At[Y \EL ATtiny261/ATtiny461/ATtiny861

Automotive

8-bit AVR Microcontroller with 2/4/8K Bytes In-System
Programmable Flash

DATASHEET

Features

e High performance, low power AVR® 8-Bit microcontroller

e Advanced RISC architecture

e 123 powerful instructions — most single clock cycle execution
e 32 x 8 general purpose working registers
e Fully static operation

e Non-volatile program and data memories

e 2/4/8K byte of in-system programmable program memory flash (Atmel®
ATtiny261/461/861)
e Endurance: 10,000 write/erase cycles
e 128/256/512 bytes in-system programmable EEPROM (Atmel
ATtiny261/461/861)
e Endurance: 100,000 write/erase cycles
e 128/256/512 bytes internal SRAM (ATtiny261/461/861)
e Programming lock for self-programming flash program and EEPROM data
security
e Peripheral features

e 8/16-bit Timer/Counter with prescaler
e 8/10-bit high speed Timer/Counter with separate prescaler
e 3 high frequency PWM outputs with separate output compare registers
e Programmable dead time generator
e Universal serial interface with start condition detector
e 10-bit ADC
e 11 single ended channels
e 16 differential ADC channel pairs
e 15 differential ADC channel pairs with programmable gain (1x, 8x, 20x, 32x)
e Programmable watchdog timer with separate on-chip oscillator
e On-chip analog comparator
e Special microcontroller features

debugWIRE on-chip debug system

In-system programmable via SPI port

External and internal interrupt sources

Low power idle, ADC noise reduction, and power-down modes
Enhanced power-on reset circuit

Programmable brown-out detection circuit

Internal calibrated oscillator

7753G-AVR-06/14

I/0 and packages

e 16 programmable I/O lines
e 20-pin SOIC, 32-pad MLF and 20-lead TSSOP

Operating voltage:
e 2.7 -55V for Atmel ATtiny261/461/861

Speed grade:
o Atmel® ATtiny261/461/861: 0 - 8MHz at 2.7 - 5.5V, 0 - 16MHz at 4.5 - 5.5V
e Operating temperature: Automotive (—40°C to +125°C)

e Low power consumption

e Active mode ATD On: 1MHz, 2.7V, 25°C: 300pA
e Power-down mode no watchdog: 2.7V, 25°C: 0.12pA

2 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

1.

Pin Configurations

Figure 1-1. Pinout ATtiny261/461/861

:| PA1 (ADC1/DO/PCINT1)

S[]PB1 (MISO/DO/OCIA/PCINTY)

© [_]PBO (MOSI/DI/SDA/OC1A/PCINTS)
> D PA2 (ADC2/INT1/USCK/SCL/PCINT2)

& [_]PAO (ADCO/DI/SDA/PCINTO)

-
J

QFN/MLF

SOIC
(MOSI/DI/SDA/OC1A/PCINT8) PBO [1 20 [1PAO (ADCO/DI/SDA/PCINTO)
(MISO/DO/OC1A/PCINT9) PB1] 2 19 [1PA1 (ADC1/DO/PCINT1)
(SCK/USCK/SCL/OCTB/PCINT10) PB2 [] 3 18 [1PA2 (ADC2/INT1/USCK/SCL/PCINT2)
(OC1B/PCINT11) PB3 []4 17 1 PA3 (AREF/PCINT3)
vcec 5 16 [Z1AGND
GND[]6 15 [JAvVCC
(ADC7/0OCTD/CLKI/XTAL1/PCINT12) PB4 7 14 [T1PA4 (ADC3/ICPO/PCINTA4)
(ADC8/0C1D/CLKO/XTAL2/PCINT13) PB5 [] 8 13 [1 PA5 (ADC4/AIN2/PCINTS)
(ADC9/INTO/TO/PCINT14) PB6 (]9 12 [Z1PA6 (ADC5/AINO/PCINTS)
(ADC10/RESET/PCINT15) PB7] 10 11 [Z1PA7 (ADC6/AIN1/PCINT7)
(SCK/USCK/SCL/OCTB/PCINT10) PB2 [] 1
(OC1B/PCINT11)PB3 [2
vee [3
GND [4
(ADC7/0OC1D/CLKI/XTAL1/PCINT12) PB4 [| 5
o
E =
o _ &
L =235
2zg g
g9 |€ =
LT
® O < <0
20 4a 2
0o 2 =0
2=y [alya)
25= S =
228 88
2SS = <<
BmRBoo0IX
o0 Z2ZzZoo
oooooonon
/ N O ® N~ © LW \
MW M MO NN NN N
NC 1 O 24[ANC
(OC1B/PCINT11) PB3] 2 23 [0 PA2 (ADC2/INT1/USCK/SCL/PCINT2)
NC[]3 22 [0 PA3 (AREF/PCINT3)
vce4 21 [0 AGND
enods QFN/MLF 20fiNe
NC[e6 19ANC
(ADC7/0C1D/CLKI/XTAL1/PCINT12) PB4] 7 18 [I AvCC
(ADC8/0C1D/CLKO/XTAL2/PCINT13) PB5 [] 8 17 [0 PA4 (ADC3/ICPO/PCINT4)

Note:

NcO9

(ADCY/INTO/TO/PCINT14) PB6 [10

(ADC10/RESET/PCINT15) PB7 [11

NcO 12

(ADC6/AIN1/PCINT7) PA7] 13
NcO 16

(ADCS5/AINO/PCINT6) PA6] 14
(ADC4/AIN2/PCINT5) PA5] 15

good mechanical stability.

Atmel

(ADC8/0C1D/CLKO/XTAL2/PCINT13) PB5 [| @

(ADCB/AINT/PCINT7) PA7 [©
(ADCS/AINO/PCINTE) PA6 [3

(ADCY/INTO/TO/PCINT14) PB6 [~
(ADC10/RESET/PCINT15) PB7 [

Oy

PA3 (AREF/PCINT3)
AGND

AvVCC

PA4 (ADC3/ICPO/PCINT4)

PAS5 (ADC4/AIN2/PCINTS5)

The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]

7753G-AVR-06/14

11

1.2

4

Disclaimer

Typical values contained in this data sheet are based on simulations and characterization of other AVR® microcontrollers
manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Automotive Quality Grade

The Atmel® ATtiny261/461/861 have been developed and manufactured according to the most stringent requirements of the
international standard ISO-TS 16949. This data sheet contains limit values extracted from the results of extensive
characterization (temperature and voltage). The quality and reliability of the Atmel ATtiny261/461/861 have been verified
during regular product qualification as per AEC-Q100 grade 1.

As indicated in the ordering information paragraph, the product is available in only one temperature grade, see Table 1-1.

Table 1-1. Temperature Grade Identification for Automotive Products

Temperature Temperature Identifier Comments
—40; +125 VA Full automotive temperature range
ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] /It m el.

7753G-AVR-06/14

2. Overview

The Atmel® ATtiny261/461/861 is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture.
By executing powerful instructions in a single clock cycle, the Atmel ATtiny261/461/861 achieves throughputs approaching
1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

GND VCC

SRR . S |
! I
; Wﬁ‘.tirc::rog > Power debugWIRE |
| Supervision |
| f POR/ BOD * :
1 and :
| Watchdog | RESET Program |
| Oscillator Logic :
! 1
I + I
I
I Oscillator :
1 _ | Circuits/ Flash SRAM |
1 o Clock |
! Generation i} i} |
! I
! I
! I
! AVR cpu I
! A\ !
I EEPROM 1
! I
' ' i '
I A T AVCC
| > |
I A A A 0 GND
I
| V Y Y t AREF
I Timer/ Timer/ |
1 % Counter 0 Counter 1 A/D Conv. |
I m
| < } A A { :
| < |
1 e Analog . Internal |
I Usi Comp. o Bandgap |
! A A A A I
! I
! \ A |
| > |
I A A 1
! I
! Y YVYY vyvy B el
! I
: ny PORT B (8) PORTA (8) |

A A !
! I
! I
! I
| |__ RESET
I , XTAL[1..2]

\ \)

PB[0..7] PAI0..7]
/It m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 5

7753G-AVR-06/14

The AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.

