

LMS1487 5V Low Power RS-485 / RS-422 Differential Bus Transceiver General Description Features

The LMS1487 is a low power differential bus/line transceiver designed for high speed bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines. It meets ANSI Standards TIA/EIA RS422-B, TIA/EIA RS485-A and ITU recommendation and V.11 and X.27. The LMS1487 combines a TRI-STATE™ differential line driver and differential input receiver, both of which operate from a single 5.0V power supply. The driver and receiver have an active high and active low, respectively, that can be externally connected to function as a direction control. The driver and receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to bus whenever the driver is disabled or when V_{CC} = 0V. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments. The LMS1487 is available in a 8-Pin SOIC and 8-pin DIP packages. It is a drop-in socket replacement to Maxim's MAX1487

- Meet ANSI standard RS-485-A and RS-422-B
- Data rate 2.5 Mbps
- Single supply voltage operation, 5V
- Wide input and output voltage range
- Thermal shutdown protection
- Short circuit protection
- Low quiescent current 320µA
- Allows up to 128 transceivers on the bus
- Open circuit fail-safe for receiver
- Extended operating temperature range -40°C to 85°C
- Drop-in replacement to MAX1487
- Available in 8-pin SOIC and 8-pin DIP package

Applications

- Low power RS-485 systems
- Network hubs, bridges, and routers
- Point of sales equipment (ATM, barcode scanners,...)
- Local area networks (LAN)
- Integrated service digital network (ISDN)
 - Industrial programmable logic controllers
- High speed parallel and serial applications
- Multipoint applications with noisy environment

A Typical multipoint application is shown in the above figure. Terminating resistors, RT, are typically required but only located at the two ends of the cable. Pull up and pull down resistors maybe required at the end of the bus to provide fail-safe biasing. The biasing resistors provide a bias to the cable when all drivers are in TRI-STATE, See National Application Note, AN-847 for further information.

MS1487 5V Low Power RS-485 / RS-422 Differential Bus Transceiver

Connection Diagram

Truth Table

DRIVER SECTION				
RE	DE	DI	A	В
Х	Н	Н	Н	L
Х	Н	L	L	Н
Х	L	Х	Z	Z
RECEIVER SECTION			•	
RE	DE	A-	·B	RO
L	L	≥ +0.2V		Н
L	L	≤ -0.2V		L
Н	Х	X		Z
L	L	OPEN *		Н

Note: * = Non Terminated, Open Input only

X = Irrelevant

Z = TRI-STATE

H = High level

L = Low level

Pin Descriptions

Pin #	I/O	Name	Function
1	0	RO	Receiver Output: If A > B by 200 mV, RO will be high; If A < B by 200mV, RO will be low. RO
			will be high also if the inputs (A and B) are open (non-terminated
2	1	RE	Receiver Output Enable: RO is enabled when \overline{RE} is low; RO is in TRI-STATE when \overline{RE} is high
3	I	DE	Driver Output Enable: The driver outputs (A and B) are enabled when DE is high; they are in TRI-STATE when DE is low. Pins A and B also function as the receiver input pins (see below)
4	I	DI	Driver Input: A low on DI forces A low and B high while a high on DI forces A high and B low when the driver is enabled
5	N/A	GND	Ground
6	I/O	A	Non-inverting Driver Output and Receiver Input pin. Driver Output levels conform to RS-485 signaling levels
7	I/O	В	Inverting Driver Output and Receiver Input pin. Driver Output levels conform to RS-485 signaling levels
8	N/A	V _{cc}	Power Supply: $4.75V \le V_{CC} \le 5.25V$

Ordering Info	ormation				
Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMS1487CM	LMS1487CM	95 Units/Rail		
8-Pin SOIC	LMS1487CMX		2.5k Units Tape and Reel	M08A	
8-Pin SOIC	LMS1487IM	LMS1487IM	95 Units/Rail	IVIOOA	
	LMS1487IMX		2.5k Units Tape and Reel		
8-Pin DIP	LMS1487CNA	LMS1487CNA	40 Units/Rail	N08E	
	LMS1487INA	LMS1487INA	40 Units/Rail	INUOE	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V _{CC} (Note 2)	7V
Input Voltage, V_{IN} (DI, DE, or \overline{RE})	–0.3V to V _{CC} + 0.3V
Voltage Range at Any Bus Terminal	
(AB)	-7V to 12V
Receiver Outputs	–0.3V to V _{CC} + 0.3V
Package Thermal Impedance, θ_{JA}	
SOIC	125°C/W
DIP	88°C/W
Junction Temperature (Note 3)	150°C
Operating Free-Air Temperature	
Range, T _A	
Commercial	0°C to 70°C
Industrial	–40°C to 85°C
Storage Temperature Range	–65°C to 150°C
Soldering Information	
Infrared or Convection (20 sec.)	235°C
Lead Temperature	260°C

