 2-Input Exclusive-OR Gate

Absolute Maximum Ratings(Note 1)

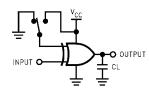
	-0.5V to +7.0V	Cor
Supply Voltage (V _{CC})	-0.5V 10 +7.0V	0
DC Input Diode Current (I _{IK})		Supp
$V_{IN} < -0.5V$	–20 mA	Input
$V_{IN} \ge V_{CC} + 0.5V$	+20 mA	Outp
DC Input Voltage (V _{IN})	–0.5V to V _{CC} +0.5V	Oper
DC Output Diode Current (I _{OK})		Input
$V_{OUT} < -0.5V$	–20 mA	V _C
$V_{OUT} > V_{CC} + 0.5V$	+20 mA	Ther
Output Voltage (V _{OUT})	–0.5V to V _{CC} +0.5V	SC
DC Output Source or Sink		SC
Current (I _{OUT})	±12.5 mA	
DC V _{CC} or Ground Current per		
Supply Pin (I _{CC} or I _{GND})	±25 mA	
Storage Temperature (T _{STG})	-65°C to +150°C	
Junction Temperature (T _J)	150°C	Note 1
Lead Temperature (T _L);		age to without
(Soldering, 10 seconds)	260°C	power
Power Dissipation (P _D) @+85°C		does no tions.
SOT23-5	200 mW	Note 2:
SC70-5	150 mW	

Recommended Operating Conditions (Note 2)

ply Voltage 4.5V to 5.5V ut Voltage (V_{IN}) 0V to $V_{\mbox{CC}}$ 0V to $\rm V_{\rm CC}$ put Voltage (V_{OUT}) $-40^\circ C$ to $+85^\circ C$ erating Temperature (T_A) ut Rise and Fall Time (t_r, t_f) _{CC} = 5.0V 0 to 500 ns ermal Resistance (θ_{JA}) 300°C/W OT23-5 C70-5 425°C/W

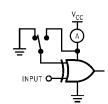
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Cymbol	i ululiotoi	(V)	Min	Тур	Max	Min	Max	onno	Conditions
VIH	HIGH Level Input Voltage	4.5-5.5	2.0			2.0		V	
V _{IL}	LOW Level Input Voltage	4.5-5.5			0.8		0.8	V	
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4		V	$I_{OH}=-20~\mu\text{A},~V_{IN}=V_{IL},$
		4.5	4.18	4.35		4.13		V	$V_{IH} I_{OH} = -2 \text{ mA}$
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1	V	$I_{OL}=20~\mu\text{A},~V_{IN}=V_{IL},$
		4.5		0.10	0.26		0.33	V	$V_{IH} I_{OL} = 2 \text{ mA}$
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μΑ	$V_{IN} = V_{CC}$ or GND
ICCT	I _{CC} per Input	5.5			2.0		2.9	mA	One Input $V_{IN} = 0.5V$ or 2.4V,
									Other Input V _{CC} or GND

Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
Symbol			Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		4.4	14			ns $C_{L} = 15 \text{ p}$ ns $C_{L} = 50 \text{ p}$	a (C) (15 m)	Figures 1, 3
t _{PHL}		5.0		7.4	19				CL = 15 pr	
		4.5		6.6	18		22		C _L = 50 pF	
		4.5		13.1	29		33			
		5.5		5.6	16		20			
	5.5		12.5	28		32				
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	$C_L = 15 \text{ pF}$	Figures 1, 3
t _{THL}		4.5		11	25		31		C _L = 50 pF	
		5.5		10	21		26	ns		
CIN	Input Capacitance	Open		2	10			pF		
C _{PD}	Power Dissipation Capacitance	5.0		8		1		рF	(Note 3)	Figure 2