The Atmel® ATtiny261/461/861 provides the following features: 2/4/8Kbyte of in-system programmable flash,

128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers,
one 8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, universal serial interface, internal and
external interrupts, a 4-channel, 10-bit ADC, a programmable watchdog timer with internal oscillator, and three software
selectable power saving modes. The idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, analog
comparator, and interrupt system to continue functioning. The power-down mode saves the register contents, disabling all
chip functions until the next interrupt or hardware reset. The ADC noise reduction mode stops the CPU and all I/O modules
except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel high density non-volatile memory technology. The on-chip ISP flash allows the
program memory to be re-programmed in-system through an SPI serial interface, by a conventional non-volatile memory
programmer or by an on-chip boot code running on the AVR core.

The Atmel ATtiny261/461/861 AVR is supported with a full suite of program and system development tools including:
C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Pin Descriptions

221 VCC

Supply voltage.
222 GND

Ground.
223 AvVCC

Analog supply voltage.

2.24 AGND

Analog ground.

2.2.5 Port A (PA7..PAO)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The port A output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, port A pins that are externally pulled
low will source current if the pull-up resistors are activated. The port A pins are tri-stated when a reset condition becomes

active, even if the clock is not running.

Port A also serves the functions of various special features of the Atmel ATtiny261/461/861 as listed on
Section 12.3.2 “Alternate Functions of Port A” on page 62.

2.2.6 PortB (PB7..PBO)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The port B output buffers have
symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled
low will source current if the pull-up resistors are activated. The port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port B also serves the functions of various special features of the Atmel ATtiny261/461/861 as listed on

Section 12.3.1 “Alternate Functions of Port B” on page 59.

2.2°7 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not
running. The minimum pulse length is given in Table 23-3 on page 174. Shorter pulses are not guaranteed to generate a
reset.

6 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

4. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code
examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors
include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C
compiler documentation for more details.

/It L ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 7
me 7753G-AVR-06/14

5.1

AVR CPU Core

Overview

This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure correct
program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and
handle interrupts.

Figure 5-1. Block Diagram of the AVR Architecture
Data Bus 8-bit

g
Y
Flash | Program | Statusand | _
Program Counter Control
Memory _
A - 32x8
Instruction General -
i Purpose - Interrupt
Register ™| Registers T Unit
\
. =2) Watchdog
Instruction o £ - .
£ @ Timer
Decoder @ @ ALU
<4 he}
l 3 < - Analog
z| 3 ™1 ¢ t
Control Lines © 5} omparator
<4 Eol -
= 5
o £
-+ |/O Module 1
_—
Data -
_ SRAM <> /0 Module 2
-1 |/O Module n
EEPROM -
1/0 Lines -

\

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories and
buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions
to be executed in every clock cycle. The program memory is in-system reprogrammable flash memory.

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14

Atmel

5.2

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This
allows single-cycle arithmetic logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the
register file, the operation is executed, and the result is stored back in the register file — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing — enabling
efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in
flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register
operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect
information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole
address space. Most AVR® instructions have a single 16-bit word format. Most AVR instructions are 16-bit wide. There are
also 32-bit instructions.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is
effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and
the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are
executed). The stack pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through
the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional global interrupt enable bit in the status
register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance
with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as control registers, SPI, and other I/O functions.
The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - Ox5F.

ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are
executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-functions. Some
implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and
fractional format. See the “Instruction Set” section for a detailed description.

Atmel ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 9

7753G-AVR-06/14

5.3 Status Register

The status register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the status register is
updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for
using the dedicated compare instructions, resulting in faster and more compact code. The status register is not automatically
stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software.

5.3.1 SREG - AVR Status Register
The AVR® status register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0
0x3F (0x5F) | I | 7 | H [s | vV N z C | SReG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 -1: Global Interrupt Enable

The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then
performed in separate control registers. If the global interrupt enable register is cleared, none of the interrupts are enabled
independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is
set by the RETI instruction to enable subsequent interrupts. The |-bit can also be set and cleared by the application with the
SEl and CLlI instructions, as described in the instruction set reference.

e Bit 6 —T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit
from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bitin a
register in the register file by the BLD instruction.

e Bit5—H: Half Carry Flag

The half carry flag H indicates a half carry in some arithmetic operations. Half carry is useful in BCD arithmetic. See the
“Instruction Set Description” for detailed information.

« Bit4-S:SignBit, S =N®V

The S-bit is always an exclusive or between the negative flag N and the two complement overflow flag V. See the
“Instruction Set Description” for detailed information.

e Bit3-V: Two's Complement Overflow Flag

The Two’s complement overflow flag V supports two’s complement arithmetics. See the “Instruction Set Description” for
detailed information.

« Bit 2 - N: Negative Flag

The negative flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

e Bit1-2Z: Zero Flag

The zero flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

e Bit0-C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed
information.

10 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

54 General Purpose Register File
The register file is optimized for the AVR® enhanced RISC instruction set. In order to achieve the required performance and
flexibility, the following input/output schemes are supported by the register file:
e One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
e Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input
Figure 5-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 5-2. AVR CPU General Purpose Working Registers
7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 Ox0F
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte
Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle
instructions.
As shown in Figure 5-2, each register is also assigned a data memory address, mapping them directly into the first 32
locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the
file.
/It m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 1

7753G-AVR-06/14

5.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in Figure 5-3.

Figure 5-3. The X-, Y-, and Z-registers

15 XH XL
X-register | 7 0 | 7 0 |
R27 (0x1B) R26 (Ox1A)
15 YH YL 0
Y-register | 7 0 | 7 0 |
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register | 7 0 | 7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see the instruction set reference for details).

5.5 Stack Pointer

The stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after
interrupts and subroutine calls. The stack pointer register always points to the top of the stack. Note that the stack is
implemented as growing from higher memory locations to lower memory locations. This implies that a stack PUSH command
decreases the stack pointer.

The stack pointer points to the data SRAM stack area where the subroutine and interrupt stacks are located. This stack
space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled.
The stack pointer must be set to point above 0x60. The stack pointer is decremented by one when data is pushed onto the
stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the stack with
subroutine call or interrupt. The stack pointer is incremented by one when data is popped from the stack with the POP
instruction, and it is incremented by two when data is popped from the stack with return from subroutine RET or return from
interrupt RETI.

The AVR® stack pointer is implemented as two 8-bit registers in the 1/0 space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only
SPL is needed. In this case, the SPH register will not be present.

12 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

5.5.1 SPH and SPL - Stack Pointer Register

Bit 15 14 13 12 1 10 9 8
Ox3E (0x5E)| SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/wW R/wW R/W R/W R/W R/W
R/W R/W R/wW R/wW R/W R/wW R/wW R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

5.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR® CPU is driven by the CPU
clock clkepy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 5-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast
access register file concept. This is the basic pipelining concept to obtain up to 1TMIPS per MHz with the corresponding
unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 5-4. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

1 1
1st Instruction Fetch —‘-<: > :
1

1
1
1
i
1
1st Instruction Execute i
1
1
1
1
1
i
1
1
1
1
1

1
1
1
. N\
2nd Instruction Fetch i | W/
2nd Instruction Execute i 5:7
3rd Instruction Fetch i i ;
3rd Instruction Execute | i —_—
4th Instruction Fetch ! ! [N ——

Figure 5-5 shows the internal timing concept for the register file. In a single clock cycle an ALU operation using two register
operands is executed, and the result is stored back to the destination register.

