

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

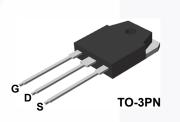
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese



## FDA18N50 N-Channel UniFET<sup>™</sup> MOSFET 500 V, 19 A, 265 mΩ

#### Features


- $R_{DS(on)}$  = 265 m $\Omega$  (Max.) @ V<sub>GS</sub> = 10 V, I<sub>D</sub> = 9.5 A
- Low Gate Charge (Typ. 45 nC)
- Low C<sub>rss</sub> (Typ. 25 pF)
- 100% Avalanche Tested

#### Applications

- PDP TV
- Uninterruptible Power Supply
- AC-DC Power Supply

### Description

UniFET<sup>TM</sup> MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.





#### Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted.

| Symbol                           |                                        | Parameter                                                                     |          | FDA18N50    | Unit      |
|----------------------------------|----------------------------------------|-------------------------------------------------------------------------------|----------|-------------|-----------|
| V <sub>DSS</sub>                 | Drain-Source Voltag                    | ge                                                                            |          | 500         | V         |
| I <sub>D</sub>                   | Drain Current                          | - Continuous ( $T_C = 25^{\circ}C$ )<br>- Continuous ( $T_C = 100^{\circ}C$ ) |          | 19<br>11.4  | AA        |
| I <sub>DM</sub>                  | Drain Current                          | - Pulsed                                                                      | (Note 1) | 76          | A         |
| V <sub>GSS</sub>                 | Gate-Source voltag                     | е                                                                             |          | ±30         | V         |
| E <sub>AS</sub>                  | Single Pulsed Avala                    | anche Energy                                                                  | (Note 2) | 945         | mJ        |
| I <sub>AR</sub>                  | Avalanche Current                      |                                                                               | (Note 1) | 19          | A         |
| E <sub>AR</sub>                  | Repetitive Avalanch                    | ne Energy                                                                     | (Note 1) | 23          | mJ        |
| dv/dt                            | Peak Diode Recove                      | ery dv/dt                                                                     | (Note 3) | 4.5         | V/ns      |
| P <sub>D</sub>                   | Power Dissipation                      | (T <sub>C</sub> = 25°C)<br>- Derate above 25°C                                |          | 239<br>1.92 | W<br>W/°C |
| T <sub>J,</sub> T <sub>STG</sub> | Operating and Stora                    | age Temperature Range                                                         |          | -55 to +150 | °C        |
| TL                               | Maximum Lead Ter<br>1/8" from Case for | nperature for Soldering Purpose<br>5 Seconds                                  | Э,       | 300         | °C        |

### **Thermal Characteristics**

| Symbol                | Parameter                                     | FDA18N50 | Unit |
|-----------------------|-----------------------------------------------|----------|------|
| $R_{	ext{	heta}JC}$   | Thermal Resistance, Junction-to-Case, Max.    | 0.52     | °C/W |
| $R_{	extsf{	heta}JA}$ | Thermal Resistance, Junction-to-Ambient, Max. | 40       | C/W  |

FDA18N50 — N-Channel UniFET<sup>TM</sup> MOSFET

| FDA18N50 — N-    | N-Channel | In | nel | UniFl | E  | E        | M  |    | MOS | FE | - |   |       |    |    |  |
|------------------|-----------|----|-----|-------|----|----------|----|----|-----|----|---|---|-------|----|----|--|
|                  |           |    |     |       |    |          |    |    |     |    |   |   |       |    |    |  |
| <b>ity</b><br>ts | Unit      |    | V   | V/°C  | μA | μΑ<br>μΑ | nA | nA |     | V  | Ω | S | pF    | pF | pF |  |
| nt               | (         |    |     |       |    |          |    |    |     |    | 5 |   | <br>) |    |    |  |

## Package Marking and Ordering Information

| Device Marking | Device   | Package | Reel Size | Tape Width | Quantity |
|----------------|----------|---------|-----------|------------|----------|
| FDA18N50       | FDA18N50 | TO-3PN  | Tube      | N/A        | 30 units |

