This data sheet is applicable to all TMS41x400As symbolized by Revision "B", Revision "E" and subsequent revisions as described in the device symbolization section.

- Organization . . . 4194304 × 4
- Single 5-V Power Supply (±10% Tolerance)
- 2048-Cycle Refresh in 32 ms for TMS417400A
- 4096-Cycle Refresh in 64 ms for TMS416400A
- Performance Ranges:

	ACCESS TIME ^t RAC MAX	ACCESS TIME ^t CAC MAX	ACCESS TIME ^t AA MAX	READ OR WRITE CYCLE MIN
'41x400A-50	50 ns	13 ns	25 ns	90 ns
'41x400A-60	60 ns	15 ns	30 ns	110 ns
'41x400A-70	70 ns	18 ns	35 ns	130 ns

- Enhanced Page-Mode Operation With CAS-Before-RAS (CBR) Refresh
- 3-State Unlatched Output
- Low Power Dissipation
- High-Reliability Plastic 24/26-Lead 300-Mil-Wide Surface-Mount Small-Outline J-Lead (SOJ) Package (DJ Suffix)
- Ambient Temperature Range: 0°C to 70°C

I	DJ PACH (TOP VI		E
V _{CC}	1	26	USS
DQ1	2	25	DQ4
DQ2	3	24	DQ3
W	4	23	CAS
RAS	5	22	OE
A11 [†]	6	21	A9
A10	8	19	A8
A0	9	18	A7
A1	10	17	A6
A2	11	16	A5
A3	12	15	A4
V _{CC}	13	14	V _{SS}

PIN NOMENCLATURE					
A[0:11] [†]	Address Inputs				
CAS	Column-Address Strobe				
DQ[1:4]	Data In/Data Out				
OE	Output Enable				
NC	No Internal Connection				
RAS	Row-Address Strobe				
VCC	5-V Supply				
VSS	Ground				
W	Write Enable				

[†]A11 is NC for TMS417400A

description

The TMS41x400A is a set of 16 777 216-bit dynamic random-access memory (DRAMs) devices organized as 4194304 words of 4 bits each. The TMS41x400A employs state-of-the-art technology for high performance, reliability, and low power.

These devices feature maximum RAS access times of 50-, 60-, and 70 ns. All address and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The TMS416400A and TMS417400A are offered in a 24/26-lead plastic surface-mount SOJ package (DJ suffix). This package is designed for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

logic symbol (TMS416400A)[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 647-12.

logic symbol (TMS417400A)[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 647-12.

SMKS889B – AUGUST 1996 – REVISED OCTOBER 1997

functional block diagram

TMS416400A

[†]Column addresses A10 and A11 are not used.

TMS417400A

operation

enhanced page mode

Enhanced page-mode operation allows faster memory access by keeping the same row address while selecting random column addresses. The time for row-address setup and hold and address multiplex is eliminated. The maximum number of columns that can be accessed is determined by t_{RASP}, the maximum RAS low time.

Unlike conventional page-mode DRAMs, the column-address buffers in these devices are activated on the falling edge of RAS. The buffers act as transparent or flow-through latches while CAS is high. The falling edge of CAS latches the column addresses and enables the output. This feature allows the devices to operate at a higher data bandwidth than conventional page-mode devices because data retrieval begins as soon as the column address is valid rather than when CAS transitions low. This performance improvement is referred to as enhanced-page mode. A valid column address can be presented immediately after row-address hold time has been satisfied, usually well in advance of the falling edge of CAS. In this case, data is obtained after t_{CAC} max (access time from CAS low) if t_{AA} max (access time from column address) and t_{RAC} have been satisfied. In the event that column address for the next cycle is valid at the time CAS goes high, access time for the next cycle is determined by the later occurrence of t_{CPA} or t_{CAC} .

address: A0-A11 (TMS416400A) and A0-A10 (TMS417400A)

Twenty-two address bits are required to decode each of the 4194304 storage cell locations. For the TMS416400A, 12 row-address bits are set up on A0 through A11 and latched onto the chip by the row-address strobe (\overline{RAS}). Ten column-address bits are set up on A0 through A9. For TMS417400A, 11 row-address bits are set up on inputs A0 through A10 and latched onto the chip by \overline{RAS} . Eleven column-address bits are set up on A0 through A10. All addresses must be stable on or before the falling edge of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable because it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select, activating the output buffers and latching the address bits into the column-address buffers.

