

PolyZen Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 1 OF 8

Specification Status: RELEASED

GENERAL DESCRIPTION

TE PolyZen devices are polymer enhanced, precision Zener diode. They offer resettable protection against multi-Watt fault events without the need for multi-Watt heat sinks.

PolyZen Zener diode was selected due to its relatively flat voltage vs current response. This helps improve output voltage clamping, even when input voltage is high and diode currents are large.

An advanced feature of the PolyZen devices is that the Zener diode is thermally coupled to a resistively non-linear, polymer PTC (positive temperature coefficient) substrate. The PTC substrate is fully integrated into the device, and is electrically in series between V_{IN} and the diode clamped V_{OUT} .

This advanced PTC substrate responds to either extended diode heating or overcurrent events by transitioning from a low to high resistance state, also known as "tripping". A tripped PTC will limit current and generate voltage drop. It helps to protect both the Zener diode and the follow-on electronics and effectively increases the diode's power handling capability.

The polymer enhanced Zener diode helps protect sensitive portable electronics from damage caused by inductive voltage spikes, voltage transients, incorrect power supplies and reverse bias. These devices are particularly suitable for portable electronics and other low-power DC devices.

TYPICAL APPLICATION BLOCK DIAGRAM

BENEFITS

- Stable Zener diode helps shield downstream electronics from overvoltage and reverse bias
- Trip events shut out overvoltage and reverse bias sources
- Analog nature of trip events minimizes upstream inductive spikes
- Integrated protection on over current, over voltage, over temperature and ESD
- Minimal power dissipation requirements
- Single component placement

FEATURES

- Overvoltage transient suppression
- Stable Vz vs fault current
- Time delayed, overvoltage trip
- Time delayed, reverse bias trip
- Multi-Watt power handling capability
- Integrated device construction
- RoHS Compliant

TARGET APPLICATIONS

- DC power port protection in portable electronics
- DC power port protection for systems using barrel jacks for power input
- Internal overvoltage & transient suppression
- DC output voltage regulation

PolyZen Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 2 OF 8

CONFIGURATION INFORMATION

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function	
1	Vin	V _{IN} . Device input	
2	GND	GND	
3	Vout	Vout. Zener regulated voltage output	

MECHANICAL DIMMENSIONS

		Min	Тур	Max				
		mm						
		(in)						
Length	А	3.00	3.20	3.40				
Lengin		(0.118)	(0.126)	(0.134)				
Width	В	2.30	2.50	2.70				
vvidtri	D	(0.091)	(0.098)	(0.106)				
Hoight	С	1.10	1.20	1.30				
Height	C	(0.043)	(0.047)	(0.051)				

DEFINITION of TERMS

I _{PTC}	Current flowing through the PTC portion of the
	circuit
IFLT	RMS fault current flowing through the diode
Ιουτ	Current flowing out the VOUT pin of the device
Trip Event	A condition where the PTC transitions to a high resistance state, thereby significantly limiting I _{PTC} and related currents.
Trin	
Trip	Time the PTC portion of the device remains in a
Endurance	high resistance state.

PolyZen Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 3 OF 8

GENERAL SPECIFICATIONS^{1-3, 12} (Typical unless otherwise specified)

ELECTRICAL CHARACTERISTICS

	Vz (V		l _{zt} ⁴	Leakage	Leakage Current		HOLD	R _{TYP} ⁶	R _{1Max} ⁷	V _{INT} Max ⁸ (V)	
Mi	lin	Max	(A)	Test Voltage (V)	Max Current (mA)	@20ºC ent (A)	@60ºC (A)		(Ohms)	V _{INT} Max (V)	Test Current (A)
5.3	35	5.85	0.01	5.25	10	1.3	1	0.11	0.16	14	3

MAXIMUM RATINGS

Vin N	/lax ⁹	IFLT N	Max ¹⁰	Peak pulse current	ESD wit (IEC 610		Temperature		Tripped Power Dissipation ¹¹ Max	
V _{IN} Max (V)	Test Current (A)	I _{FLT} Max (A)	Test voltage (V)	8/20 µs pulse (IEC 61000-4-5) (A)	Contact (KV)	Air (KV)	Operating (ºC)	Storage (ºC)	Value (W)	Test Voltage (V)
20	3	3	16	150	+/- 30	+/- 30	-40 to +85	-40 to +85	1.0	20
-14	-3	-40	-12	150	+/- 30	+/- 30	- 30 -40 (0 +83	-40 10 +65	1.0	20

Note 1: Electrical characteristics determined at 25°C unless otherwise specified.