Figure 5-5. Single Cycle ALU Operation
T T2 T3 T4

dkeey 4/ N/ N/ _/ _
1
Total Execution Time —‘-<: }

Register Operands Fetch E\‘ > E E
ALU Operation Execute i { > i i
Result Write Back ; {) ; ;
/lt m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 13

7753G-AVR-06/14

5.7 Reset and Interrupt Handling

The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic
one together with the global interrupt enable bit in the status register in order to enable the interrupt.

The lowest addresses in the program memory space are by default defined as the reset and interrupt vectors. The complete
list of vectors is shown in Section 10. “Interrupts” on page 47. The list also determines the priority levels of the different
interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INTO — the
external interrupt request 0.

When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can
write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine.
The I-bit is automatically set when a return from interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any
pending interrupt is served.

Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction.

14 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

shi EECR, EEPE
out SREG r16

in rl6, SREG ;. store SREG val ue
cli ; disable interrupts during tined sequence
sbi EECR, EEMPE ; start EEPROM wite

; restore SREG value (I-bit)

C Code Example

char cSREG
CcSREG = SREG

_QLi();
EECR | = (1<<EEMPE);
EECR | = (1<<EEPE);

/* store SREG val ue */

/* disable interrupts during timed sequence */

/* start EEPROMwite */

SREG = ¢SREG /* restore SREG value (l-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending

interrupts, as shown in this example.

Assembly Code Example

sei ; set d obal

; interrupt(s)

I nterrupt Enable

sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pendi ng

C Code Example

_SEI(); /* set Gobal Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

5.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR® interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four

clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.

Atmel

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 15

7753G-AVR-06/14

6.1

6.2

16

AVR Memories

This section describes the different memories in the Atmel® ATtiny261/461/861. The AVR architecture has two main memory
spaces, the Data memory and the Program memory space. In addition, the Atmel ATtiny261/461/861 features an EEPROM
memory for data storage. All three memory spaces are linear and regular.

In-System Re-programmable Flash Program Memory

The Atmel ATtiny261/461/861 contains 2/4/8K byte on-chip in-system reprogrammable flash memory for program storage.
Since all AVR® instructions are 16 or 32 bits wide, the flash is organized as 1024/2048/4096 x 16.

The flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel ATtiny261/461/861 program counter
(PC) is 10/11/12 bits wide, thus addressing the 1024/2048/4096 program memory locations. Section 22. “Memory
Programming” on page 156 contains a detailed description on flash data serial downloading using the SPI pins.

Constant tables can be allocated within the entire program memory address space (see the LPM — load program memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in Section 5.6 “Instruction Execution Timing” on page 13.

Figure 6-1. Program Memory Map

Program Memory

0x0000

0x03FF/0x07FF/Ox0FFF

SRAM Data Memory

Figure 6-2 shows how the Atmel ATtiny261/461/861 SRAM memory is organized.

The lower 224/352/608 data memory locations address both the register file, the I/O memory and the internal data SRAM.
The first 32 locations address the register file, the next 64 locations the standard I/O memory, and the last 128/256/512
locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, indirect with displacement, indirect, indirect with
Pre-decrement, and indirect with post-increment. In the register file, registers R26 to R31 feature the indirect addressing
pointer registers.

The direct addressing reaches the entire data space.
The indirect with displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X,
Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 registers, and the 128/256/512 bytes of internal data SRAM in the Atmel
ATtiny261/461/861 are all accessible through all these addressing modes. The register file is described in Section 5.4
“General Purpose Register File” on page 11.

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

Figure 6-2. Data Memory Map

Data Memory
32 Registers 0x0000 - 0x001F
64 1/0 Registers 0x0020 - 0x005F
0x0060
Internal SRAM
(128/256/512 x 8)
0x0DF/0x15F/0x25F

6.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM access is
performed in two clkgpy cycles as described in Figure 6-3.

Figure 6-3. On-chip Data SRAM Access Cycles

. T1 . T2 . T3
Address i Compute Address EX Address valid i
Data E E (E)
i i i Write
WR ! i/ P\
Data ' —),
i i ! Read
RD : L/ A }
\ /
V
Memory Access Instruction Next Instruction
/It m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 17

7753G-AVR-06/14

6.3 EEPROM Data Memory

The Atmel® ATtiny261/461/861 contains 128/256/512 bytes of data EEPROM memory. It is organized as a separate data
space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM Address
registers, the EEPROM data register, and the EEPROM control register. For a detailed description of serial data
downloading to the EEPROM, see Section 22.9 “Serial Downloading” on page 167.

6.3.1 EEPROM Read/Write Access

The EEPROM access registers are accessible in the 1/0 space.

The write access times for the EEPROM are given in Table 6-1 on page 22. A self-timing function, however, lets the user
software detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some
precautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See Section 6.3.6 “Preventing EEPROM Corruption” on page 20 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to Section 6.3.2
“Atomic Byte Programming” on page 18 and Section 6.3.3 “Split Byte Programming” on page 18 for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When the
EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

6.3.2 Atomic Byte Programming

Using atomic byte programming is the simplest mode. When writing a byte to the EEPROM, the user must write the address
into the EEARL register and data into EEDR register. If the EEPMn bits are zero, writing EEPE (within four cycles after
EEMPE is written) will trigger the erase/write operation. Both the erase and write cycle are done in one operation and the
total programming time is given in Table 1. The EEPE bit remains set until the erase and write operations are completed.
While the device is busy with programming, it is not possible to do any other EEPROM operations.

6.3.3 Split Byte Programming

It is possible to split the erase and write cycle in two different operations. This may be useful if the system requires short
access time for some limited period of time (typically if the power supply voltage falls). In order to take advantage of this
method, it is required that the locations to be written have been erased before the write operation. But since the erase and
write operations are split, it is possible to do the erase operations when the system allows doing time-critical operations
(typically after power-up).

6.3.4 Erase

To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the EEPE (within four cycles after
EEMPE is written) will trigger the erase operation only (programming time is given in Table 1). The EEPE bit remains set
until the erase operation completes. While the device is busy programming, it is not possible to do any other EEPROM
operations.

6.3.5 Write

To write a location, the user must write the address into EEAR and the data into EEDR. If the EEPMn bits are 0b10, writing
the EEPE (within four cycles after EEMPE is written) will trigger the write operation only (programming time is given in
Table 1-1 on page 4). The EEPE bit remains set until the write operation completes. If the location to be written has not been
erased before write, the data that is stored must be considered as lost. While the device is busy with programming, it is not
possible to do any other EEPROM operations.

The calibrated oscillator is used to time the EEPROM accesses. Make sure the oscillator frequency is within the
requirements described in Section 7.12.1 “OSCCAL — Oscillator Calibration Register” on page 31.