ESD Rating (Note 4)

Operating Ratings

	Min	Nom	Max	
Supply Voltage, V_{CC}	4.75	5.0	5.25	V
Voltage at any Bus Terminal	-7		12	V
(Separately or Common Mode)				
V _{IN} or V _{IC}				
High-Level Input Voltage, V _{IH}	2			V
(Note 5)				
Low-Level Input Voltage, V _{IL}			0.8	V
(Note 5)				
Differential Input Voltage, V _{ID}			±12	V
(Note 6)				
High-Level Output				
Driver, I _{OH}			-150	mA
Receiver, I _{OH}			-42	mA
Low-Level Output				
Driver, I _{OL}			80	mA
Receiver, I _{OL}			26	mA

Electrical Characteristics

Over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Driver Sec	tion					
V _{OD1}	Differential Output Voltage	$R = \infty (Figure 1)$			5.25	V
V _{OD2}	Differential Output Voltage	R = 50Ω (<i>Figure 1</i>) ,RS-422	2.0			V
		R = 27Ω (<i>Figure 1</i>) ,RS-485	1.5		5.0	
ΔV_{OD}	Change in Magnitude of Driver Differential Output Voltage for Complementary	$R = 27\Omega$ or 50Ω (<i>Figure 1</i>), (Note 7)			0.2	V
	Output States					
V _{oc}	Common-Mode Output Voltage	$R = 27\Omega \text{ or } 50\Omega \text{ (Figure 1)}$			3.0	v
ΔV_{OC}	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	R = 27Ω or 50Ω (<i>Figure 1</i>), (Note 7)			0.2	V
V _{IH}	CMOS Inout Logic Threshold High	DE, DI, RE	2.0			V
V _{IL}	CMOS Input Logic Threshold Low	DE, DI, RE			0.8	V
I _{IN1}	Logic Input Current	DE, DI, RE			±2	μA
Receiver S	Section					1
I _{IN2}	Input Current (A, B)	DE = 0V, V_{CC} = 0V or 5.25V V_{IN} = 12V			0.25	mA
		$V_{IN} = -7V$			-0.2	1
V _{TH}	Differential Input Threshold Voltage	$-7V \le V_{CM} \le + 12V$	-0.2		+0.2	v
ΔV_{TH}	Input Hysteresis Voltage (V _{TH+} – V _{TH-})	V _{CM} = 0		95		mV

7kV

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OH}	CMOS High-level Output Voltage	$I_{OH} = -4mA$, $V_{ID} = 200mV$	3.5			V
V _{OL}	CMOS Low-level	$I_{OL} = 4mA, V_{ID} = -200mV$			0.40	V
I _{OZR}	Tristate Output Leakage Current	$0.4V \le V_O \le + 2.4V$			±1	μA
R _{IN}	Input Resistance	$-7V \le V_{CM} \le +12V$	48			kΩ
Power Su	pply Current					
I _{cc}	Supply Current	$DE = V_{CC}, \overline{RE} = GND \text{ or } V_{CC}$		320	500	μA
		DE = 0V, $\overline{\text{RE}}$ = GND or V _{CC}		315	400	
I _{OSD1}	Driver Short-circuit Output Current	V_{O} = high, -7V \leq V _{CM} \leq + 12V (Note 8)	35		250	mA
I _{OSD2}	Driver Short-circuit Output Current	$V_{O} = low, - 7V \leq V_{CM} \leq + 12V$ (Note 8)	35		250	mA
I _{OSR}	Receiver Short-circuit Output Current	$0 V \leq V_O \leq V_{CC}$	7		95	mA
Switching	Characteristics	1	1	1	1	
Driver						
T _{plh} , T _{phl}	Propagation Delay Input to Output	$R_L = 54\Omega, C_L = 100pF$ (<i>Figure 3, Figure 7</i>)	10	35	60	nS
T _{SKEW}	Driver Output Skew	$R_L = 54\Omega, C_L = 100 \text{ pF}$ (<i>Figure 3, Figure 7</i>)		5	10	nS
T _R , T _F	Driver Rise and Fall Time	$R_L = 54\Omega$, $C_L = 100 \text{ pF}$ (<i>Figure 3, Figure 7</i>)	3	8	40	nS
T _{ZH} , T _{ZL}	Driver Enable to Ouput Valid Time	$C_{L} = 100 \text{ pF}, R_{L} = 500\Omega$ (Figure 4, Figure 8)		25	70	nS
T _{HZ} , T _{LZ}	Driver Output Disable Time	$C_{L} = 15 \text{ pF}, R_{L} = 500\Omega (Figure 4, Figure 8)$		30	70	nS
Receiver			1		1	
T _{plh} , T _{phl}	Propagation Delay Input to Output	$R_L = 54\Omega, C_L = 100 \text{ pF}$ (Figure 5, Figure 7)	20	50	200	nS
T _{SKEW}	Receiver Output Skew	$R_L = 54\Omega, C_L = 100 \text{ pF}$ (<i>Figure 5, Figure 7</i>)		5		nS
T _{ZH} , T _{ZL}	Receiver Enable Time	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$ (Figure 6, Figure 10)		20	50	nS
22	Receiver Disable Time			20	50	nS
F _{MAX}	Maximum Data Rate		2.5		-	Mbps

