

High Performance Audio Hub CODEC

DESCRIPTION

The WM8998^[1] is a highly-integrated low-power audio hub CODEC for smartphones, tablets and other portable audio devices. It is optimised for the needs of multimedia devices using SLIMbus application processors.

The WM8998 digital core combines fixed-function signal processing blocks with a fully-flexible, all-digital audio mixing and routing engine, for extensive use-case flexibility. Signal processing blocks include filters, EQ, dynamics processors and sample rate converters.

A SLIMbus interface supports multi-channel audio paths and host control register access. Multiple sample rates are supported concurrently via the SLIMbus interface. Three further digital audio interfaces are provided, each supporting a wide range of standard audio sample rates and serial interface formats. Automatic sample rate detection enables seamless wideband/narrowband voice call handover.

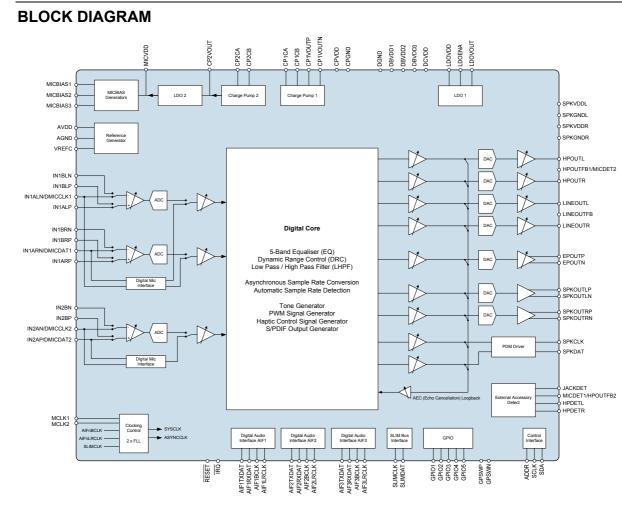
The stereo headphone driver provides ground-referenced outputs, with noise levels as low as $1\mu V_{\text{RMS}}$ for hi-fi quality line or headphone output. The CODEC also features a stereo line output, stereo 2W Class-D speaker outputs, a dedicated BTL earpiece output, PDM for external speaker amplifiers, and an IEC-60958-3 compatible S/PDIF transmitter. A signal generator for controlling haptics devices is included; vibe actuators can connect directly to the Class-D speaker output, or via an external driver on the PDM output interface. All inputs, outputs and system interfaces can function concurrently.

The WM8998 supports up to six analogue mic/line inputs, and up to three PDM digital inputs. The input multiplexers support up to three signal paths. Microphone activity detection with interrupt is available. A smart accessory interface supports most standard 3.5mm accessories. Impedance sensing and measurement is provided for external accessory and push-button detection.

The WM8998 power, clocking and output driver architectures are all designed to maximise battery life in voice, music and standby modes. Low-power 'Sleep' is supported, with configurable wake-up events. The WM8998 is powered from a 1.8V external supply. A separate supply is required for the Class D speaker drivers (typically direct connection to 4.2V battery).

Two integrated FLLs provide support for a wide range of system clock frequencies. The WM8998 is configured using the I2C or SLIMbus interfaces. The fully-differential internal analogue architecture, minimal analogue signal paths and on-chip RF noise filters ensure a very high degree of noise immunity.

FEATURES


- Hi-Fi audio hub CODEC for mobile applications
 - Digital audio processing core
 - Fully flexible digital signal routing and mixing
 - Wind noise, sidetone and other programmable filters
 - Dynamic Range Control (compressor, limiter)
 - Fully parametric EQs
 - Low-pass / High-pass filters
- Multi-channel asynchronous sample rate conversion
- Integrated multi-channel 24-bit hi-fi audio hub CODEC
 - 3 ADCs, 96dB SNR microphone input (48kHz)
 - 7 DACs, 122dB SNR headphone playback (48kHz)
- Audio inputs
 - Up to 6 analogue or 3 digital microphone inputs
 - Single-ended or differential mic/line inputs
- Stereo headphone output driver
 - 28mW into 32Ω load at 0.1% THD+N
 - 6.9mW typical headphone playback power consumption
 - Pop suppression functions
 - 1µV_{RMS} noise floor (A-weighted)
- Ground-referenced line output driver
 - Stereo single-ended or Mono differential configuration
- Mono BTL earpiece output driver
- 100mW into 32Ω BTL load at 5% THD+N
- Stereo (2 x 2W) Class D speaker output drivers
- Direct drive of external haptics vibe actuators
- Two-channel digital speaker (PDM) output interface
- IEC-60958-3 compatible S/PDIF transmitter
- SLIMbus audio and control interface
- 3 full digital audio interfaces
 - Standard sample rates from 8kHz up to 192kHz
 - TDM support on all AIFs
 - 6 channel input and output on AIF1 and AIF2
- Flexible clocking, derived from MCLKn, BCLKn or SLIMbus
- 2 low-power FLLs support reference clocks down to 32kHz
- Advanced accessory detection functions
- Low-power standby mode and configurable wake-up
- Configurable functions on 5 GPIO pins
- Integrated LDO regulators and charge pumps
- Support for single 1.8V supply operation
- Small W-CSP package, 0.4mm pitch

APPLICATIONS

- Smartphones and Multimedia handsets
- Tablets and Mobile Internet Devices (MID)

[1] This product is protected by Patents US 7,622,984, US 7,626,445, US 7,765,019 and GB 2,432,765

Product Brief, June 2014, Rev 3.0

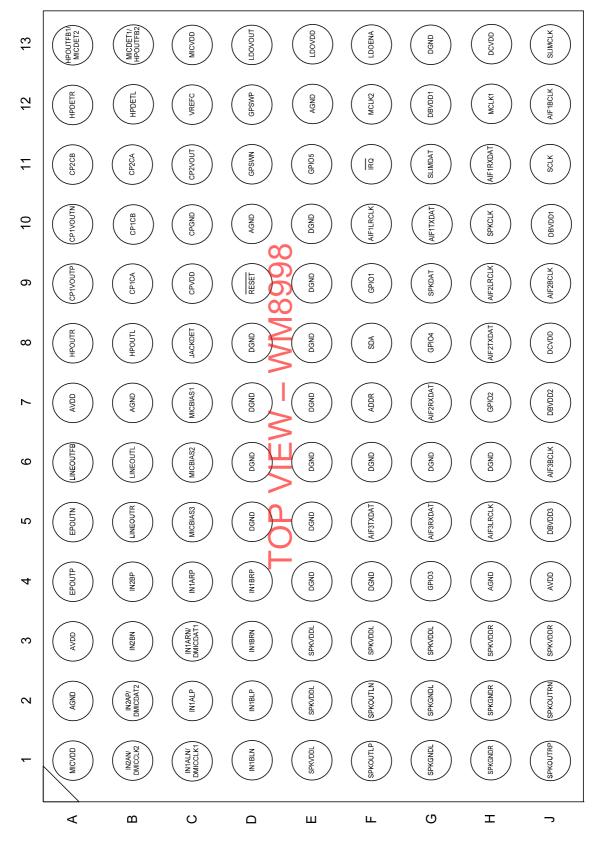


TABLE OF CONTENTS

DESCRIPTION	1
FEATURES	1
APPLICATIONS	1
BLOCK DIAGRAM	2
TABLE OF CONTENTS	3
PIN CONFIGURATION	4
ORDERING INFORMATION	5
PIN DESCRIPTION	5
ABSOLUTE MAXIMUM RATINGS	8
RECOMMENDED OPERATING CONDITIONS	
ELECTRICAL CHARACTERISTICS	10
TERMINOLOGY	20
DEVICE DESCRIPTION	21
INTRODUCTION	
HI-FI AUDIO CODEC	
DIGITAL AUDIO CORE	22
DIGITAL INTERFACES	
OTHER FEATURES	
RECOMMENDED EXTERNAL COMPONENTS	
PACKAGE DIMENSIONS	25
IMPORTANT NOTICE	26
ADDRESS:	
REVISION HISTORY	27