write enable (\overline{W})

The read- or write mode is selected through \overline{W} . A logic high on \overline{W} selects the read mode, and a logic low selects the write mode. The data inputs are disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} (early write), data out remains in the high-impedance state for the entire cycle, permitting a write operation with \overline{OE} grounded.

data in (DQ1-DQ4)

Data is written during a write- or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. In an early-write cycle, \overline{W} is brought low prior to \overline{CAS} , and the data is strobed in by \overline{CAS} with setup-and-hold times referenced to this signal. In a delayed-write- or read-modify-write cycle, \overline{CAS} is already low, and the data is strobed in by \overline{W} with the setup-and-hold time referenced to this signal. Also, \overline{OE} must be high to bring the output buffers to the high-impedance state prior to impressing data on the I/O lines.

data out (DQ1-DQ4)

Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} and \overline{OE} are brought low. In a read cycle, the output becomes valid after the access-time interval t_{CAC} (which begins with the negative transition of \overline{CAS}) as long as t_{RAC} and t_{AA} are satisfied.

SINK3009B - AUGUST 1990 - REVISE

RAS-only refresh

TMS416400A

A refresh operation must be performed at least once every 64 ms to retain data. This can be achieved by strobing each of the 4 096 rows (A0–A11). A normal read- or write cycle refreshes all bits in each row that is selected. A \overline{RAS} -only operation can be used by holding \overline{CAS} at the high (inactive) level, conserving power as the output buffers remain in the high-impedance state. Externally generated addresses must be used for a \overline{RAS} -only refresh.

TMS417400A

A refresh operation must be performed at least once every 32 ms to retain data. This can be achieved by strobing each of the 2 048 rows (A0–A10). A normal read- or write cycle refreshes all bits in each row that is selected. A \overline{RAS} -only operation can be used by holding \overline{CAS} at the high (inactive) level, conserving power as the output buffers remain in the high-impedance state. Externally generated addresses must be used for a \overline{RAS} -only refresh.

hidden refresh

Hidden refresh can be performed while maintaining valid data at the output pin. This is accomplished by holding \overline{CAS} at V_{IL} after a read operation and cycling \overline{RAS} after a specified precharge period, similar to a \overline{RAS} -only refresh cycle. The external address is ignored, and the refresh address is generated internally.

CAS-before-RAS (CBR) refresh

CBR refresh is utilized by bringing \overline{CAS} low earlier than \overline{RAS} (see parameter t_{CSR}) and holding it low after \overline{RAS} falls (see parameter t_{CHR}). For successive CBR refresh cycles, \overline{CAS} can remain low while cycling \overline{RAS} . The external address is ignored, and the refresh address is generated internally.

power up

To achieve proper device operation, an initial pause of 200 μ s, followed by a minimum of eight initialization cycles, is required after power up to the full V_{CC} level. These eight initialization cycles must include at least one refresh (RAS-only or CBR) cycle.

test mode

The test mode is initiated with a CBR-refresh cycle while simultaneously holding the \overline{W} input low. The entry cycle performs an internal-refresh cycle while internally setting the device to perform a parallel read or write on subsequent cycles. While in the test mode, any data sequence can be performed. The device exits test mode if a CBR-refresh cycle (with \overline{W} held high) or a \overline{RAS} -only refresh cycle is performed.

In the test mode, the device is configured as 1 024K bits × 4 bits for each DQ. Each DQ pin has a separate 4-bit parallel-read- and write data bus that ignores column addresses A0 and A1. During a read cycle, the four internal bits are compared for each DQ pin separately. If the four bits agree, DQ goes high; if not, DQ goes low. Test time is reduced by a factor of four for this series of events.

NOTE A: The states of \overline{W} , data in, and address are defined by the type of cycle used during test mode.