18 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

The following code examples show one assembly and one C function for erase, write, or atomic write of the EEPROM. The

examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM wri t e:
; Wait for conpletion of previous wite
shic EECR, EEPE
rjnmp EEPROM write
; Set Progranm ng node
| di r16, (O<<EEPML)| (O<<EEPM)
out EECR, r 16
; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Wite data (r1l6) to data register
out EEDR, r16

; Wite logical one to EEMPE

shi EECR, EEMPE

; Start eepromwite by setting EEPE
sbi EECR, EEPE

ret

C Code Example

voi d EEPROM wri t e(unsi gned char ucAddress, unsigned char ucData)

{
/* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEPE))
/* Set Progranmm ng node */
EECR = (O<<EEPM.) | (O<<EEPM);
/* Set up address and data registers */
EEAR = ucAddr ess;
EEDR = ucDat a;
/* Wite |logical one to EEMPE */
EECR | = (1<<EEMPE);
/* Start eepromwite by setting EEPE */
EECR | = (1<<EEPE);

}

/It m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 19

7753G-AVR-06/14

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that interrupts
are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM r ead:
; Wait for conpletion of previous wite
shi c EECR, EEPE
rjmp EEPROM r ead
; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eepromread by witing EERE
sbi EECR, EERE

; Read data fromdata register

in r 16, EEDR

ret

C Code Example

unsi gned char EEPROM read(unsi gned char ucAddress)

{
/* Wait for conpletion of previous wite */
whi | e(EECR & (1<<EEPE))
/* Set up address register */
EEAR = ucAddress;
/* Start eepromread by witing EERE */
EECR | = (1<<EERE);
/* Return data fromdata register */
return EEDR;
}

6.3.6 Preventing EEPROM Corruption

During periods of low V., the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the
EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and the same design
solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write sequence to
the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute instructions incorrectly,
if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR® RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the
internal brown-out detector (BOD). If the detection level of the internal BOD does not match the needed detection level, an
external low V reset protection circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

20 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

6.4 I/O Memory

The 1/O space definition of the Atmel® ATtiny261/461/861 is shown in Section 25. “Register Summary” on page 189.

All Atmel ATtiny261/461/861 1/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the
LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working registers and the /O
space. I/O registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set
section for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used.
When addressing /O registers as data space using LD and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, the CBI and SBI instructions will only operate
on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work
with registers 0x00 to Ox1F only.

The I/O and peripherals control registers are explained in later sections.

6.4.1 General Purpose I/O Registers

The Atmel ATtiny261/461/861 contains three general purpose 1/O registers. These registers can be used for storing any
information, and they are particularly useful for storing global variables and status flags. General purpose /O registers within
the address range 0x00 - Ox1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

6.5 Register Description

6.5.1 EEARH and EEARL — EEPROM Address Register

Bit 7 6 5 4 3 2 1 0

Ox1F (0x3F) - - - - - - - EEARS8 EEARH

Ox1E (Ox3E) EEAR7 EEARG6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

Initial Value X X X X X X X X

e Bit 7:1 - Res6:0: Reserved Bits
These bits are reserved for future use and will always read as 0 in Atmel ATtiny261/461/861.

» Bits 8:0 - EEAR8:0: EEPROM Address

The EEPROM address registers — EEARH and EEARL - specifies the high EEPROM address in the 128/256/512 bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 127/255/511. The initial value of EEAR is
undefined. A proper value must be written before the EEPROM may be accessed.

At L ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 21
me 7753G-AVR-06/14

6.5.2 EEDR - EEPROM Data Register

Bit 7 6 5 4 3 2 1 0
0x1D (0x3D) | EEDR7 | EEDR6 | EEDR5 | EEDR4 | EEDR3 | EEDR2 | EEDR1 | EEDRO | EEDR
Read/Write R/W R/W RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 7:0 — EEDR7:0: EEPROM Data

For the EEPROM write operation the EEDR register contains the data to be written to the EEPROM in the address given by
the EEAR register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address
given by EEAR.

6.5.3 EECR - EEPROM Control Register

Bit 7 6 5 4 3 2 1 0
oxic(x3c) | - | - | EEPM1 | EEPMO | EERIE | EEMPE | EEPE EERE | EECR
Read/Write R R RIW R/W R/W R/W RIW R/W
Initial Value 0 0 X X 0 0 X 0

* Bit 7 - Res: Reserved Bit

This bit is reserved for future use and will always read as 0 in Atmel® ATtiny261/461/861. For compatibility with future AVR®
devices, always write this bit to zero. After reading, mask out this bit.

» Bit 6 — Res: Reserved Bit
This bit is reserved in the Atmel ATtiny261/461/861 and will always read as zero.

e Bits 5, 4 - EEPM1 and EEPMO: EEPROM Programming Mode Bits

The EEPROM programming mode bits setting defines which programming action that will be triggered when writing EEPE. It
is possible to program data in one atomic operation (erase the old value and program the new value) or to split the erase and
write operations in two different operations. The programming times for the different modes are shown in Table 6-1. While
EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to Ob00 unless the EEPROM is
busy programming.

Table 6-1. EEPROM Mode Bits

EEPM1 EEPMO Programming Time Operation
0 0 3.4ms Erase and write in one operation (atomic operation)
0 1 1.8ms Erase only
1 0 1.8ms Write only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM ready interrupt if the I-bit in SREG is set. Writing EERIE to zero disables the
interrupt. The EEPROM ready interrupt generates a constant interrupt when non-volatile memory is ready for programming.

22 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

e Bit 2 - EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the selected address. If EEMPE is
zero, setting EEPE will have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero
after four clock cycles.

e Bit 1 - EEPE: EEPROM Program Enable

The EEPROM program enable signal EEPE is the programming enable signal to the EEPROM. When EEPE is written, the
EEPROM will be programmed according to the EEPMn bits setting. The EEMPE bit must be written to one before a logical
one is written to EEPE, otherwise no EEPROM write takes place. When the write access time has elapsed, the EEPE bit is
cleared by hardware. When EEPE has been set, the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM read enable signal — EERE — is the read strobe to the EEPROM. When the correct address is set up in the
EEAR register, the EERE bit must be written to one to trigger the EEPROM read. The EEPROM read access takes one
instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles
before the next instruction is executed. The user should poll the EEPE bit before starting the read operation. If a write
operation is in progress, it is neither possible to read the EEPROM, nor to change the EEAR register.

6.5.4 GPIOR2 — General Purpose I/O Register 2

Bit 7 6 5 4 3 2 1 0
0x0C (0x2C) | MSB | | | | LSB | GPIOR2
Read/Write R/W RIW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

6.5.5 GPIOR1 — General Purpose I/O Register 1

Bit 7 6 5 4 3 2 1 0
0x0B (0x2B) | MSB | | | | LSB | GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

6.5.6 GPIORO — General Purpose I/O Register 0

Bit 7 6 5 4 3 2 1 0
OX0A (0x2A) | MSB | | | | LSB | GPIORO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
/lt an eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 23

7753G-AVR-06/14

7.1

7.1.1

7.1.2

24

System Clock and Clock Options

Clock Systems and their Distribution

Figure 7-1 presents the principal clock systems in the AVR® and their distribution. All of the clocks need not be active at a
given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different
sleep modes, as described in Section 8. “Power Management and Sleep Modes” on page 34. The clock systems are detailed
below.

Figure 7-1. Clock Distribution

General I/0 General 1/0 Flash and
Module Modules ADC CPU Core RAM EEPROM
A A A A A A A A

clkapc
AVR Clock clkepy
Control Unit
clkyq
Clke ash
A
Reset Logic Watchdog Timer
Source Clock
? A A
Watchdog Clock
System Clock
Prescaler
Clock Watchdog
Multiplexer Oscillator
? L A A A t
PLL Crystal Low Frequency Calibrated RC
Oscillator External Clock Oscillator Crystal Oscillator Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such modules are
the general purpose register file, the status register and the data memory holding the stack pointer. Halting the CPU clock
inhibits the core from performing general operations and calculations.

/0 Clock — clkq

The I/O clock is used by the majority of the 1/0 modules, like Timer/Counter. The I/O clock is also used by the external
interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the 1/O clock is halted.

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14

Atmel

7.1.3

7.1.4

7.1.5

Flash Clock — clkg asn

The flash clock controls operation of the flash interface. The flash clock is usually active simultaneously with the CPU clock.

ADC Clock — clkapc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks in order to reduce noise
generated by digital circuitry. This gives more accurate ADC conversion results.