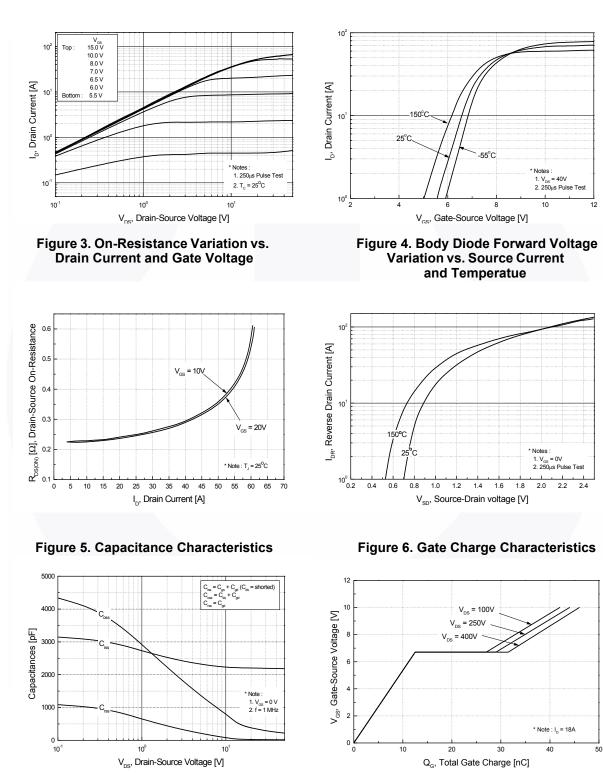
## **Electrical Characteristics** $T_{C} = 25^{\circ}C$ unless otherwise noted.

| Symbol                                  | Parameter                                    | Conditions                                                            | Min. | Тур.  | Max     | Unit     |
|-----------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|------|-------|---------|----------|
| Off Charac                              | teristics                                    | 1                                                                     |      | 1     | 1       |          |
| BV <sub>DSS</sub>                       | Drain-Source Breakdown Voltage               | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250µA                          | 500  |       |         | V        |
| ΔBV <sub>DSS</sub><br>/ ΔT <sub>J</sub> | Breakdown Voltage Temperature<br>Coefficient | $I_D = 250\mu A$ , Referenced to $25^{\circ}C$                        |      | 0.5   |         | V/°C     |
| I <sub>DSS</sub>                        | Zero Gate Voltage Drain Current              | $V_{DS} = 500V, V_{GS} = 0V$<br>$V_{DS} = 400V, T_{C} = 125^{\circ}C$ |      |       | 1<br>10 | μΑ<br>μΑ |
| I <sub>GSSF</sub>                       | Gate-Body Leakage Current, Forward           | V <sub>GS</sub> = 30V, V <sub>DS</sub> = 0V                           |      |       | 100     | nA       |
| I <sub>GSSR</sub>                       | Gate-Body Leakage Current, Reverse           | V <sub>GS</sub> = -30V, V <sub>DS</sub> = 0V                          |      |       | -100    | nA       |
| On Charac                               | teristics                                    |                                                                       |      | I     |         |          |
| V <sub>GS(th)</sub>                     | Gate Threshold Voltage                       | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                    | 3.0  |       | 5.0     | V        |
| R <sub>DS(on)</sub>                     | Static Drain-Source<br>On-Resistance         | V <sub>GS</sub> = 10V, I <sub>D</sub> = 9.5A                          |      | 0.220 | 0.265   | Ω        |
| 9 <sub>FS</sub>                         | Forward Transconductance                     | V <sub>DS</sub> = 40V, I <sub>D</sub> = 9.5A                          | -    | 25    |         | S        |
| Dynamic C                               | Characteristics                              |                                                                       |      | r.    |         |          |
| C <sub>iss</sub>                        | Input Capacitance                            | $V_{DS}$ = 25V, $V_{GS}$ = 0V,                                        |      | 2200  | 2860    | pF       |
| C <sub>oss</sub>                        | Output Capacitance                           | f = 1.0MHz                                                            | -    | 330   | 430     | pF       |
| C <sub>rss</sub>                        | Reverse Transfer Capacitance                 |                                                                       |      | 25    | 40      | pF       |
| Switching                               | Characteristics                              |                                                                       |      |       |         |          |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                           | V <sub>DD</sub> = 250V, I <sub>D</sub> = 19A                          |      | 55    | 120     | ns       |
| t <sub>r</sub>                          | Turn-On Rise Time                            | $R_{G} = 25\Omega$                                                    |      | 165   | 340     | ns       |
| t <sub>d(off)</sub>                     | Turn-Off Delay Time                          |                                                                       | -    | 95    | 200     | ns       |
| t <sub>f</sub>                          | Turn-Off Fall Time                           | (Note 4)                                                              | -    | 90    | 190     | ns       |
| Qg                                      | Total Gate Charge                            | V <sub>DS</sub> = 400V, I <sub>D</sub> = 19A                          |      | 45    | 60      | nC       |
| Q <sub>gs</sub>                         | Gate-Source Charge                           | V <sub>GS</sub> = 10V                                                 |      | 12.5  |         | nC       |
| Q <sub>gd</sub>                         | Gate-Drain Charge                            | (Note 4)                                                              | -    | 19    |         | nC       |
| Drain-Sou                               | rce Diode Characteristics and Maximu         | n Ratings                                                             |      | 1     | 1       |          |
| I <sub>S</sub>                          | Maximum Continuous Drain-Source Dio          | de Forward Current                                                    |      |       | 19      | Α        |
| I <sub>SM</sub>                         | Maximum Pulsed Drain-Source Diode F          | orward Current                                                        |      |       | 76      | Α        |
| V <sub>SD</sub>                         | Drain-Source Diode Forward Voltage           | V <sub>GS</sub> = 0V, I <sub>S</sub> = 19A                            |      |       | 1.4     | V        |
| t <sub>rr</sub>                         | Reverse Recovery Time                        | V <sub>GS</sub> = 0V, I <sub>S</sub> = 19A                            |      | 500   |         | ns       |
| Q <sub>rr</sub>                         | Reverse Recovery Charge                      | dI <sub>F</sub> /dt =100A/μs                                          |      | 5.4   |         | μC       |