Figure 1. Test-Mode Cycle

SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997

absolute maximum ratings over ambient temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	\ldots – 1 V to 7 V
Voltage range on any pin (see Note 1)	\ldots –1 V to 7 V
Short-circuit output current	
Power dissipation	1 W
Ambient temperature range, T _A	
Storage temperature range, T _{stg}	– 55°C to 125°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to VSS.

recommended operating conditions

		TMS41x400A)A	UNIT
		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V
VSS	Supply voltage		0		V
VIH	High-level input voltage	2.4		6.5	V
VIL	Low-level input voltage (see Note 2)	- 1		0.8	V
т _А	Ambient temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.

electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted)

TMS416400A

	PARAMETER	+	'416400	A-50	'41640	0A-60	'41640	0A-70	UNIT
	PARAMETER	TEST CONDITIONS [†]	MIN	MAX	MIN MAX		MIN MAX		UNIT
V _{OH}	High-level output voltage	I _{OH} = - 5 mA	2.4		2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4		0.4	V
II.	Input current (leakage)	$\label{eq:VCC} \begin{array}{ll} V_{CC} = 5.5 \ V, & V_{I} = 0 \ V \ \text{to} \ 6.5 \ V, \\ \mbox{All others} = 0 \ V \ \text{to} \ V_{CC} \end{array}$		± 10		± 10		± 10	μΑ
IO	Output current (leakage)	$\frac{V_{CC}}{CAS} = 5.5 \text{ V}, \qquad V_{O} = 0 \text{ V to } V_{CC},$		± 10		± 10		± 10	μA
I _{CC1} ‡§	Average read- or write-cycle current	V _{CC} = 5.5 V, Minimum cycle		100		80		70	mA
	Average standby	V _{IH} = 2.4 V (TTL), <u>After</u> one <u>mem</u> ory cycle, RAS and CAS high		2		2		2	mA
ICC2	current	V _{IH} = V _{CC} – 0.2 V (CMOS), <u>After</u> one <u>mem</u> ory cycle, RAS and CAS high		1		1		1	mA
ICC3‡§	Average <u>refr</u> esh current (RAS-only refresh or CBR)	V _{CC} = 5.5 V,Minimum cycle,RAS cycling,		100		80		70	mA
ICC4 ^{‡¶}	Average page current	$\frac{V_{CC}}{RAS low,} = 5.5 \text{ V}, \qquad \frac{t_{PC}}{CAS} = \text{MIN},$		80		70		60	mA

[†] For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

[‡]Measured with outputs open

§ Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$

¶ Measured with a maximum of one address change during each page-mode cycle, tpc.

SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997

electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued)

TMS417400A

PARAMETER			'41740	0A-50	'417400A-60		'417400A-70		UNIT
F	ARAMEIER	TEST CONDITIONS [†]	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = – 5 mA	2.4		2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4		0.4	V
l	Input current (leakage)	$V_{CC} = 5.5 \text{ V},$ $V_I = 0 \text{ V} \text{ to } 6.5 \text{ V},$ All others = 0 V to V_{CC}		± 10		± 10		± 10	μΑ
IO	Output current (leakage)	$\frac{V_{CC}}{CAS} = 5.5 \text{ V}, \qquad V_{O} = 0 \text{ V to } V_{CC},$		± 10		± 10		± 10	μΑ
I _{CC1} ‡§	Average read- or write-cycle current	V _{CC} = 5.5 V, Minimum cycle		130		110		100	mA
1000	Average standby	V _{IH} = 2.4 V (TTL), <u>After</u> one <u>memory</u> cycle, RAS and CAS high		2		2		2	mA
ICC2	current	$V_{IH} = V_{CC} - 0.2 V (CMOS),$ After one memory cycle, RAS and CAS high		1		1		1	mA
ICC3 ^{‡§}	Average refresh current (RAS-only refresh or CBR)	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 5.5 \text{ V}, \\ \hline \hline RAS \\ RAS \text{ low after CAS} \\ \hline RAS \text{ low after CAS} \\ \hline \end{array} \begin{array}{l} \underset{\text{Minimum cycle,}}{\text{Minimum cycle,}} \\ \hline \hline CAS \\ \hline \text{high (RAS only),} \\ \hline \hline \end{array}$		130		110		100	mA
ICC4 ^{‡¶}	Average page current	$\frac{V_{CC}}{RAS} = 5.5 \text{ V}, \qquad \frac{t_{PC}}{CAS} = \text{MIN},$ RAS low, CAS cycling		90		70		60	mA

[†] For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.