PIN CONFIGURATION

Product Brief , June 2014, Rev 3.0

ORDERING INFORMATION

ORDER CODE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8998ECS/R	-40°C to +85°C	W-CSP (Pb-free, Tape and reel)	MSL1	260°C

Note:

Reel quantity = 7000

PIN DESCRIPTION

A description of each pin on the WM8998 is provided below.

Note that, where multiple pins share a common name, these pins should be tied together on the PCB.

All Digital Output pins are CMOS outputs, unless otherwise stated.

PIN NO	NAME	TYPE	DESCRIPTION
F7	ADDR	Digital Input	Control interface (I2C) address select
A2, B7, D10, E12, H4	AGND	Supply	Analogue ground (Return path for AVDD)
J12	AIF1BCLK	Digital Input / Output	Audio interface 1 bit clock
F10	AIF1LRCLK	Digital Input / Output	Audio interface 1 left / right clock
H11	AIF1RXDAT	Digital Input	Audio interface 1 RX digital audio data
G10	AIF1TXDAT	Digital Output	Audio interface 1 TX digital audio data
J9	AIF2BCLK	Digital Input / Output	Audio interface 2 bit clock
H9	AIF2LRCLK	Digital Input / Output	Audio interface 2 left / right clock
G7	AIF2RXDAT	Digital Input	Audio interface 2 RX digital audio data
H8	AIF2TXDAT	Digital Output	Audio interface 2 TX digital audio data
J6	AIF3BCLK	Digital Input / Output	Audio interface 3 bit clock
H5	AIF3LRCLK	Digital Input / Output	Audio interface 3 left / right clock
G5	AIF3RXDAT	Digital Input	Audio interface 3 RXdigital audio data
F5	AIF3TXDAT	Digital Output	Audio interface 3 TX digital audio data
A3, A7, J4	AVDD	Supply	Analogue supply
B9	CP1CA	Analogue Output	Charge pump 1 fly-back capacitor pin
B10	CP1CB	Analogue Output	Charge pump 1 fly-back capacitor pin
A10	CP1VOUTN	Analogue Output	Charge pump 1 negative output decoupling pin
A9	CP1VOUTP	Analogue Output	Charge pump 1 positive output decoupling pin
B11	CP2CA	Analogue Output	Charge pump 2 fly-back capacitor pin
A11	CP2CB	Analogue Output	Charge pump 2 fly-back capacitor pin
C11	CP2VOUT	Analogue Output	Charge pump 2 output decoupling pin / Supply for LDO2
C10	CPGND	Supply	Charge pump 1 & 2 ground (Return path for CPVDD)
C9	CPVDD	Supply	Supply for Charge Pump 1 & 2
G12, J10	DBVDD1	Supply	Digital buffer (I/O) supply (core functions and Audio Interface 1)
J7	DBVDD2	Supply	Digital buffer (I/O) supply (for Audio Interface 2, GPIO2, GPIO4)
J5	DBVDD3	Supply	Digital buffer (I/O) supply (for Audio Interface 3, GPIO3)
H13, J8	DCVDD	Supply	Digital core supply
D5, D6, D7, D8, E4, E5, E6, E7, E8, E9, E10, F4, F6, G6, G13, H6	DGND	Supply	Digital ground (Return path for DCVDD, DBVDD1, DBVDD2 and DBVDD3)
A5	EPOUTN	Analogue Output	Earpiece negative output
A4	EPOUTP	Analogue Output	Earpiece positive output
F9	GPIO1	Digital Input / Output	General Purpose pin GPIO1.
			The output configuration is selectable CMOS or Open Drain.

Product Brief, June 2014, Rev 3.0

Pre-Production

PIN NO	NAME	TYPE	DESCRIPTION
H7	GPIO2	Digital Input / Output	General Purpose pin GPIO2. The output configuration is selectable CMOS or Open Drain.
G4	GPIO3	Digital Input / Output	General Purpose pin GPIO3. The output configuration is selectable CMOS or Open Drain.
G8	GPIO4	Digital Input / Output	General Purpose pin GPIO4.
E11	GPIO5	Digital Input / Output	The output configuration is selectable CMOS or Open Drain. General Purpose pin GPIO5.
D11	GPSWN		The output configuration is selectable CMOS or Open Drain.
D11 D12	GPSWP	Analogue Output Analogue Input	General Purpose analogue switch contact (negative) General Purpose analogue switch contact (positive)
B12	HPDETL	° .	Headphone left (HPOUTL) sense input
		Analogue Input	
A12	HPDETR	Analogue Input	Headphone right (HPOUTR) sense input
A13	HPOUTFB1/ MICDET2	Analogue Input	HPOUTL and HPOUTR ground feedback pin 1/ Microphone & accessory sense input 2
B8	HPOUTL	Analogue Output	Left headphone output
A8	HPOUTR	Analogue Output	Right headphone output
C1	IN1ALN/	Analogue Input /	Left channel negative differential Mic/Line input /
	DMICCLK1	Digital Output	Digital MIC clock output 1
C2	IN1ALP	Analogue Input	Left channel single-ended Mic/Line input / Left channel positive differential Mic/Line input
C3	IN1ARN/	Analogue input /	Right channel negative differential Mic/Line input /
	DMICDAT1	Digital Input	Digital MIC data input 1
C4	IN1ARP	Analogue Input	Right channel single-ended Mic/Line input / Right channel positive differential Mic/Line input
B1	IN2AN/	Analogue Input /	Negative differential Mic/Line input /
	DMICCLK2	Digital Output	Digital MIC clock output 2
B2	IN2AP/	Analogue Input /	Single-ended Mic/Line input /
	DMICDAT2	Digital Input	Positive differential Mic/Line input/
			Digital MIC data input 2
D1	IN1BLN	Analogue Input	Left channel negative differential Mic/Line input
D2	IN1BLP	Analogue Input	Left channel single-ended Mic/Line input / Left channel positive differential Mic/Line input
D3	IN1BRN	Analogue input	Right channel negative differential Mic/Line input
D4	IN1BRP	Analogue Input	Right channel single-ended Mic/Line input / Right channel positive differential Mic/Line input
B3	IN2BN	Analogue Input	Negative differential Mic/Line input
B3 B4	IN2BP	Analogue Input	Single-ended Mic/Line input /
F11	IRQ	Digital Output	Positive differential Mic/Line input Interrupt Request (IRQ) output (default is active low). The pin configuration is selectable CMOS or Open Drain.
C8	JACKDET	Analogue Input	Jack detect input
F13	LDOENA	Digital Input	Enable pin for LDO1
E13	LDOVDD	Supply	Supply for LDO1
D13	LDOVOUT	Analogue Output	LDO1 output
A6	LINEOUTFB	Analogue Input	LINEOUTL and LINEOUTR ground loop noise rejection feedbac
B6	LINEOUTL	Analogue Output	Left line output
B5	LINEOUTR	Analogue Output	Right line output
H12	MCLK1	Digital Input	Master clock 1
F12	MCLK2	Digital Input	Master clock 2
C7	MICBIAS1	Analogue Output	Misci cioci 2 Microphone bias 1
C6	MICBIAS2	Analogue Output	Microphone bias 2
C5	MICBIAS3	Analogue Output	Microphone bias 3
B13	MICDET1/	Analogue Input	Microphone & accessory sense input 1/
2.5	HPOUTFB2		HPOUTL and HPOUTR ground feedback pin 2