Internal PLL for Fast Peripheral Clock Generation - clkpck

The internal PLL in Atmel® ATtiny261/461/861 generates a clock frequency that is 8x multiplied from a source input. By
default, the PLL uses the output of the internal 8.0MHz RC oscillator as source. Alternatively, if the LSM bit of the PLLCSR is
set the PLL will use the output of the RC oscillator divided by two. Thus the output of the PLL, the fast peripheral clock is
64MHz. The fast peripheral clock, or a clock prescaled from that, can be selected as the clock source for Timer/Counter1or
as a system clock. See Figure 7-2. The frequency of the fast peripheral clock is divided by two when LSM of PLLCSR is set,
resulting in a clock frequency of 32MHz. Note, that LSM can not be set if PLL¢ is used as a system clock.

Figure 7-2. PCK Clocking System

OSCCAL LSM PLLE CKSEL3:0 CLKPS3:0

/

| [>_I| o Lock -

Detector

PLOCK

12
Y Y V¥ 4MHz . >
8.0MHz PCK

Oscillator sMHz »| PLL N

8x -
1/4 A
64/32MHz 16MHz
XTAL1 - Prescaler |———»
LTI 8MHz SYSTEM
XTAL2 Oscillators o CLOCK
—

The PLL is locked on the RC oscillator and adjusting the RC oscillator via OSCCAL register will adjust the fast peripheral
clock at the same time. However, even if the RC oscillator is taken to a higher frequency than 8MHz, the fast peripheral clock
frequency saturates at 85MHz (worst case) and remains oscillating at the maximum frequency. It should be noted that the
PLL in this case is not locked any longer with the RC oscillator clock. Therefore, it is recommended not to take the OSCCAL
adjustments to a higher frequency than 8MHz in order to keep the PLL in the correct operating range.
The internal PLL is enabled when:

e The PLLE bit of the PLLCSR register is set.

e The CKSEL fuse are programmed to ‘0001’
The PLLCSR bit PLOCK is set when PLL is locked.
Both internal RC oscillator and PLL are switched off in power down and stand-by sleep modes.

/ItmeL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 25

7753G-AVR-06/14

7.2 Clock Sources

The device has the following clock source options, selectable by flash fuse bits as shown below. The clock from the selected
source is input to the AVR® clock generator, and routed to the appropriate modules.

Table 7-1. Device Clocking Options Select® versus PB4 and PB5 Functionality

Device Clocking Option CKSEL3..0 PB4 PB5
External clock 0000 XTALA I/O
PLL clock 0001 1/0 I/0
Calibrated internal RC oscillator 8.0MHz 0010 /0 I/0
Watchdog oscillator 128kHz 0011 1/0 I/0
External low-frequency crystal 01xx XTALA1 XTAL2
External crystal/ceramic resonator (0.4 - 0.9MHz) 1000 XTALA1 XTAL2
External crystal/ceramic resonator (0.4 - 0.9MHz) 1001 XTALA XTAL2
External crystal/ceramic resonator (0.9 - 3.0MHz) 1010 XTALA1 XTAL2
External crystal/ceramic resonator (0.9 - 3.0MHz) 1011 XTALA XTAL2
External crystal/ceramic resonator (3.0 - 8.0MHz) 1100 XTALA1 XTAL2
External crystal/ceramic resonator (3.0 - 8.0MHz) 1101 XTALA XTAL2
External crystal/ceramic resonator (8.0 - 16.0MHz) 1110 XTALA1 XTAL2
External crystal/ceramic resonator (8.0 - 16.0MHz) 1111 XTALA XTAL2

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU wakes up from power-down or
power-save, the selected clock source is used to time the start-up, ensuring stable oscillator operation before instruction
execution starts. When the CPU starts from reset, there is an additional delay allowing the power to reach a stable level
before commencing normal operation. The watchdog oscillator is used for timing this real-time part of the start-up time. The
number of WDT oscillator cycles used for each time-out is shown in Table 7-2.

Table 7-2. Number of Watchdog Oscillator Cycles

Typ Time-out Number of Cycles
4ms 512
64ms 8K (8,192)

7.3 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default clock source setting is
therefore the internal RC oscillator running at 8MHz with longest start-up time and an initial system clock prescaling of 8.
This default setting ensures that all users can make their desired clock source setting using an in-system or high-voltage
programmer.

26 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

7.4 External Clock

To drive the device from an external clock source, CLKI should be driven as shown in Figure 7-3. To run the device on an
external clock, the CKSEL fuses must be programmed to “0000”.

Figure 7-3. External Clock Drive Configuration

EXTERNAL
CLOCK CLKI
SIGNAL

J_ GND

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 7-3.

Table 7-3. Start-up Times for the External Clock Selection

Start-up Time from Power-down and

SUT1..0 Power-save Additional Delay from Reset Recommended Usage
00 6CK 14CK BOD enabled
01 6CK 14CK + 4ms Fast rising power
10 6CK 14CK + 64ms Slowly rising power
11 Reserved

Note that the system clock prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation. Refer to Section 7.11 “System Clock Prescaler” on page 31 for details.

7.5 High Frequency PLL Clock - PLL¢

There is an internal PLL that provides nominally 64MHz clock rate locked to the RC oscillator for the use of the peripheral
Timer/Counter1 and for the system clock source. When selected as a system clock source, by programming the CKSEL
fuses to ‘0001, it is divided by four like shown in Table 7-4. When this clock source is selected, start-up times are determined
by the SUT fuses as shown in Table 7-5. See also Section 7-2 “PCK Clocking System” on page 25.

Table 7-4. PLLCK Operating Modes

CKSEL3..0 Nominal Frequency

0001 16MHz

Table 7-5. Start-up Times for the PLLCK

Additional Delay from

SUT1..0 Start-up Time from Power Down Power-On-Reset (V¢ = 5.0V) Recommended Usage
00 14CK + 1K (1024) + 4ms 4ms BOD enabled
01 14CK + 16K (16384) + 4ms 4ms Fast rising power
10 14CK + 1K (1024) + 64ms 4ms Slowly rising power
11 14CK + 16K (16384) + 64ms 4ms Slowly rising power
/ItmeL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 27

7753G-AVR-06/14

7.6 Calibrated Internal RC Oscillator

By default, the internal RC oscillator provides an approximate 8.0MHz clock. Though voltage and temperature dependent,
this clock can be very accurately calibrated by the user. See Table 23-1 on page 173 and

Section 24.9 “Internal Oscillator Speed” on page 188 for more details. The device is shipped with the CKDIV8 fuse
programmed. See Section 7.11 “System Clock Prescaler” on page 31 for more details.

This clock may be selected as the system clock by programming the CKSEL fuses as shown in Table 7-6. If selected, it will
operate with no external components. During reset, hardware loads the pre-programmed calibration value into the OSCCAL
register and thereby automatically calibrates the RC oscillator. The accuracy of this calibration is shown as factory calibration
in Table 23-1 on page 173.

By changing the OSCCAL register from SW, see Section 7.12.1 “OSCCAL — Oscillator Calibration Register” on page 31, itis
possible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is shown
as User calibration in Table 23-1 on page 173.

When this oscillator is used as the chip clock, the watchdog oscillator will still be used for the watchdog timer and for the
reset time-out. For more information on the pre-programmed calibration value, see Section 22.4 “Calibration Byte” on page
158.

Table 7-6. Internal Calibrated RC Oscillator Operating Modes®®

Frequency Range (MHz) CKSEL3..0

7.84-8.16 0010
Notes: 1. The device is shipped with this option selected.
2. If 8BMHz frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be pro-
grammed in order to divide the internal frequency by 8.

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 7-7.

Table 7-7. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time Additional Delay from Reset
from Power-down (Ve =5.0V) Recommended Usage
00 6CK 14CK BOD enabled
01 6CK 14CK + 4ms Fast rising power
100 6CK 14CK + 64ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

28 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

7.7 128 kHz Internal Oscillator

The 128kHz internal oscillator is a low power oscillator providing a clock of 128kHz. The frequency is nominal at 3V and
25°C. This clock may be select as the system clock by programming the CKSEL fuses to “0011”.