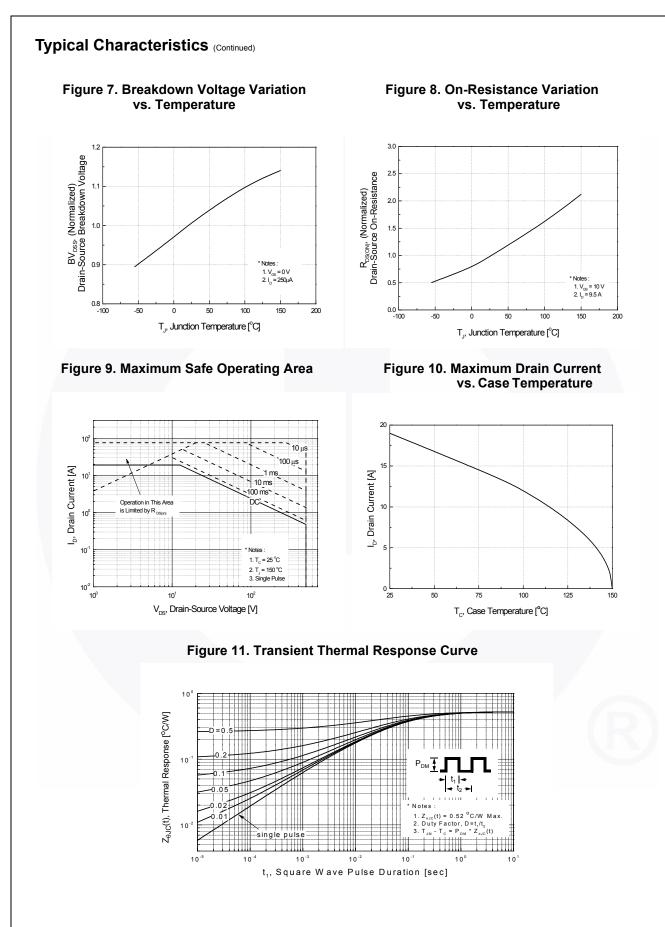
#### NOTES:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

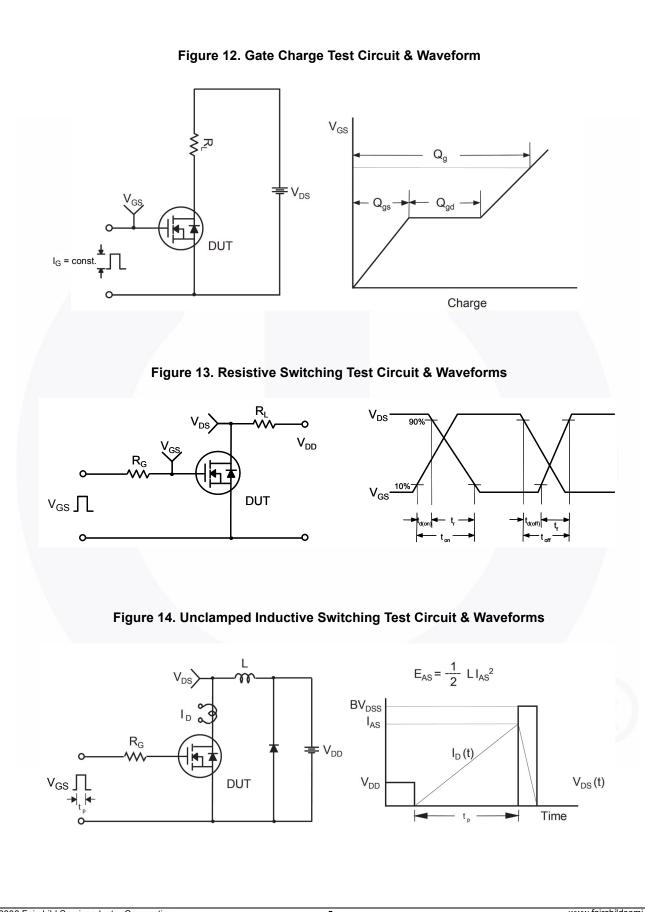
2. L = 4.7mH, I\_{AS} = 19A, V\_DD = 50V, R\_G = 25 $\Omega$ , Starting T\_J = 25°C


