AUTOMOTIVI GRADE

Available

ROHS

HALOGEN FREE

Vishay General Semiconductor

High Current Density Surface Mount Trench MOS Barrier Schottky Rectifier

Ultra Low $V_F = 0.43 \text{ V}$ at $I_F = 5 \text{ A}$

PRIMARY CHARACTERISTICS			
I _{F(AV)}	12 A		
V_{RRM}	100 V		
I _{FSM}	200 A		
E _{AS}	100 mJ		
V _F at I _F = 12 A	0.58 V		
T _J max.	150 °C		

TYPICAL APPLICATIONS

For use in low voltage high frequency inverters, freewheeling, DC/DC converters and polarity protection applications.

FEATURES

- Very low profile typical height of 1.1 mm
- Ideal for automatic placement
- Trench MOS Schottky technology
- Low forward voltage drop, low power losses
- High efficiency operation
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21 definition

MECHANICAL DATA

Case: TO-277A (SMPC)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS compliant, and

commercial grade

Base P/NHM3 - halogen-free, RoHS compliant, and

automotive grade

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test, HM3 suffix meets JESD 201 class 2 whisker test

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)				
PARAMETER	SYMBOL	V12P10	UNIT	
Device marking code		V1210		
Maximum repetitive peak reverse voltage	V _{RRM}	100	V	
Maximum average forward rectified current (fig. 1)	I _{F(AV)}	12	А	
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	200	А	
Non-repetitive avalanche energy at $I_{AS} = 2.0 \text{ A}$, $T_{J} = 25 ^{\circ}\text{C}$	E _{AS}	100	mJ	
Peak repetitive reverse current at t_p = 2 μ s, 1 kHz, T_J = 38 °C \pm 2 °C	I _{RRM}	1.0	А	
Operating junction and storage temperature range	T _J , T _{STG}	- 40 to + 150	°C	

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT
Breakdown voltage	$I_R = 1.0 \text{ mA}$	T _A = 25 °C	V_{BR}	100 (minimum)	-	
Instantaneous forward voltage	I _F = 5 A	—— T _∧ = 25 °C	V _F ⁽¹⁾	0.50	-	V
	I _F = 12 A			0.65	0.70	
	I _F = 5 A	T _A = 125 °C		0.43	-	
	I _F = 12 A			0.58	0.64	
Reverse current	V _D = /() V	T _A = 25 °C	I _R ⁽²⁾	7.0	-	μΑ
		T _A = 125 °C		4.4	-	mA
	V _R = 100 V	T _A = 25 °C		21.3	250	μΑ
		T _A = 125 °C		11.8	20	mA

Notes

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

(2) Pulse test: Pulse width \leq 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise specified)				
PARAMETER	SYMBOL V12P10		UNIT	
Typical thermal resistance	R ₀ JA (1)	60	°C/W	
Typical triefmal resistance	$R_{ hetaJL}$	3		

Note

⁽¹⁾ Units mounted on recommended PCB 1 oz. pad layout

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
V12P10-M3/86A	0.10	86A	1500	7" diameter plastic tape and reel	
V12P10-M3/87A	0.10	87A	6500	13" diameter plastic tape and reel	
V12P10HM3/86A (1)	0.10	86A	1500	7" diameter plastic tape and reel	
V12P10HM3/87A (1)	0.10	87A	6500	13" diameter plastic tape and reel	

Note

(1) Automotive grade

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

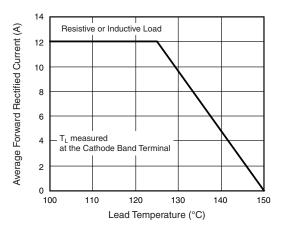


Fig. 1 - Maximum Forward Current Derating Curve

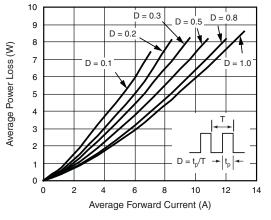


Fig. 2 - Forward Power Loss Characteristics

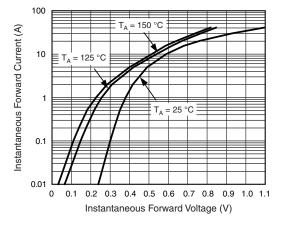


Fig. 3 - Typical Instantaneous Forward Characteristics

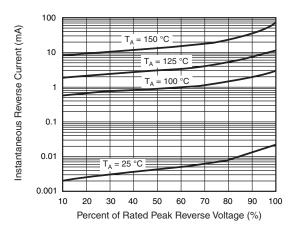


Fig. 4 - Typical Reverse Leakage Characteristics

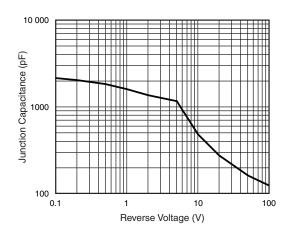


Fig. 5 - Typical Junction Capacitance

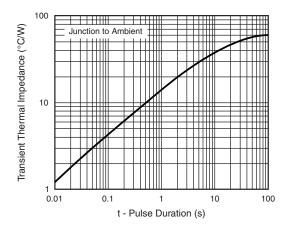
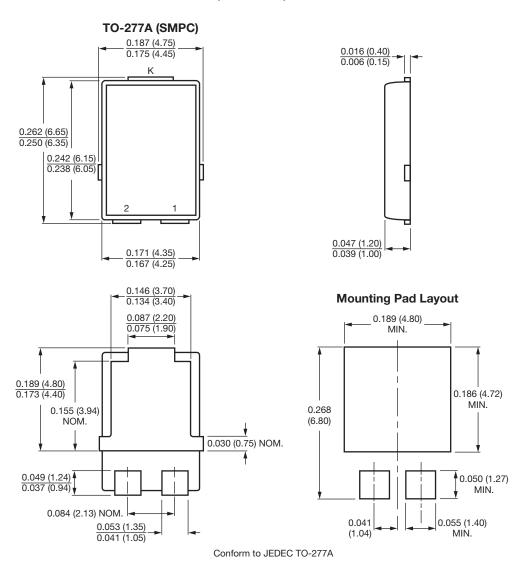


Fig. 6 - Typical Transient Thermal Impedance


Document Number: 88981

Revision: 26-Sep-11

Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.