When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 7-8.

Table 7-8. Start-up Times for the 128 kHz Internal Oscillator

Start-up Time from Power-down and

SUT1..0 Power-save Additional Delay from Reset Recommended Usage
00 6CK 14CK BOD enabled
01 6CK 14CK + 4ms Fast rising power
10 6CK 14CK + 64ms Slowly rising power
11 Reserved

7.8 Low-frequency Crystal Oscillator

To use a 32.768kHz watch crystal as the clock source for the device, the low-frequency crystal oscillator must be selected by
setting CKSEL fuses to ‘0100’. The crystal should be connected as shown in Figure 7-4. Refer to the 32kHz crystal oscillator
application note for details on oscillator operation and how to choose appropriate values for C1 and C2.

When this oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 7-9.

Table 7-9. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

Start-up Time from Power Additional Delay from Reset
Down and Power Save (Vec =5.0V) Recommended usage
00 1K (1024) cK(® 4ms Fast rising power or BOD enabled
01 1K (1024) CK(" 64ms Slowly rising power
10 32K (32768) CK 64ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

7.9 Crystal Oscillator

XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip
oscillator, as shown in Figure 7-4. Either a quartz crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the
crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment. Some initial
guidelines for choosing capacitors for use with crystals are given in Table 7-10 on page 30. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

Figure 7-4. Crystal Oscillator Connections

XTAL2

o—”# XTAL1

== Q

At L ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 29
me 7753G-AVR-06/14

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating mode is
selected by the fuses CKSEL3..1 as shown in Table 7-10.

Table 7-10. Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1 and C2 for Use

CKSEL3..1 Frequency Range (MHz) with Crystals (pF)
100" 0.4-0.9 -
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0 - 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELDO fuse together with the SUT1..0 fuses select the start-up times as shown in Table 7-11.

Table 7-11. Start-up Times for the Crystal Oscillator Clock Selection

Additional Delay from
Start-up Time from Power- Reset

CKSELO SUT1..0 down and Power-save (Ve =5.0V)

Recommended Usage

30

0 00 258 CK() 14CK + 4.1 ms Ceramic resonator, fast rising
power

0 01 258 CK(14CK + 65 ms Ceramic resonator, slowly rising
power

0 10 1K (1024) CK®@ 14CK Ceramic resonator, BOD
enabled

0 1 1K (1024)CK® 14CK + 4.1 ms Ceramic resonator, fast rising
power

1 00 1K (1024)CK@ 14CK + 65 ms Ceramic resonator, slowly rising
power

1 01 16K (16384) CK 14CK Crystal oscillator, BOD enabled

1 10 16K (16384) CK 14CK + 4.1 ms Crystal oscillator, fast rising
power

1 11 16K (16384) CK 14CK + 65 ms gx;f' cillen B T

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for

crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up.
They can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]

7753G-AVR-06/14

Atmel

7.10

7.11

7.11.1

7.12

7.12.1

Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT fuse has to be programmed.
This mode is suitable when the chip clock is used to drive other circuits on the system. Note that the clock will not be output
during reset and the normal operation of 1/O pin will be overridden when the fuse is programmed. Any clock source, including
the internal RC oscillator, can be selected when the clock is output on CLKO. If the system clock prescaler is used, it is the
divided system clock that is output.

System Clock Prescaler

The Atmel® ATtiny261/461/861 system clock can be divided by setting the clock prescale register —- CLKPR. This feature can
be used to decrease power consumption when the requirement for processing power is low. This can be used with all clock
source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clk;q, clkapc, Clkgpy, and
clkg agy are divided by a factor as shown in Table 7-12 on page 33.

Switching Time

When switching between prescaler settings, the system clock prescaler ensures that no glitches occur in the clock system
and that no intermediate frequency is higher than neither the clock frequency corresponding to the previous setting, nor the
clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be faster than the
CPU’s clock frequency. Hence, it is not possible to determine the state of the prescaler — even if it were readable, and the
exact time it takes to switch from one clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 x T2 before the new clock frequency is
active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period
corresponding to the new prescaler setting.

Register Description

OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0
0x31 (0x51) | CAL7 CAL6 | CAL5 | CAL4 CAL3 CAL2 CAL1 CALO | OsccAL
Read/Write R/W R/W RIW R/W R/W R/W RIW R/W
Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the
oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the
Factory calibrated frequency as specified in Table 23-1 on page 173.

The application software can write this register to change the oscillator frequency. The oscillator can be calibrated to
frequencies as specified in Table 23-1 on page 173. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and flash write accesses, and these write times will be affected accordingly.
If the EEPROM or flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM or flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency range,
setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other words a setting of
OSCCAL = O0x7F gives a higher frequency than OSCCAL = 0x80.

The CALG..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in
that range, and a setting of Ox7F gives the highest frequency in the range.

Atmel ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 31

7753G-AVR-06/14

7.12.2 CLKPR — Clock Prescale Register

Bit 7 6 5 4 3 2 1 0
0x28 (0x48) |CLKPCE|[- | - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO| CLKPR
Read/Write RIW R R R R/W RIW RIW RIW
Initial Value 0 0 0 0 See Bit Description

* Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the
other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when
the CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor
clear the CLKPCE bit.

* Bits 6:4 — Res: Reserved Bits
These bits are reserved bits in the Atmel®ATtiny261/461/861 and will always read as zero.

¢ Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal system clock. These bits can be
written run-time to vary the clock frequency to suit the application requirements.

As the divider divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a
division factor is used. The division factors are given in Table 7-12.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the CLKPS bits:
1. Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

32 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

The CKDIV8 fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will be reset to
“0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of eight at start up. This feature
should be used if the selected clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8 fuse setting. The
application software must ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating conditions. The device is shipped with the
CKDIV8 fuse programmed.

Table 7-12. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

/It m eL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [?QIQE\Z?OEH 33

8. Power Management and Sleep Modes
The high performance and industry leading code efficiency makes the AVR® microcontrollers an ideal choice for low power
applications.

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides
various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

8.1 Sleep Modes

Figure 7-1 on page 24 presents the different clock systems in the Atmel® ATtiny261/461/861, and their distribution. The
figure is helpful in selecting an appropriate sleep mode. Table 8-1 shows the different sleep modes and their wake up
sources.

Table 8-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake-up Sources
ie)
) S =
$5 8o O < = o
o — C o o [=% =
O 0 E = & = = =
cg 20 w g8 £
g€ g 2 £ E 3
Sleep Mode 3l = n
Idle X X X X X X X X X X
ADC noise X X X X X X X
reduction
Power-down XM X X
Standby X X X

Note: 1. For INTO and INT1, only level interrupt.

To enter any of the three sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction must be
executed. The SM1..0 bits in the MCUCR register select which sleep mode (idle, ADC noise reduction, power-down, or
standby) will be activated by the SLEEP instruction. See Table 8-2 on page 37 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles
in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the register file and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during
sleep mode, the MCU wakes up and executes from the reset vector.

8.2 Idle Mode

When the SM1..0 bits are written to 00, the SLEEP instruction makes the MCU enter idle mode, stopping the CPU but
allowing analog comparator, ADC, Timer/Counter, watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clksp, and clkg sy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow. If
wake-up from the analog comparator interrupt is not required, the analog comparator can be powered down by setting the
ACD bit in the analog comparator control and status register — ACSR. This will reduce power consumption in Idle mode. If
the ADC is enabled, a conversion starts automatically when this mode is entered.

8.3 ADC Noise Reduction Mode

When the SM1..0 bits are written to 01, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the external interrupts, and the watchdog to continue operating (if enabled). This sleep mode
halts clk;, clkepy, and clkg sy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart form the ADC conversion complete interrupt, only an
external reset, a watchdog reset, a brown-out reset, an SPM/EEPROM ready interrupt, an external level interrupt on INTO or
a pin change interrupt can wake up the MCU from ADC noise reduction mode.