Note 2: This device is intended for limited fault protection. Repeated trip events or extended trip endurance can degrade the device and may affect performance to specifications. Performance impact will depend on multiple factors including, but not limited to, voltage, trip current, trip duration, trip cycles, load condition and circuit design. For details or ratings specific to your application contact TE Connectivity Circuit Protection Division directly.

- Note 3: Specifications developed using 1.0 ounce 0.045" wide copper traces on dedicated FR4 test boards. Performance in your application may vary.
- Note 4: I_{zt} is the current at which V_z is measured ($V_z = V_{OUT}$). Additional V_z values are available on request.
- Note 5: I_{HOLD}: Maximum steady state current (current entering or exiting the V_{IN} pin of the device) that will not generate a trip event at the specified temperature. Specification assumes I_{FLT} (current flowing through the Zener diode) is sufficiently low so as to prevent the diode from acting as a heat source. Testing is conducted with an "open" Zener.
- Note 6: RTYP: Resistance between VIN and VOUT pins during normal operation at room temperature.
- Note 7: R_{1Max}: The maximum resistance between V_{IN} and V_{OUT} pins at room temperature, one hour after first tripped event or after reflow soldering.
- Note 8: V_{INT} Max: V_{INT} Max is defined as the maximum voltage at which devices can be survived according to typical qualification process at the specified voltage and current. V_{INT} Max testing is conducted using a "shorted" load (V_{OUT} = 0 V). V_{INT} Max is a survivability rating, not a performance rating. For performance ratings, see Note 2.
- Note 9: V_{IN} Max: For practical application, Polyzen devices are polymer enhanced diode, it use the Polymer PTC technology to offer the diode resettable protection against continuous overvoltage fault events. V_{IN} Max is defined as the maximum voltage rating of the whole device at which devices can be survived according to typical qualification process at specified voltage and current. Testing conducted with no load connected to V_{OUT}. V_{IN} Max is a survivability rating, not a performance rating. For performance ratings, see Note 2.
- Note 10: IFLT Max: Maximum RMS fault current the device can withstand and remain resettable. Specification is dependent on the direction of current flow through the device. RMS fault currents above IFLT Max may permanently damage the PolyZen device. Specification assumes Iout = 0. Testing conducted with no load connected to Vout.
- Note 11: The power dissipated by the device when in the "tripped" state, as measured on TE test boards (see note 3).
- Note 12: Specifications based on limited qualification data and subject to change.

www.circuitprotection.com

PolyZen

Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 4 OF 8

RECOMMENDED PAD DIMENSIONS (mm)

RECOMMENDED PAD LAYOUT (mm)

RECOMMENDED SOLDER REFLOW PROFILE

Classification Reflow Profiles					
Profile Feature	Pb-Free Assembly				
Average Ramp-up Rate (Ts Max to Tp)	3° C/second max				
Average Ramp-down Rate (Tp to T∟)	6° C/second max				
Preheat					
• Temperature Min (Ts Min)	150° C				
• Temperature Max (Ts Max)	200° C				
• Time (ts Preheat)	60-180 seconds				
Time maintained above:					
• Temperature (T∟)	217° C				
• Time (t _L)	60-150 seconds				
Peak / Classification Temperature					
• Temperature (T _p)	260° C				
Time within 5° C of actual peak					
• Time (t _p)	20-40 seconds				
Time 25° C to peak Temperature	8 minutes max				

PolyZen Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 5 OF 8

TYPICAL DEVICE CHARACTERISTICS

PolyZen

Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 6 OF 8

PolyZen

Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 7 OF 8

PACKAGING

TAPE DIMENSIONS (mm)

PolyZen Polymer Enhanced Zener Diode

PRODUCT: ZEN056V130A16YM

DOCUMENT: SCD28651 REV LETTER: C REV DATE: SEPTEMBER 10, 2014 PAGE NO.: 8 OF 8

DEVICE MARKINGS INFORMATION

• 0513F

Markings	Vz	Hold current	Special code
0513F	5.6V	1.3A	F

Halogen Free*

ΗF

MATERIALS INFORMATION

All information, including illustrations, is believed to be accurate and reliable. Users, however, should independently evaluate the suitability of and test each product selected for their application. Tyco Electronics Corporation and/or its Affiliates in the TE Connectivity Ltd. family of companies ("TE") makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use. TE's only obligations are those in the TE Standard Terms and Conditions of Sale and in no case will TE be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products. Specifications are subject to change without notice. In addition, TE reserves the right to make changes to materials or processing that do not affect compliance with any applicable specification without notification to Buyer. Without express written consent by an officer of TE, TE does not authorize the use of any of its products as components in nuclear facility applications, aerospace, or in critical life support devices or systems. © 2014 Tyco Electronics Corporation, a TE Connectivity Ltd. company. All rights reserved.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.