Product Brief, June 2014, Rev 3.0

Pre-Production

PIN NO	NAME	ТҮРЕ	DESCRIPTION
A1, C13	MICVDD	Analogue Output	LDO2 output decoupling pin (generated internally by WM8998).
			(Can also be used as reference/supply for external microphones.)
D9	RESET	Digital Input	Digital Reset input (active low)
J11	SCLK	Digital Input	Control interface (I2C) clock input
F8	SDA	Digital Input / Output	Control interface (I2C) data input and output
			The output function is implemented as an Open Drain circuit.
J13	SLIMCLK	Digital Input	SLIMBus Clock input
G11	SLIMDAT	Digital Input / Output	SLIMBus Data input / output
H10	SPKCLK	Digital Output	Digital speaker (PDM) clock output
G9	SPKDAT	Digital Output	Digital speaker (PDM) data output
G1, G2	SPKGNDL	Supply	Left speaker driver ground (Return path for SPKVDDL)
H1, H2	SPKGNDR	Supply	Right speaker driver ground (Return path for SPKVDDR)
F2	SPKOUTLN	Analogue Output	Left speaker negative output
F1	SPKOUTLP	Analogue Output	Left speaker positive output
J2	SPKOUTRN	Analogue Output	Right speaker negative output
J1	SPKOUTRP	Analogue Output	Right speaker positive output
E1, E2, E3, F3, G3	SPKVDDL	Supply	Left speaker driver supply
H3, J3	SPKVDDR	Supply	Right speaker driver supply
C12	VREFC	Analogue Output	Bandgap reference decoupling capacitor connection

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020 for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Supply voltages (LDOVDD, AVDD, DCVDD, CPVDD)	-0.3V	+2.0V
Supply voltages (DBVDD1, DBVDD2, DBVDD3)	-0.3V	+4.0V
Supply voltages (SPKVDDL, SPKVDDR)	-0.3V	+6.0V
Voltage range digital inputs (DBVDD1 domain)	AGND - 0.3V	DBVDD1 + 0.3V
Voltage range digital inputs (DBVDD2 domain)	AGND - 0.3V	DBVDD2 + 0.3V
Voltage range digital inputs (DBVDD3 domain)	AGND - 0.3V	DBVDD3 + 0.3V
Voltage range digital inputs (DMICDATn)	AGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (IN1A*, IN1B*, IN2A*, MICDETn, HPOUTFBn, LINEOUTFB)	AGND - 0.3V	MICVDD + 0.3V
Voltage range analogue inputs (IN2B*)	AGND - 3.3V	MICVDD + 0.3V
Voltage range analogue inputs (JACKDET, HPDETL, HPDETR)	CP1VOUTN - 0.3V	AVDD + 0.3V
Voltage range analogue inputs (GPSWP, GPSWN)	AGND - 0.3V	MICVDD + 0.3V
Ground (DGND, CPGND, SPKGNDL, SPKGNDR)	AGND - 0.3V	AGND + 0.3V
Operating temperature range, T _A	-40°C	+85°C
Operating junction temperature, T _J	-40°C	+125°C
Storage temperature after soldering	-65°C	+150°C

Note: CP1VOUTN is an internal supply, generated by the WM8998 Charge Pump (CP1). The CP1VOUTN voltage may vary between AGND and -CPVDD.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Digital supply range (Core) See notes 2, 3, 4, 5	DCVDD (≤24.576MHz clocking)	1.14	1.2	1.9	V
	DCVDD (>24.576MHz clocking)	1.71	1.8	1.9	
Digital supply range (I/O)	DBVDD1	1.7		1.9	V
Digital supply range (I/O)	DBVDD2, DBVDD3	1.7		3.47	V
LDO supply range	LDOVDD	1.7	1.8	1.9	V
Charge Pump supply range	CPVDD	1.7	1.8	1.9	V
Speaker supply range	SPKVDDL, SPKVDDR	2.4		5.5	V
Analogue supply range See note 2	AVDD	1.7	1.8	1.9	V
Ground See note 1	DGND, AGND, CPGND, SPKGNDL, SPKGNDR		0		V
Power supply rise time	DCVDD	10		2000	μs
See notes 7, 8, 9, 10	All other supplies	1			1
Operating temperature range	TA	-40		85	°C

Notes:

- 1. The grounds must always be within 0.3V of AGND.
- 2. AVDD must be supplied before DCVDD. DCVDD must not be powered if AVDD is not present. There are no other power sequencing requirements.
- 3. An internal LDO (powered by LDOVDD) can be used to provide the DCVDD supply.
- 4. 'Sleep' mode is supported when DCVDD is below the limits noted, provided AVDD and DBVDD1 are present.
- 5. Under default conditions, digital core clocking rates above 24.576MHz are inhibited. The register-controlled clocking limit should only be raised when the applicable DCVDD voltage is present.
- 6. An internal Charge Pump and LDO (powered by CPVDD) provide the microphone bias supply; the MICVDD pin should not be connected to an external supply.
- 7. DCVDD minimum rise time does not apply when this is powered using the internal LDO.
- 8. If DCVDD is supplied externally, and the rise time exceeds 2ms, then RESET must be asserted (low) during the rise, and held asserted until after DCVDD is within the recommended operating limits.
- 9. The specified minimum power supply rise times assume a minimum decoupling capacitance of 100nF per pin. However, Wolfson strongly advises that the recommended decoupling capacitors are present on the PCB and that appropriate layout guidelines are observed.
- 10. The specified minimum power supply rise times also assume a maximum PCB inductance of 10nH between decoupling capacitor and pin.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD = 1.8V,

With the exception of the condition(s) noted above, the following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Analogue Input Signal Level (IN1AL, IN1AR, IN1BL, IN1BR, IN2A, IN2B)							
Full-scale input signal level (0dBFS output)	VINFS	Single-ended PGA input, 6dB PGA gain		0.5 -6		V _{RMS} dBV	
		Differential PGA input, 0dB PGA gain		1 0		V _{RMS} dBV	

Notes:

- 1. The full-scale input signal level is also the maximum analogue input level, before clipping occurs.
- 2. The full-scale input signal level changes in proportion with AVDD. For differential input, it is calculated as AVDD / 1.8.
- 3. A $1.0V_{RMS}$ differential signal equates to $0.5V_{RMS}$ /-6dBV per input.
- 4. A sinusoidal input signal is assumed.