3. I\_{SD} \leq 19A, di/dt  $\leq$  200A/µs, V\_{DD}  $\leq$  BV\_{DSS}, Starting T\_J = 25°C

4. Essentially Independent of Operating Temperature Typical Characteristics


## **Typical Characteristics**




Figure 2. Transfer Characteristics



FDA18N50 — N-Channel UniFET<sup>TM</sup> MOSFET



4



5

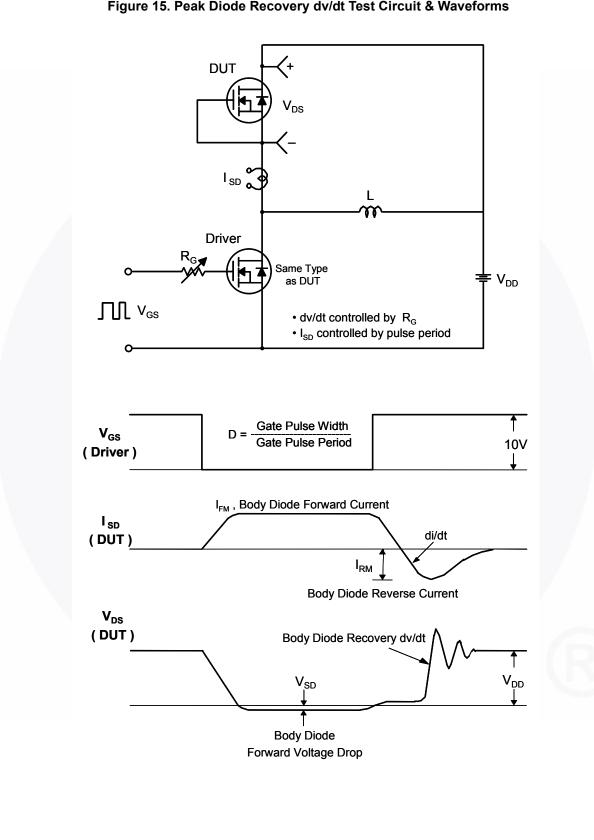
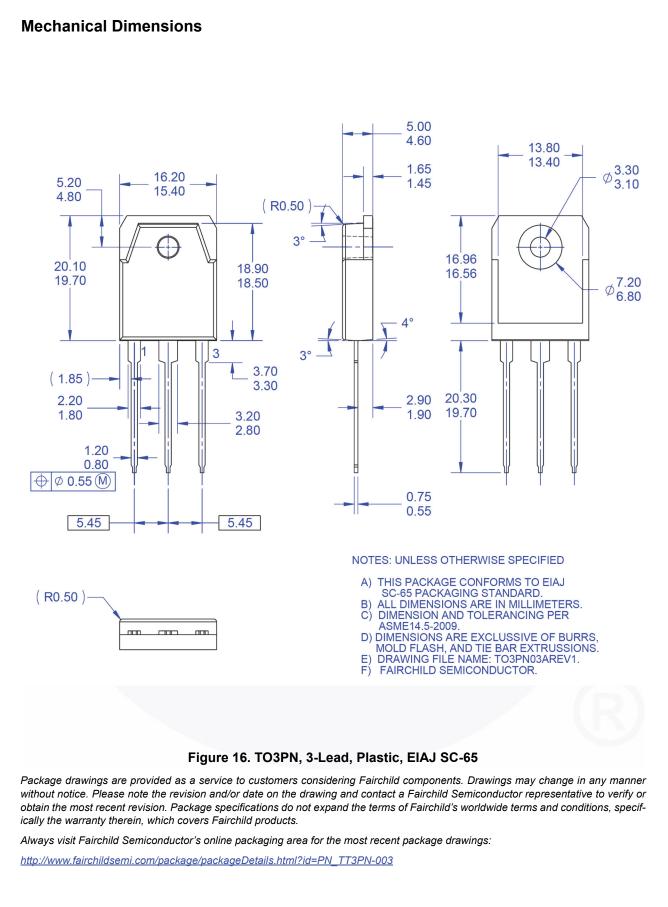




Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms





ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDA18N50



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.