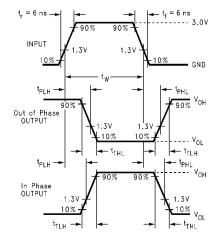
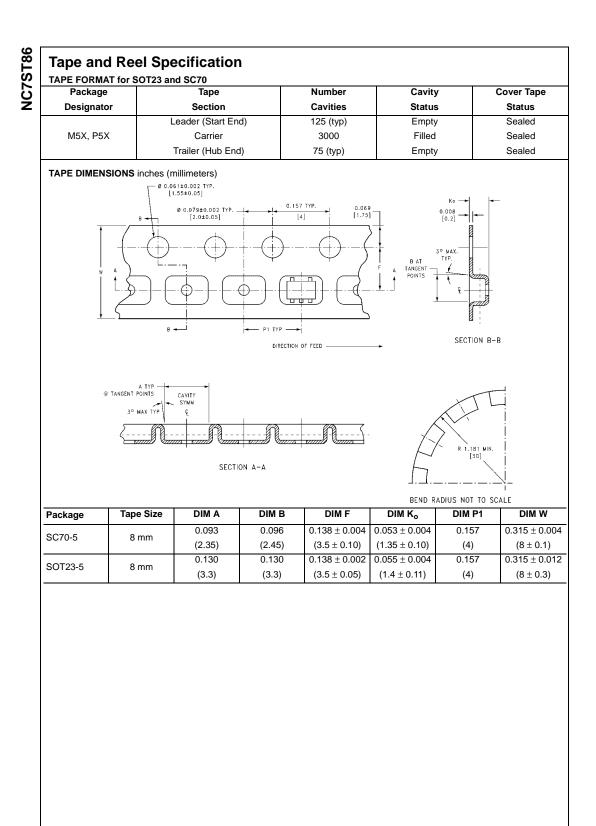
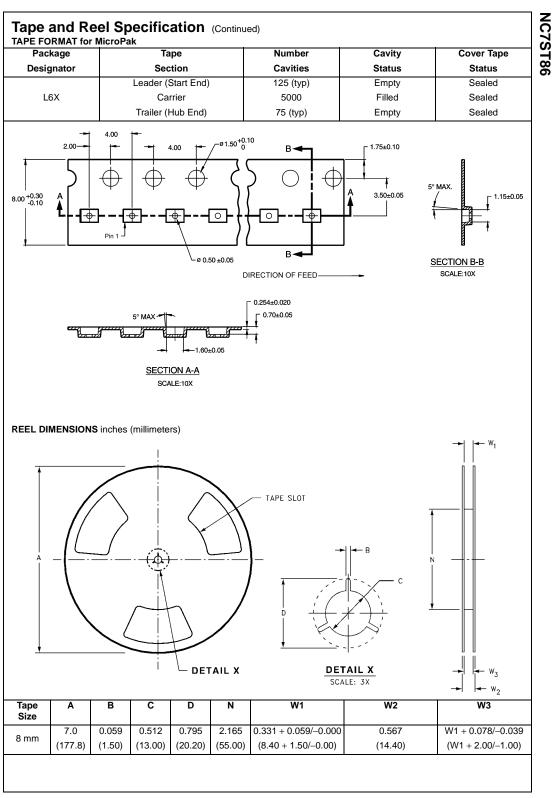

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).$

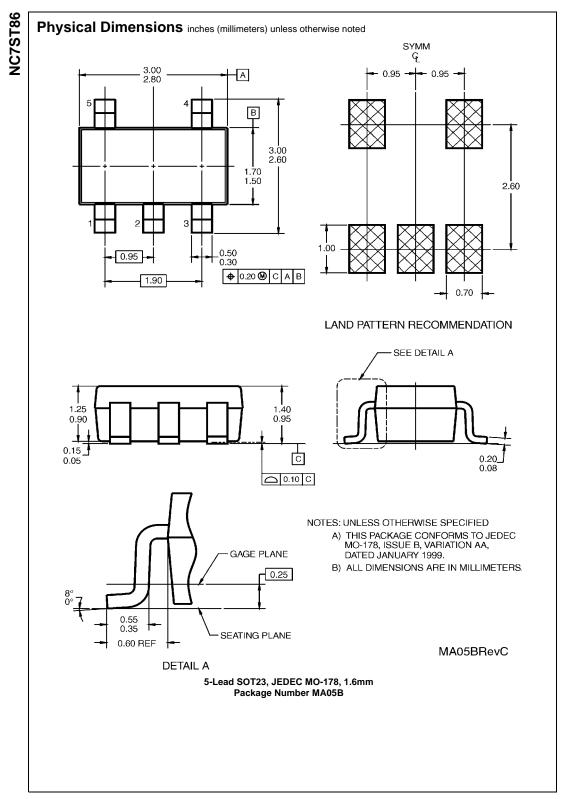
AC Loading and Waveforms

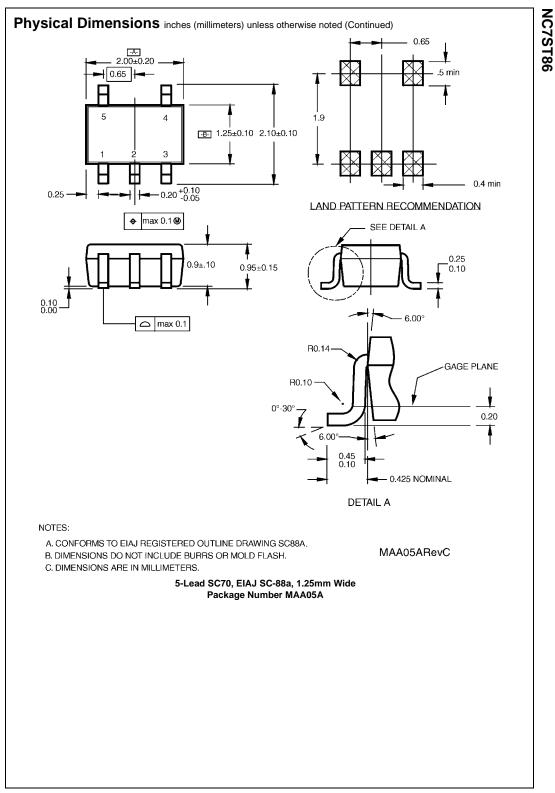
 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz, t_{w} = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveforms; PRR = Variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms


www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NC7ST86L6X

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.