Test Conditions

T_A = +25°C

With the exception of the condition(s) noted above, the following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Analogue Input Pin Characteristics (IN1AL, IN1AR, IN1BL, IN1BR, IN2A, IN2B)								
Input resistance	Rin	Differential input, All PGA gain settings		24		kΩ		
		Single-ended input, 0dB PGA gain		16				
Input capacitance	CIN				5	pF		

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input Programmable Gain Amplifiers (PGAs)							
Minimum programmable gain				0		dB	
Maximum programmable gain				31		dB	
Programmable gain step size		Guaranteed monotonic		1		dB	

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Digital Microphone Input Signal Level (DMICDAT1, DMICDAT2)								
Full-scale input signal level (0dBFS output)		0dB gain		-6		dBFS		

Notes:

5. The digital microphone input signal level is measured in dBFS, where 0dBFS is a signal level equal to the full-scale range (FSR) of the PDM input. The FSR is defined as the amplitude of a 1kHz sine wave whose positive and negative peaks are represented by the maximum and minimum digital codes respectively - this is the largest 1kHz sine wave that will fit in the digital output range without clipping. Note that, because the definition of FSR is based on a sine wave, the PDM data format can support signals larger than 0dBFS.

Pre-Production

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Headphone Output Driver (HPOUT	L, HPOUTR)		U			•
Load resistance		Charge Pump Normal mode (default)	15			Ω
		Charge Pump Low Impedance mode	6			
		Device survival with load applied indefinitely	0.1			
Load capacitance		Direct connection, Single-ended mode			500	pF
		Direct connection, Differential (BTL) mode			250	
		Connection via 16Ω series resistor			2	nF
DC offset at Load		Single-ended mode		0.1		mV
		Differential (BTL) mode		0.2		
Note - to support HPOUT loads less	than 15Ω, the	e Charge Pump (CP1) must be	e configured f	or low impeda	ince operatior	1.
Line Output Driver (LINEOUTL, LI	NEOUTR)					
Load resistance		Normal operation	600			Ω
		Mono Mode (BTL)	600			
		Device survival with load applied indefinitely	0.1			
Load capacitance		Direct connection, Single-ended mode			500	pF
		Direct connection, Differential (BTL) mode			250	
		Connection via 16Ω series resistor			2	nF
DC offset at Load		Single-ended mode		0.1		mV
		Differential (BTL) mode		0.2		
Earpiece Output Driver (EPOUTP+	EPOUTN)					
Load resistance		Charge Pump Normal mode (default)	30			Ω
		Charge Pump Low Impedance mode	15			
		Device survival with load applied indefinitely	0.1			
Load capacitance		Direct connection (BTL)			250	pF
		Connection via 16Ω series resistor			2	nF
DC offset at Load				0.1		mV
Note - to support HPOUT loads less	than 15Ω, the	e Charge Pump (CP1) must be	e configured f	or low impeda	ince operatior	1.
Speaker Output Driver (SPKOUTL	P+SPKOUTL	N, SPKOUTRP+SPKOUTRN)			
Load resistance		Normal operation	4			Ω
		Device survival with load applied indefinitely	0			
Load capacitance		· · · ·			200	pF
DC offset at Load				5		mV
SPKVDD leakage current				1		μA

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V,

T_A = +25°C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analogue Input Paths (IN1AL, IN	1AR, IN1BL, II	N1BR, IN2A, IN2B) to ADC (Di	ifferential li	nput Mode, IN	n_SRC = x0)	
Signal to Noise Ratio (A-weighted)	SNR	High performance mode (INn_OSR = 1)	86	96		dB
		Normal mode (INn_OSR = 0)		93		
Total Harmonic Distortion	THD	-1dBV input		-88		dB
Total Harmonic Distortion Plus Noise	THD+N	-1dBV input		-86	-76	dB
Channel separation (Left/Right)				100		dB
Input noise floor		A-weighted, PGA gain = +18dB		3.2		μV _{RMS}
Common mode rejection ratio	CMRR	PGA gain = +30dB		65		dB
		PGA gain = 0dB		70		
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		70		dB
CPVDD, AVDD)		100mV(peak-peak) 10kHz		65		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		95		dB
		100mV(peak-peak) 10kHz		95		
Analogue Input Paths (IN1AL, IN PGA Gain = +6dB unless otherwise	, ,	N1BR, IN2A, IN2B) to ADC (Si	ngle-Endeo	l Input Mode	, INn_SRC = :	x1)
Signal to Noise Ratio (A-weighted)	SNR	High performance mode (INn_OSR = 1)	83	94		dB
		Normal mode (INn_OSR = 0)		92		
Total Harmonic Distortion	THD	-7dBV input		-81		
Total Harmonic Distortion Plus						dB
Noise	THD+N	-7dBV input		-80	-71	dB dB
Noise Channel separation (Left/Right)	THD+N	-7dBV input		-80 100	-71	-
	THD+N	-7dBV input A-weighted, PGA gain = +18dB			-71	dB
Channel separation (Left/Right)	THD+N	A-weighted,		100	-71	dB dB
Channel separation (Left/Right) Input noise floor		A-weighted, PGA gain = +18dB		100 4.6	-71	dB dB µV _{RMS}
Channel separation (Left/Right) Input noise floor PSRR (DBVDDn, LDOVDD,		A-weighted, PGA gain = +18dB 100mV (peak-peak) 217Hz		100 4.6 70	-71	dB dB µV _{RMS}

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V, $T_A = +25^{\circ}$ C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Headphone Output (HPO	UTL, HPOUTF	R; R _L = 32Ω)				
Maximum output power	Po	0.1% THD+N		28		mW
Signal to Noise Ratio	SNR	A-weighted, Output signal = 1Vrms		122		dB
Total Harmonic Distortion	THD	Po = 20mW		-86		dB
Total Harmonic Distortion Plus Noise	THD+N	Po = 20mW		-84		dB
Total Harmonic Distortion	THD	Po = 5mW		-89		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 5mW		-85		dB
Channel separation (Left/Right)		Po = 20mW		110		dB
Output noise floor		A-weighted		1		μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		115		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		80		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		115		dB
		100mV(peak-peak) 10kHz		80		
DAC to Headphone Output (HPO	UTL, HPOUTF	R; R∟ = 16Ω)				
Maximum output power	Po	0.1% THD+N		34		mW
Signal to Noise Ratio	SNR	A-weighted, Output signal = 1Vrms	114	122		dB
Total Harmonic Distortion	THD	Po = 20mW		-78		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 20mW		-76		dB
Total Harmonic Distortion	THD	Po = 5mW		-78		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 5mW		-77	-67	dB
Channel separation (Left/Right)		P _o = 20mW		110		dB
Output noise floor		A-weighted		1	2	μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		115		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		80		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		115		dB
		100mV(peak-peak) 10kHz		115		
DAC to Line Output (HPOUTL, H	POUTR; Load	= 10kΩ, 50pF)				
Full-scale output signal level	V _{OUT}	0dBFS input	1 0			Vrms dBV
Signal to Noise Ratio	SNR	A-weighted, Output signal = 1Vrms	114	122		dB
Total Harmonic Distortion	THD	0dBFS input		-89		dB
Total Harmonic Distortion Plus Noise	THD+N	0dBFS input		-88	-73	dB
Channel separation (Left/Right)				110		dB
Output noise floor		A-weighted		1	2	μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		115		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		80		1
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		115		dB
		100mV(peak-peak) 10kHz		80]