[‡] Measured with outputs open

§ Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$

I Measured with a maximum of one address change during each page-mode cycle, tpc.

capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 3)

	PARAMETER				
C _{i(A)}	Input capacitance, A0-A11 [†]		5	pF	
C _{i(OE)}	Input capacitance, OE		7	pF	
C _{i(RC)}	Input capacitance, CAS and RAS		7	pF	
C _{i(W)}	Input capacitance, W		7	pF	
Co	Output capacitance [‡]		7	pF	

[†]A11 is NC (no internal connection) for TMS417400A.

 $\ddagger \overline{CAS} = V_{IH}$ to disable outputs.

NOTE 3: V_{CC} = 5 V ±10%, and the bias on pins under test is 0 V.

switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 4)

	PARAMETER	'41x400	A-50	'41x400	A-60	'41x400	A-70	UNIT
	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{AA}	Access time from column address		25		30		35	ns
^t CAC	Access time from CAS		13		15		18	ns
^t CPA	Access time from CAS precharge		30		35		40	ns
^t RAC	Access time from RAS		50		60		70	ns
^t OEA	Access time from OE		13		15		18	ns
^t CLZ	Delay time, CAS to output in low-impedance state	0		0		0		ns
tОН	Output data hold time from CAS	3		3		3		ns
^t OHO	Output data hold time from OE	3		3		3		ns
^t OFF	Output buffer turn-off delay from CAS (see Note 5)	0	13	0	15	0	18	ns
^t OEZ	Output buffer turn-off delay from \overline{OE} (see Note 5)	0	13	0	15	0	18	ns

NOTES: 4. With ac parameters, it is assumed that $t_T = 5$ ns.

5. tOFF and tOEZ are specified when the output is no longer driven. Data-in should not be enabled until one of the maximum values is satisfied.

SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997

ac timing requirements (see Note 4)

		'41x4	00A-50	'41x4	00A-60	'41x4	00A-70	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
^t RC	Cycle time, read	90		110		130		ns	
tWC	Cycle time, write	90		110		130		ns	
^t RWC	Cycle time, read-write	131		155		181		ns	
^t PC	Cycle time, page-mode read or write (see Note 6)	35		40		45		ns	
^t PRWC	Cycle time, page-mode read-write	76		85		96		ns	
^t RASP	Pulse duration, RAS active, page mode (see Note 7)	50	100 000	60	100 000	70	100 000	ns	
^t RAS	Pulse duration, RAS active, nonpage mode (see Note 7)	50	10 000	60	10 000	70	10 000	ns	
tCAS	Pulse duration, CAS active (see Note 8)	13	10 000	15	10 000	18	10 000	ns	
^t CP	Pulse duration, CAS precharge	8		10		10		ns	
^t RP	Pulse duration, RAS precharge	30		40		50		ns	
tWP	Pulse duration, write command	10		10		10		ns	
tASC	Setup time, column address	0		0		0		ns	
^t ASR	Setup time, row address	0		0		0		ns	
tDS	Setup time, data-in (see Note 9)	0		0		0		ns	
^t RCS	Setup time, read command	0		0		0		ns	
^t CWL	Setup time, write command before CAS precharge	13		15		18		ns	
^t RWL	Setup time, write command before RAS precharge	13		15		18		ns	
tWCS	Setup time, write command before CAS active (early-write only)	0		0		0		ns	
twrp	Setup time, write before RAS active (CBR refresh only)	10		10		10		ns	
twts	Setup time, write command before RAS active (test mode only)	10		10		10		ns	
^t CAH	Hold time, column address	10		10		15		ns	
^t DH	Hold time, data-in (see Note 9)	10		10		15		ns	
^t RAH	Hold time, row address	8		10		10		ns	
^t RCH	Hold time, read command referenced to CAS (see Note 10)	0		0		0		ns	
^t RRH	Hold time, read command referenced to RAS (see Note 10)	0		0		0		ns	
^t WCH	Hold time, write command during CAS active (early-write only)	10		10		15		ns	
^t RHCP	Hold time, RAS active from CAS precharge	30		35		40		ns	
tOEH	Hold time, OE command	13		15		18		ns	
^t ROH	Hold time, RAS referenced to OE	10		10		10		ns	
tWRH	Hold time, write after RAS active (CBR refresh only)	10		10		10		ns	
tWTH	Hold time, write command after RAS active (test mode only)	10		10		10		ns	

NOTES: 4. With ac parameters, it is assumed that $t_T = 5$ ns.