34 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR-06/14 /I t mel.

8.4

8.5

8.6

8.7

8.7.1

8.7.2

8.7.3

Power-down Mode

When the SM1..0 bits are written to 10, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
oscillator is stopped, while the external interrupts, and the watchdog continue operating (if enabled). Only an external reset,
a watchdog reset, a brown-out reset, an external level interrupt on INTO, or a pin change interrupt can wake up the MCU.
This sleep mode halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 11. “External Interrupts” on page 49 for details.

Standby Mode

When the SM1..0 bits are written to 11 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter standby mode. This mode is identical to power-down with the exception that the oscillator is kept
running. From standby mode, the device wakes up in six clock cycles.

Power Reduction Register

The power reduction register (PRR), see Section 8.8.2 “PRR — Power Reduction Register” on page 37, provides a method to
stop the clock to individual peripherals to reduce power consumption. The current state of the peripheral is frozen and the 1/0
registers can not be read or written. Resources used by the peripheral when stopping the clock will remain occupied, hence
the peripheral should in most cases be disabled before stopping the clock. Waking up a module, which is done by clearing
the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in idle mode and active mode to significantly reduce the overall power consumption. See
Section 24.3 “Supply Current of I/O Modules” on page 182 for examples. In all other sleep modes, the clock is already
stopped.

Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR® controlled system. In
general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as
possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following
modules may need special consideration when trying to achieve the lowest possible power consumption.

Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any
sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. Refer to
Section 19. “ADC — Analog to Digital Converter” on page 132 for details on ADC operation.

Analog Comparator

When entering idle mode, the analog comparator should be disabled if not used. When entering ADC noise reduction mode,
the analog comparator should be disabled. In the other sleep modes, the analog comparator is automatically disabled.
However, if the analog comparator is set up to use the internal voltage reference as input, the analog comparator should be
disabled in all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of sleep mode. Refer to
Section 18. “AC — Analog Comparator” on page 129 for details on how to configure the analog comparator.

Brown-out Detector

If the brown-out detector is not needed in the application, this module should be turned off. If the brown-out detector is
enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to

Section 9.5 “Brown-out Detection” on page 41 for details on how to configure the brown-out detector.

Atmel ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 35

7753G-AVR-06/14

8.7.4 Internal Voltage Reference

The internal voltage reference will be enabled when needed by the brown-out detection, the analog comparator or the ADC.
If these modules are disabled as described in the sections above, the internal voltage reference will be disabled and it will
not be consuming power. When turned on again, the user must allow the reference to start up before the output is used. If
the reference is kept on in sleep mode, the output can be used immediately. Refer to

Section 9.7 “Internal Voltage Reference” on page 42 for details on the start-up time.

8.7.5 Watchdog Timer

If the watchdog timer is not needed in the application, this module should be turned off. If the watchdog timer is enabled, it
will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute
significantly to the total current consumption. Refer to Section 9.8 “Watchdog Timer” on page 42 for details on how to
configure the Watchdog Timer.

8.7.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing is then to
ensure that no pins drive resistive loads. In sleep modes where both the I/O clock (clk;) and the ADC clock (clkapc) are
stopped, the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to
Section 12.2.5 “Digital Input Enable and Sleep Modes” on page 56 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or has an analog signal level close to V/2, the input buffer will use excessive
power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to V¢/2 on an input
pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the digital input
disable registers (DIDRO, DIDR1). Refer to Section 19.10.5 “DIDRO — Digital Input Disable Register 0” on page 149 or
Section 19.10.6 “DIDR1 — Digital Input Disable Register 1” on page 149 for details.

8.8 Register Description

8.8.1 MCUCR — MCU Control Register

The MCU control register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
0x35(0xs5) | - | PUD | SE | sSM1 | SMO | — ISCO1 ISC00 | McucR
Read/Write R R/W R/W R/W R/W R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit5— SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To
avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the sleep enable
(SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up.

e Bits 4, 3—- SM1:0: Sleep Mode Select Bits 2..0
These bits select between the three available sleep modes as shown in Table 8-2 on page 37.

36 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

Table 8-2. Sleep Mode Select

SM1 SMO Sleep Mode
0 0 Idle
0 1 ADC noise reduction
1 0 Power-down
1 1 Standby

* Bit 2 - Res: Reserved Bit
This bit is a reserved ed bit in the Atmel® ATtiny261/461/861 and will always read as zero.

8.8.2 PRR - Power Reduction Register

Bit 7 6 5 4 3 2 1 0
0x36 (0x56) | - | - | - PRTIM1 | PRTIMO | PRUSI | PRADC | PRR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7, 6, 5, 4- Res: Reserved Bits
These bits are reserved bits in the Atmel ATtiny261/461/861 and will always read as zero.

* Bit 3- PRTIM1: Power Reduction Timer/Counterl

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1 is enabled, operation will
continue like before the shutdown.

¢ Bit 2- PRTIMO: Power Reduction Timer/CounterQ

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will
continue like before the shutdown.

e Bit 1 - PRUSI: Power Reduction USI
Writing a logic one to this bit shuts down the USI by stopping the clock to the module. When waking up the USI again, the
USI should be re initialized to ensure proper operation.

* Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. Also analog comparator
needs this clock.

/It L ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 37
me 7753G-AVR-06/14

9. System Control and Reset

9.1 Resetting the AVR

During reset, all I/O registers are set to their initial values, and the program starts execution from the reset vector. The
instruction placed at the reset vector must be a RIMP — relative jump — instruction to the reset handling routine. If the
program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at
these locations. The circuit diagram in Figure 9-1 on page 39 shows the reset logic. See Section 23.5 “System and Reset
Characteristics” on page 174 defines the electrical parameters of the reset circuitry.

The 1/0O ports of the AVR® are immediately reset to their initial state when a reset source goes active. This does not require
any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to
reach a stable level before normal operation starts. The time-out period of the delay counter is defined by the user through
the SUT and CKSEL fuses. The different selections for the delay period are presented

in Section 7.2 “Clock Sources” on page 26.

9.2 Reset Sources

The Atmel® ATtiny261/461/861 has four sources of reset:
e Power-on reset. The MCU is reset when the supply voltage is below the power-on reset threshold (Vpor).
e External reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse
length.
e Watchdog reset. The MCU is reset when the watchdog timer period expires and the watchdog is enabled.
e Brown-out reset. The MCU is reset when the supply voltage V. is below the brown-out reset threshold (Vgo7) and the
brown-out detector is enabled.

38 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

Figure 9-1. Reset Logic

Atmel

VCC

DATA BUS

A
Y

MCU Status
Register (MCUSR)

Power-on Reset

BODLEVEL [1..0]

\

Circuit

PORF

Brown-out
Reset Circuit

RESET

Pull-up Resistor

Spike

BORF
EXTRF

Filter

Reset Circuit

WDRF

Watchdog
Timer

1)
=

i

Watchdog
Oscillator

Clock
Generator

CK

COUNTER RESET

/
]
INTERNAL RESET

A

Delay Counters

TIMEOUT

CKSEL [3:0]

SUT [1:0]

ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]

7753G-AVR-06/14

39

9.3 Power-on Reset

A power-on reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in
Section 23.5 “System and Reset Characteristics” on page 174. The POR is activated whenever V. is below the detection
level. The POR circuit can be used to trigger the start-up reset, as well as to detect a failure in supply voltage.

A power-on reset (POR) circuit ensures that the device is reset from power-on. Reaching the power-on reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after V. rise. The RESET signal
is activated again, without any delay, when V. decreases below the detection level.