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V,

T_A = +25°C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Line Output (LINEOUTL,	LINEOUTR; L	oad = 10kΩ, 50pF)				
Full-scale output signal level	V _{OUT}	0dBFS input	1			Vrms
			0			dBV
Signal to Noise Ratio	SNR	A-weighted, Output signal = 1Vrms	114	122		dB
Total Harmonic Distortion	THD	0dBFS input		-89		dB
Total Harmonic Distortion Plus Noise	THD+N	0dBFS input		-88	-73	dB
Channel separation (Left/Right)				110		dB
Output noise floor		A-weighted		1	2	μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		127		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		90		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		130		dB
		100mV(peak-peak) 10kHz		85		
DAC to Earpiece Output (EPOUT	P+EPOUTN, F	R∟ = 32Ω BTL)				
Maximum output power	Po	0.1% THD+N	.1% THD+N 83	mW		
		5% THD+N		100		
Signal to Noise Ratio	SNR	A-weighted, Output signal = 2Vrms	118	127		dB
Total Harmonic Distortion	THD	Po = 50mW		-92		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 50mW		-90		dB
Total Harmonic Distortion	THD	Po = 5mW		-85		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 5mW		-83	-73	dB
Output noise floor		A-weighted		1	2.5	μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		113		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		115		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		130		dB
		100mV(peak-peak) 10kHz		100		
DAC to Earpiece Output (EPOUT	P+EPOUTN, F	R∟ = 16Ω BTL)				
Maximum output power	Po	0.1% THD+N		83		mW
		10% THD+N		110		
Signal to Noise Ratio	SNR	A-weighted, Output signal = 2Vrms		127		dB
Total Harmonic Distortion	THD	P _o = 50mW		-92		dB
Total Harmonic Distortion Plus Noise	THD+N	Po = 50mW		-90		dB
Total Harmonic Distortion	THD	Po = 5mW		-90		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 5mW		-88		dB
Output noise floor		A-weighted		1		μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz	_	113		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		115		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		130		dB
		100mV(peak-peak) 10kHz		100		

Pre-Production

Test Conditions

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V, $T_A = +25^{\circ}$ C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DAC to Speaker Output (SPKOU High Performance mode (OUT4_C		LN, SPKOUTRP+SPKOUTRN	l, Load = 8Ω	, 22µH, BTL)		
Maximum output power	Po	SPKVDD = 5.0V, 1% THD+N		1.37		W
		SPKVDD = 4.2V, 1% THD+N		0.97		
		SPKVDD = 3.6V, 1% THD+N		0.71		
Signal to Noise Ratio	SNR	A-weighted, Output signal = 3Vrms	90	100		dB
Total Harmonic Distortion	THD	P ₀ = 0.7W		-74		dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 0.7W		-73		dB
Total Harmonic Distortion	THD	Po = 0.5W		-74		dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 0.5W		-73	-57	dB
Channel separation (Left/Right)		P ₀ = 0.5W		95		dB
Output noise floor		A-weighted		30	95	μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		80		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		70		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		70		dB
		100mV (peak-peak) 10kHz		70		
DAC to Speaker Output (SPKOU High Performance mode (OUT4_C		LN, SPKOUTRP+SPKOUTRN	l, Load = 4Ω	, 15µH, BTL)		
Maximum output power	Po	SPKVDD = 5.0V, 1% THD+N		2.4		W
		SPKVDD = 4.2V, 1% THD+N		1.69		
		SPKVDD = 3.6V, 1% THD+N		1.24		
Signal to Noise Ratio	SNR	A-weighted, Output signal = 3Vrms		100		dB
Total Harmonic Distortion	THD	Po = 1.0W		-61		dB
Total Harmonic Distortion Plus Noise	THD+N	P ₀ = 1.0W		-60		dB
Total Harmonic Distortion	THD	Po = 0.5W		-64		dB
Total Harmonic Distortion Plus Noise	THD+N	P _o = 0.5W		-63		dB
Channel separation (Left/Right)		Po = 0.5W		85		dB
Output noise floor		A-weighted		30		μV _{RMS}
PSRR (DBVDDn, LDOVDD,	PSRR	100mV (peak-peak) 217Hz		80		dB
CPVDD, AVDD)		100mV (peak-peak) 10kHz		70		
PSRR (SPKVDDL, SPKVDDR)	PSRR	100mV (peak-peak) 217Hz		70		dB