6. To assure tpc min, tASC should be \geq tCP.

7. In a read-write cycle, t_{RWD} and t_{RWL} must be observed.

In a read-write cycle, t_{CWD} and t_{CWL} must be observed.
 Referenced to the later of CAS or W in write operations

10. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.

ac timing requirements (see Note 4) (continued)

			'41x40	0A-50	'41x40	0A-60	'41x40	0A-70	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t AWD	Delay time, column address to write command (read-write operation only)		48		55		63		ns
^t CHR	Delay time, CAS referenced to RAS (CBR refresh only)		10		10		10		ns
^t CRP	Delay time, CAS precharge to RAS		5		5		5		ns
^t CSH	Delay time, RAS active to CAS precharge		50		60		70		ns
^t CSR	Delay time, CAS referenced to RAS (CBR refresh only)		5		5		5		ns
^t CWD	Delay time, CAS to write command (read-write operation	n only)	36		40		46		ns
^t OED	Delay time, OE to data in		13		15		18		ns
^t RAD	Delay time, RAS to column address (see Note 11)		13	25	15	30	15	35	ns
^t RAL	Delay time, column address to RAS precharge		25		30		35		ns
^t CAL	Delay time, column address to CAS precharge		25		30		35		ns
^t RCD	Delay time, RAS to CAS (see Note 11)		18	37	20	45	20	52	ns
^t RPC	Delay time, RAS precharge to CAS active		5		5		5		ns
^t RSH	Delay time, CAS active to RAS precharge		13		15		18		ns
^t RWD	Delay time, RAS to write command (read-write operation	n only)	73		85		98		ns
^t CPW	Delay time, CAS precharge to write command (read-writ	e only)	53		60		68		ns
^t TAA	Access time from address (test mode)		30		35		40		ns
^t TCPA	Access time from column precharge (test mode)		35		40		45		ns
^t TRAC	Access time from RAS (test mode)		55		65		75		ns
4	Defrech time interval	'416400A		64		64		64	
^t REF	Refresh time interval	'417400A		32		32		32	ms
tT	Transition time	•	2	30	2	30	2	30	ns

NOTES: 4. With ac parameters, it is assumed that $t_T = 5$ ns.

11. The maximum value is specified only to ensure access time.

NOTE A: CL includes probe and fixture capacitance.

DEVICE	$V_{CC}(V)$	R ₁ (Ω)	R ₂ (Ω)	V _{TH} (V)	R_L (Ω)
'41x400A	5	828	295	1.31	218

Figure 2. Load Circuits for Timing Parameters

SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997

NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

Figure 3. Read-Cycle Timing

PARAMETER MEASUREMENT INFORMATION

Figure 4. Early-Write-Cycle Timing

~~~~



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



Figure 5. Write-Cycle Timing



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



#### PARAMETER MEASUREMENT INFORMATION

NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

Figure 6. Read-Write-Cycle Timing



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



#### PARAMETER MEASUREMENT INFORMATION

 $^{\dagger}$  Access time is t\_CPA-, t\_CAC-, or t\_AA-dependent.

NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.

Figure 7. Enhanced-Page-Mode Read-Cycle Timing



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



### PARAMETER MEASUREMENT INFORMATION

NOTE A: A read cycle or a read-write cycle can be intermixed with write cycles as long as read and read-write timing specifications are not violated.

Figure 8. Enhanced-Page-Mode Write-Cycle Timing



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



#### PARAMETER MEASUREMENT INFORMATION

<sup>†</sup> Output can go from the high-impedance state to an invalid-data state prior to the specified access time. NOTE A: A read or write cycle can be intermixed with read-write cycles as long as the read and write timing specifications are not violated.

Figure 9. Enhanced-Page-Mode Read-Write-Cycle Timing









SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997



Figure 12. Hidden-Refresh-Cycle (Read) Timing





Figure 13. Hidden-Refresh-Cycle (Write) Timing



SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997











SMKS889B - AUGUST 1996 - REVISED OCTOBER 1997

**MECHANICAL DATA** 

#### PLASTIC SMALL-OUTLINE J-LEAD PACKAGE

DJ (R-PDSO-J24/26)



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Plastic body dimensions do not include mold protrusion. Maximum mold protrusion is 0.005 (0,125).

#### device symbolization (TMS416400A illustrated)







#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.