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Note 2: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 4: ESD rating based upon human body model, 100pF discharged through $1.5k\Omega$.

Note 5: Voltage limits apply to DI, DE, \overline{RE} pins.

Note 6: Differential input/output bus voltage is measured at the non-inverting terminal A with respect to the inverting terminal B.

Note 7: $|\Delta V_{OD}|$ and $|\Delta V_{OC}|$ are changes in magnitude of V_{OD} and V_{OC} , respectively when the input changes from high to low levels.

Note 8: Peak current

LMS1487

5

Typical Performance Characteristics

Output Current vs. Receiver Output Low Voltage

Driver Output Current vs. Differential Output Voltage

Output Current vs. Receiver Output High Voltage

Receiver Output Low-Voltage vs. Temperature

Driver Differential Output Voltage vs. Temperature

Typical Performance Characteristics (Continued)

Output Current vs. Driver Output Low Voltage

Supply Current vs. Temperature

Output Current vs. Driver Output High Voltage

Parameter Measuring Information

FIGURE 1. Test Circuit for $V_{\rm OD}$ and $V_{\rm OC}$

FIGURE 2. Test Circuit for $V_{\rm OD3}$

FIGURE 3. Test Circuit for Driver Propagation Delay

20053006

FIGURE 4. Test Circuit for Driver Enable / Disable

Parameter Measuring Information (Continued)

FIGURE 5. Test Circuit for Receiver Propagation Delay

FIGURE 6. Test Circuit for Receiver Enable / Disable

Switching Characteristics

FIGURE 7. Driver Propagation Delay, Rise / Fall Time

FIGURE 8. Driver Enable / Disable Time

FIGURE 9. Receiver Propagation Delay

FIGURE 10. Receiver Enable / Disable Time

Application Information

POWER LINE NOISE FILTERING

A factor to consider in designing power and ground is noise filtering. A noise filtering circuit is designed to prevent noise generated by the integrated circuit (IC) as well as noise entering the IC from other devices. A common filtering method is to place by-pass capacitors (C_{bp}) between the power and ground lines.

Placing a by-pass capacitor (C_{bp}) with the correct value at the proper location solves many power supply noise problems. Choosing the correct capacitor value is based upon the desired noise filtering range. Since capacitors are not

ideal, they may act more like inductors or resistors over a specific frequency range. Thus, many times two by-pass capacitors may be used to filter a wider bandwidth of noise. It is highly recommended to place a larger capacitor, such as 10 μ F, between the power supply pin and ground to filter out low frequencies and a 0.1 μ F to filter out high frequencies.

By-pass capacitors must be mounted as close as possible to the IC to be effective. Longs leads produce higher impedance at higher frequencies due to stray inductance. Thus, this will reduce the by-pass capacitor's effectiveness. Surface mounted chip capacitors are the best solution because they have lower inductance.

FIGURE 11. Placement of by-pass Capacitors, C_{bp}

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

 National Semiconductor

 Europe Customer Support Center

 Fax: +49 (0) 180-530 85 86

 Email: europe.support@nsc.com

 Deutsch Tel: +49 (0) 69 9508 6208

 English Tel: +44 (0) 870 24 0 2171

 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.