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNI
Digital Input / Output (except DM Digital I/O is referenced to DBVI See "Recommended Operating	DD1, DBVDD2 o	or DBVDD3.	e range of eac		domain	
Input HIGH Level		$V_{DBVDDn} = 1.8V \pm 10\%$				V
	VIH	V DBVDDn - 1.0V 11070	V _{DBVDDn}			v
		VDBVDDn =3.3V ±10%	0.7 ×			
			V _{DBVDDn}			
Input LOW Level	VIL	V_{DBVDDn} =1.8V ±10%			0.35 ×	V
					V _{DBVDDn}	
		V_{DBVDDn} =3.3V ±10%			0.3 ×	
					V _{DBVDDn}	
Note that digital input pins should	- T - T	•			1	
Output HIGH Level	V _{OH}	I _{ОН} = 1mA	0.9 ×			V
Output LOW Level		1 - 1	V _{DBVDDn}		0.1	V
	Vol	l _{o∟} = -1mA			0.1 × V _{DBVDDn}	v
Input capacitance				10	V DB V DDII	pF
Input leakage			-1	10	1	μA
Pull-up resistance			42	49	56	kΩ
(where applicable)			72	40	00	1132
Pull-up resistance			28	36	45	kΩ
(where applicable)						
DMICDATn and DMICCLKn are of DMICDATn input HIGH Level	VIH		$0.65 \times V_{SUP}$			V
DMICDATn input LOW Level	VIL				$0.35 \times V_{\text{SUP}}$	V
DMICCLKn output HIGH Level	V _{OH}	I _{ОН} = 1mA	$0.8\times V_{\text{SUP}}$			V
DMICCLKn output LOW Level	V _{OL}	I _{OL} = -1mA			$0.2 \times V_{SUP}$	
Input capacitance					U.Z A VSUP	V
Input leakage				10	0.2 × 050P	V pF
			-1	10	1	
SLIMbus Digital Input / Output (1.8V I/O Signalling (ie. 1.65V ≤ D			-1	10		pF
			0.65 ×	10		pF
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level	2BVDD1 ≤1.95V) V _{IH}			10	1	pF μA V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level	BVDD1 ≤1.95V) V _{IH} V _{IL}	· · · · · · · · · · · · · · · · · · ·	0.65 ×	10		pF μA V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level	2BVDD1 ≤1.95V) V _{IH}		0.65 ×	10	1 0.35 ×	pF μA V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level	BVDD1 ≤1.95V) V _{IH} V _{IL}	· · · · · · · · · · · · · · · · · · ·	0.65 × V _{DBVDD1} 0.9 ×	10	1 0.35 ×	pF μA V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level Output LOW Level	BVDD1 ≤1.95V) V _{IH} V _{IL} V _{OH}	I _{OH} = 1mA	0.65 × V _{DBVDD1} 0.9 ×	10	1 0.35 × V _{DBVDD1} 0.1 ×	pF μΑ V V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level Output LOW Level Pin capacitance	BVDD1 ≤1.95V) V _{IH} V _{IL} V _{OH} V _{OL}	I _{OH} = 1mA	0.65 × V _{DBVDD1} 0.9 ×	10	0.35 × VDBVDD1 0.1 × VDBVDD1	pF μA V V V V V V V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level Output LOW Level Pin capacitance General Purpose Input / Output	BVDD1 ≤1.95V) V _{IH} V _{IL} V _{OH} V _{OL}	I _{OH} = 1mA	0.65 × V _{DBVDD1} 0.9 ×	10	0.35 × VDBVDD1 0.1 × VDBVDD1	pF μA V V V V V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level Output LOW Level Pin capacitance General Purpose Input / Output Clock output frequency General Purpose Switch	BVDD1 ≤1.95V) VIH VIL VOH VOH (GPIOn)	I _{OH} = 1mA I _{OL} = -1mA GPIO pin configured as OPCLK or FLL output	0.65 × V _{DBVDD1} 0.9 × V _{DBVDD1}		1 0.35 × VDBVDD1 0.1 × VDBVDD1 5	pF μA V V V V V
1.8V I/O Signalling (ie. 1.65V ≤ D Input HIGH Level Input LOW Level Output HIGH Level Output LOW Level Pin capacitance General Purpose Input / Output Clock output frequency General Purpose Switch	BVDD1 ≤1.95V) VIH VIL VOH VOH (GPIOn)	I _{OH} = 1mA I _{OL} = -1mA GPIO pin configured as OPCLK or FLL output	0.65 × V _{DBVDD1} 0.9 × V _{DBVDD1}		1 0.35 × VDBVDD1 0.1 × VDBVDD1 5	pF μA V V V V V
1.8V I/O Signalling (ie. 1.65V ≤ D	BVDD1 ≤1.95V) VIH VIL VOH VOH (GPIOn)	I _{OH} = 1mA I _{OL} = -1mA GPIO pin configured as OPCLK or FLL output	0.65 × V _{DBVDD1} 0.9 × V _{DBVDD1}		1 0.35 × VDBVDD1 0.1 × VDBVDD1 5	pF μA V V V V V

Pre-Production

Test Conditions

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V, $T_A = +25^{\circ}$ C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Microphone Bias (MICBIAS1, MI	CBIAS2, MICB	IAS3)				
Note - No capacitor on MICBIASn						
Note - In regulator mode, it is requi	red that VMICVDI			I		
Minimum Bias Voltage	VMICBIAS	Regulator mode		1.5		V
Maximum Bias Voltage		(MICBn_BYPASS=0) Load current ≤ 1.0mA		2.8		V
Bias Voltage output step size		Load current S 1.0mA		0.1		V
Bias Voltage accuracy			-5%		+5%	V
Bias Current		Regulator mode (MICBn_BYPASS=0),			2.4	mA
		VMICVDD - VMICBIAS >200mV				
		Bypass mode (MICBn_BYPASS=1)			5.0	
Output Noise Density		Regulator mode (MICBn_BYPASS=0), MICBn_LVL = 4h, Load current = 1mA, Measured at 1kHz		50		nV/√Hz
Integrated noise voltage		Regulator mode (MICBn_BYPASS=0), MICBn_LVL = 4h, Load current = 1mA, 100Hz to 7kHz, A-weighted		4		μVrms
Power Supply Rejection Ratio	PSRR	100mV (peak-peak) 217Hz		95		dB
(DBVDDn, LDOVDD, CPVDD, AVDD)		100mV (peak-peak) 10kHz		65		
Load capacitance		Regulator mode (MICBn_BYPASS=0), MICBn_EXT_CAP=0			50	pF
		Regulator mode (MICBn_BYPASS=0), MICBn_EXT_CAP=1	1.8	4.7		μF
Output discharge resistance		MICBn_ENA=0, MICBn_DISCH=1		5		kΩ

Test Conditions

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V,

T_A = +25°C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
External Accessory Detect						
Load impedance detection range Detection via HPDETL pin		HP_IMPEDANCE_ RANGE=00	4		30	Ω
(ACCDET_MODE=001) or HPDETR pin		HP_IMPEDANCE_ RANGE=01	8		100	
(ACCDET_MODE=010)		HP_IMPEDANCE_ RANGE=10	100		1000	
		HP_IMPEDANCE_ RANGE=11	1000		10000	
Load impedance detection range Detection via the MICDET1 or MICDET2 pin (ACCDET_MODE=100)			400		6000	Ω
Load impedance detection accuracy (ACCDET_MODE=001, 010 or 100)			-30		+30	%
Load impedance detection range		for MICD_LVL[0] = 1	0		3	Ω
Detection via the MICDET1 or		for MICD_LVL[1] = 1	17		21	
MICDET2 pin (ACCDET MODE=000).		for MICD_LVL[2] = 1	36		44	
(ACCDE1_MODE=000). 2.2kΩ (2%) MICBIAS resistor.		for MICD_LVL[3] = 1	62		88	
Note these characteristics assume		for MICD_LVL[4] = 1	115		160	
no other component is connected		for MICD_LVL[5] = 1	207		381	
to MICDETn.		for MICD_LVL[8] = 1	475		30000	
Jack Detection input threshold	VJACKDET	Jack insertion		0.5 x AVDD		V
voltage (JACKDET)		Jack removal		0.85 x AVDD		1
Jack Detect pull-up resistance			0.65	1	1.3	MΩ

DBVDD1 = DBVDD2 = DBVDD3 = LDOVDD = CPVDD = AVDD = 1.8V,

DCVDD = 1.2V (powered from LDO1), MICVDD = 3.0V (powered from LDO2), SPKVDDL = SPKVDDR = 4.2V,

T_A = +25°C, 1kHz sinusoid signal, fs = 48kHz, Input PGA gain = 0dB, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MICVDD Charge Pump and Regul	ator (CP2 and	LDO2)				
Output voltage	VMICVDD		1.7	2.7	3.3	V
Programmable output voltage step size				50		mV
Maximum output current				8		mA
Start-up time		4.7μF on MICVDD, I _{MICBIASn} = 1mA		4.5		ms
Frequency Locked Loop (FLL1, F	_L2)					
Output frequency		Normal operation, input reference supplied	13		50	MHz
		Free-running mode, no reference supplied		30		
Lock Time		F _{REF} = 32kHz, F _{OUT} = 24.576MHz		10		ms
		F _{REF} = 12MHz, F _{OUT} = 24.576MHz		1		
RESET pin Input						
RESET input pulse width			1			μs
(To trigger a Hardware Reset, the RESET input must be asserted for longer than this duration)						

Test Conditions

The following electrical characteristics are valid across the full range of recommended operating conditions.