Figure 9-2. MCU Start-up, RESET Tied to V¢

|
-7 VPORMAX

I
—:_ VPORMIN
I
I
R I
RESET I
A Vst
I
I tTOUT
TIME-OUT ' ‘ >
I
|
INTERNAL
RESET

Figure 9-3. MCU Start-up, RESET Extended Externally

|
-¥-v
POT
VCC :

|
|
RESET !
| |
: I trour
-—]
TIME-OUT ! ;
| |
| |
| |
INTERNAL :
RESET I
Table 9-1. Power On Reset Specifications
Parameter Symbol Min Typ Max Unit
Power-on reset threshold voltage (rising) - 11 1.4 1.7 \%
Power-on reset threshold voltage (falling)(") PoT 0.8 1.3 1.6 \Y
VCC max. start voltage to ensure internal power-on reset
signal Veorumax 0.4 v
VCC min. start voltage to ensure internal power-on reset
signal VeormIN -0.1 v
VCC rise rate to ensure power-on reset Veerr 0.01 Vims
RESET pin threshold voltage Vrst 0.1 Ve 0.9V¢c \

Note: 1. Before rising, the supply has to be between Vpgryny @and Vporuax to ensure a reset.

40 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

9.4 External Reset
An external reset is generated by a low level on the RESET pin if enabled. Reset pulses longer than the minimum pulse
width (see Section 23.5 “System and Reset Characteristics” on page 174) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the reset threshold voltage
— Vgt — On its positive edge, the delay counter starts the MCU after the Time-out period — t;o 1 —has expired.
Figure 9-4. External Reset During Operation
Vee
RESET N v
| | trout
TIME-OUT : : |
INTERNAL : |
RESET — |
9.5 Brown-out Detection
Atmel® ATtiny261/461/861 has an on-chip brown-out detection (BOD) circuit for monitoring the V¢ level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL fuses. The trigger level
has a hysteresis to ensure spike free brown-out detection. The hysteresis on the detection level should be interpreted as
Veor+ = Vot * Vhyst/2 and Vgor. = Vot — Viyst/2.
When the BOD is enabled, and V. decreases to a value below the trigger level (Vgor. in Figure 9-5), the brown-out reset is
immediately activated. When V. increases above the trigger level (Vggr, in Figure 9-5), the delay counter starts the MCU
after the time-out period t;o 1 has expired.
The BOD circuit will only detect a drop in V¢ if the voltage stays below the trigger level for longer than tgp given in
Section 23.5 “System and Reset Characteristics” on page 174.
Figure 9-5. Brown-out Reset During Operation
VCC
VBOT—
RESET
TIME-OUT
INTERNAL
RESET
/It L ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 41
me 7753G-AVR-06/14

9.6 Watchdog Reset

When the watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse,
the delay timer starts counting the time-out period t;oy1. Refer to Section 9.8 “Watchdog Timer” on page 42 for details on
operation of the watchdog timer.

Figure 9-6. Watchdog Reset During Operation
\%

CcC

RESET

— > le— 1CKCycle

WDT
TIME-OUT

RESET
TIME-OUT

TOUT

}

INTERNAL
RESET

9.7 Internal Voltage Reference

Atmel® ATtiny261/461/861 features an internal bandgap reference. This reference is used for brown-out detection, and it can
be used as an input to the analog comparator or the ADC.

9.7.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given in
Section 23.5 “System and Reset Characteristics” on page 174. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] fuse bits).
2. When the bandgap reference is connected to the analog comparator (by setting the ACBG bit in ACSR).
3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the
reference to start up before the output from the analog comparator or ADC is used. To reduce power consumption in
power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering
power-down mode.

9.8 Watchdog Timer

The watchdog timer is clocked from an on-chip oscillator which runs at 128kHz. By controlling the watchdog timer prescaler,
the watchdog reset interval can be adjusted as shown in Table 9-4 on page 45. The WDR — watchdog reset — instruction
resets the watchdog timer. The watchdog timer is also reset when it is disabled and when a chip reset occurs. Ten different
clock cycle periods can be selected to determine the reset period. If the reset period expires without another watchdog reset,
the Atmel ATtiny261/461/861 resets and executes from the reset vector. For timing details on the watchdog reset, refer to
Table 9-4 on page 45.

The watchdog timer can also be configured to generate an interrupt instead of a reset. This can be very helpful when using
the watchdog to wake-up from power-down.

To prevent unintentional disabling of the watchdog or unintentional change of time-out period, two different safety levels are
selected by the fuse WDTON as shown in Table 9-2 on page 43 Refer to Section 9.9 “Timed Sequences for Changing the
Configuration of the Watchdog Timer” on page 43 for details.

42 ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET]
7753G-AVR—06/14 Atmel

9.9

9.9.1

9.9.2

Table 9-2. WDT Configuration as a Function of the Fuse Settings of WDTON

Safety Level WDT Initial State How to Disable the WDT | How to Change Time-out

Unprogrammed 1 Disabled Timed sequence No limitations
Programmed 2 Enabled Always enabled Timed sequence

Figure 9-7. Watchdog Timer

128kHz > > Watchdog
Oscillator - Prescaler
¥IX|IXIX|IX|X|X|X]X]|X
NREEEIRE RN
3 2l8lalalols]S|gle
WATCHDOG olo|°|8|8|8|a|la|alo
[}
RESET SRR)
YYvYyvYyYVYVYYYYY
WDPQ ———————
WDP1 MUX
WDP2
WDP3 ——————————»
WDE
MCU RESET

Timed Sequences for Changing the Configuration of the Watchdog Timer

The sequence for changing configuration differs slightly between the two safety levels. Separate procedures are described
for each level.

Safety Level 1

In this mode, the watchdog timer is initially disabled, but can be enabled by writing the WDE bit to one without any restriction.
A timed sequence is needed when disabling an enabled watchdog timer. To disable an enabled watchdog timer, the
following procedure must be followed:
1. Inthe same operation, write a logic one to WDCE and WDE. A logic one must be written to WDE regardless of the
previous value of the WDE bit.
2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as desired, but with the
WDCE bit cleared.

Safety Level 2

In this mode, the watchdog timer is always enabled, and the WDE bit will always read as one. A timed sequence is needed
when changing the watchdog time-out period. To change the watchdog time-out, the following procedure must be followed:

1. Inthe same operation, write a logical one to WDCE and WDE. Even though the WDE always is set, the WDE must
be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with the WDCE bit
cleared. The value written to the WDE bit is irrelevant.

/ItmeL ATtiny261/ATtiny461/ATtiny861/ATtiny461 [DATASHEET] 43

7753G-AVR-06/14

9.10 Register Description

9.10.1 MCUSR - MCU Status Register

The MCU status register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
ox34(0x54) | - | - | - - | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R/W R/W R/W R/W
Initial Value 0 0 0 0 See Bit Description

* Bits 7:4 — Res: Reserved Bits
These bits are reserved bits in the Atmel® ATtiny261/461/861 and will always read as zero.

* Bit 3—-WDRF: Watchdog Reset Flag
This bit is set if a watchdog reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

e Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

e Bit 1 - EXTRF: External Reset Flag
This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.

« Bit 0 — PORF: Power-on Reset Flag
This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUSR as early as
possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by
examining the reset flags.

9.10.2 WDTCR — Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0
0x21 (0x41) | WDIF | WDIE | WDP3 | WDCE | WDE WDP2 | WDP1 | WDPO | WDTCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X 0 0 0

e Bit 7 - WDIF: Watchdog Timeout Interrupt Flag

This bit is set when a time-out occurs in the watchdog timer and the watchdog timer is configured for interrupt. WDIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, WDIF is cleared by writing a
logic one to the flag. When the I-bit in SREG and WDIE are set, the watchdog time-out interrupt is executed.

* Bit 6 —- WDIE: Watchdog Timeout Interrupt Enable

When this bit is written to one, WDE is cleare