Device Reset Thresholds					
AVDD Reset Threshold	VAVDD	VAVDD rising		0.96	V
		VAVDD falling	0.54		
DCVDD Reset Threshold	VDCVDD	V _{DCVDD} rising		1.03	V
		V_{DCVDD} falling	0.48		
DBVDD1 Reset Threshold	V _{DBVDD1}	V _{DBVDD1} rising		0.96	V
		VDBVDD1 falling	0.54		

Note that the reset thresholds are derived from simulations only, across all operational and process corners. Device performance is not assured outside the voltage ranges defined in the "Recommended Operating Conditions" section. Refer to this section for the WM8998 power-up sequencing requirements.

TERMINOLOGY

- 1. Signal-to-Noise Ratio (dB) SNR is a measure of the difference in level between the maximum full scale output signal and the output with no input signal applied. (Note that this is measured without any mute function enabled.)
- 2. Total Harmonic Distortion (dB) THD is the ratio of the RMS sum of the harmonic distortion products in the specified bandwidth (see note below) relative to the RMS amplitude of the fundamental (ie. test frequency) output.
- 3. Total Harmonic Distortion plus Noise (dB) THD+N is the ratio of the RMS sum of the harmonic distortion products plus noise in the specified bandwidth (see note below) relative to the RMS amplitude of the fundamental (ie. test frequency) output.
- 4. Power Supply Rejection Ratio (dB) PSRR is the ratio of a specified power supply variation relative to the output signal that results from it. PSRR is measured under quiescent signal path conditions.
- 5. Common Mode Rejection Ratio (dB) CMRR is the ratio of a specified input signal (applied to both sides of a differential input), relative to the output signal that results from it.
- 6. Channel Separation (L/R) (dB) left-to-right and right-to-left channel separation is the difference in level between the active channel (driven to maximum full scale output) and the measured signal level in the idle channel at the test signal frequency. The active channel is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the associated idle channel.
- 7. Multi-Path Crosstalk (dB) is the difference in level between the output of the active path and the measured signal level in the idle path at the test signal frequency. The active path is configured and supplied with an appropriate input signal to drive a full scale output, with signal measured at the output of the specified idle path.
- 8. Mute Attenuation This is a measure of the difference in level between the full scale output signal and the output with mute applied.
- 9. All performance measurements are specified with a 20kHz low pass 'brick-wall' filter and, where noted, an A-weighted filter. Failure to use these filters will result in higher THD and lower SNR readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise.

DEVICE DESCRIPTION

INTRODUCTION

The WM8998 is a highly integrated low-power audio hub CODEC for mobile telephony and portable devices. It provides flexible, high-performance audio interfacing for handheld devices in a small and cost-effective package. It is optimised for the needs of tablet devices and multimedia phones using SLIMbus application processors.

The WM8998 digital core provides configurable capability for signal processing algorithms, including parametric equalisation (EQ) and dynamic range control (DRC). Highly flexible digital mixing, including stereo full-duplex asynchronous sample rate conversion, provides use-case flexibility across a broad range of system architectures. A signal generator for controlling haptics vibe actuators is included.

The WM8998 provides multiple digital audio interfaces, including SLIMbus, in order to provide independent and fully asynchronous connections to different processors (eg. application processor, baseband processor and wireless transceiver).

A flexible clocking arrangement supports a wide variety of external clock references, including clocking derived from the digital audio interface. Two integrated Frequency Locked Loop (FLL) circuits provide additional flexibility.

Unused circuitry can be disabled under software control, in order to save power; low leakage currents enable extended standby/off time in portable battery-powered applications. Configurable 'Wake-Up' actions can be associated with the low-power standby (Sleep) mode.

Versatile GPIO functionality is provided, and support for external accessory / push-button detection inputs. Comprehensive Interrupt (IRQ) logic and status readback are also provided.

HI-FI AUDIO CODEC

The WM8998 is a high-performance low-power audio CODEC which uses a simple analogue architecture. Input path multiplexers select from up to 6 analogue mic/line and 3 digital microphone inputs; combinations of up to 3 inputs can be supported. 7 DACs are incorporated, providing a dedicated DAC for each output channel.

The analogue outputs comprise a 28mW (122dB SNR) stereo headphone amplifier with ground-referenced output, a flexible (single-ended or differential) line output, a 100mW differential (BTL) earpiece driver, and a Class D stereo speaker driver capable of delivering 2W per channel into a 4 Ω load. Six analogue inputs are provided, each supporting single-ended or differential input modes. In differential mode, the input path SNR is 96dB. Up to 3 analogue or digital input paths can be supported at one time.

The audio CODEC is controlled directly via register access. The simple analogue architecture, combined with the integrated tone generator, enables simple device configuration and testing, minimising debug time and reducing software effort.

The WM8998 output drivers are designed to support as many different system architectures as possible. Each output has a dedicated DAC which allows mixing, equalisation, filtering, gain and other audio processing to be configured independently for each channel. This allows each signal path to be individually tailored for the load characteristics. All outputs have integrated pop and click suppression features.

The headphone, line and earpiece output drivers are ground-referenced, powered from an integrated charge pump, enabling high quality, power efficient headphone playback without any requirement for DC blocking capacitors. Ground loop feedback is incorporated, providing rejection of noise on the ground connections.

The Class D speaker drivers deliver excellent power efficiency. High PSRR, low leakage and optimised supply voltage ranges enable powering from switching regulators or directly from the battery. Battery current consumption is minimised across a wide variety of voice communication and multimedia playback use cases.

The WM8998 is cost-optimised for a wide range of mobile phone applications, and features two channels of Class D power amplification. For applications requiring more than two channels of power amplification (or when using the integrated Class D path to drive a haptics actuator), the PDM output channels can be used to drive two external PDM-input speaker drivers. In applications where stereo loudspeakers are physically widely separated, the PDM outputs can ease layout and EMC by avoiding the need to run the Class-D speaker outputs over long distances and interconnects.

DIGITAL AUDIO CORE

The WM8998 uses a core architecture based on all-digital signal routing, making digital audio effects available on all signal paths, regardless of whether the source data input is analogue or digital. The digital mixing desk allows different audio effects to be applied simultaneously on many independent paths, whilst also supporting a variety of sample rates concurrently. This helps support many new audio use-cases. Soft mute and un-mute control allows smooth transitions between use-cases without interrupting existing audio streams elsewhere.

Highly flexible digital mixing, including mixing between audio interfaces, is possible. The WM8998 performs stereo full-duplex asynchronous sample rate conversion, providing use-case flexibility across a broad range of system architectures. Automatic sample rate detection is provided, enabling seamless wideband/narrowband voice call handover.

Dynamic Range Controller (DRC) functions are available for optimising audio signal levels. In playback modes, the DRC can be used to maximise loudness, while limiting the signal level to avoid distortion, clipping or battery droop, in particular for high-power output drivers such as speaker amplifiers. In record modes, the DRC assists in applications where the signal level is unpredictable.

The 5-band parametric equaliser (EQ) functions can be used to compensate for the frequency characteristics of the output transducers. EQ functions can be cascaded to provide additional frequency control. Programmable high-pass and low-pass filters are also available for general filtering applications such as removal of wind and other low-frequency noise.

DIGITAL INTERFACES

Three serial digital audio interfaces (AIFs) each support PCM, TDM and I2S data formats for compatibility with most industry-standard chipsets. AIF1 and AIF2 support six input/output channels each; AIF3 supports two input/output channels. Bidirectional operation at sample rates up to 192kHz is supported.

Three digital PDM input channels are available (one stereo, and one mono interface); these are typically used for digital microphones, powered from the integrated MICBIAS power supply regulators. Two PDM output channels are also available (one stereo interface); these are typically used for external power amplifiers. Embedded mute codes provide a control mechanism for external PDM-input devices.

The WM8998 features a MIPI-compliant SLIMbus interface, providing 4 input, and 6 output channels of audio support. Mixed audio sample rates are supported on the SLIMbus interface. The SLIMbus interface also supports read/write access to the WM8998 control registers.

An IEC-60958-3 compatible S/PDIF transmitter is incorporated, enabling stereo S/PDIF output on a GPIO pin. Standard S/PDIF sample rates of 32kHz up to 192kHz are all supported.

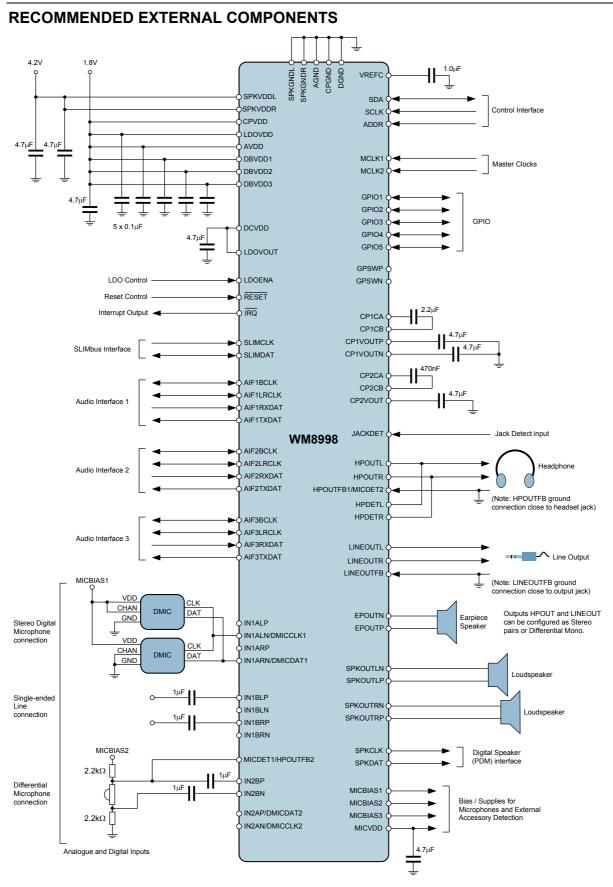
The WM8998 is equipped with an I2C slave port (at up to 1MHz). Full access to the register map is also provided via the SLIMbus port.

OTHER FEATURES

The WM8998 incorporates two 1kHz tone generators which can be used for 'beep' functions through any of the audio signal paths. The phase relationship between the two generators is configurable, providing flexibility in creating differential signals, or for test scenarios.

Two Pulse Width Modulation (PWM) signal generators are incorporated. The duty cycle of each PWM signal can be modulated by an audio source, or can be set to a fixed value using a control register setting. The PWM signal generators can be output directly on a GPIO pin.

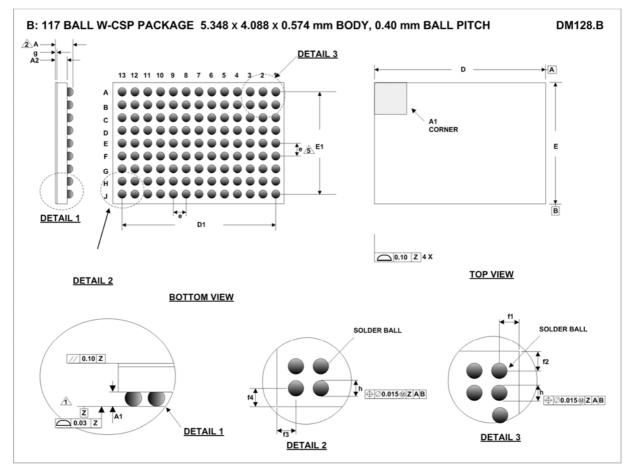
The WM8998 provides 5 GPIO pins, supporting selectable input/output functions for interfacing, detection of external hardware, and to provide logic outputs to other devices. Comprehensive Interrupt (IRQ) functionality is also provided for monitoring internal and external event conditions.


A signal generator for controlling haptics devices is included, compatible with both Eccentric Rotating Mass (ERM) and Linear Resonant Actuator (LRA) haptic devices. The haptics signal generator is highly configurable, and can execute programmable drive event profiles, including reverse drive control. An external vibe actuator can be driven directly by the Class D speaker output.

The WM8998 can be powered from a 1.8V external supply. A separate supply (4.2V) is typically required for the Class D speaker driver. Integrated Charge Pump and LDO Regulators circuits are used to generate supply rails for internal functions and to support powering or biasing of external microphones.

A smart accessory interface is included, supporting most standard 3.5mm accessories. Jack detection, accessory sensing and impedance measurement is provided, for external accessory and push-button detection. Accessory detection can be used as a 'Wake-Up' trigger from low-power standby. Microphone activity detection with interrupt is also available.

System clocking can be derived from the MCLK1 or MCLK2 input pins. Alternatively, the SLIMbus interface, or the audio interfaces (configured in Slave mode), can be used to provide a clock reference. Two integrated Frequency Locked Loop (FLL) circuits provide support for a wide range of clocking configurations, including the use of a 32kHz input clock reference.



Product Brief, June 2014, Rev 3.0

PACKAGE DIMENSIONS

Symbols		Dimensio	ons (mm)	
	MIN	NOM	MAX	NOTE
A	0.538	0.574	0.610	
A1	0.165	0.199	0.232	
A2	0.356	0.376	0.396	
D	5.323	5.348	5.373	
D1		4.80 BSC		
E	4.063	4.088	4.113	
E1		3.20 BSC		
е		0.40 BSC		5
f1		0.274 BSC		
f2		0.444 BSC		
f3		0.274 BSC		
f4		0.444 BSC		
g		0.022		
h	0.212	0.262	0.312	

NOTES:

NOTES: 1. PRIMARY DATUM -Z- AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 2. THIS DIMENSION INCLUDES STAND-OFF HEIGHT 'A1'. 3. A1 CORNER IS IDENTIFIED BY INK/LASER MARK ON TOP PACKAGE. 4. BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY. 5. ver REPRESENTS THE BASIC SOLDER BALL GRID PITCH. 6. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. 7. FOLLOWS JEDEC DESIGN GUIDE MO-211-C.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001 Email :: <u>sales@wolfsonmicro.com</u>

REVISION HISTORY

DATE	REV	DESCRIPTION OF CHANGES	PAGE	CHANGED BY
08/05/14	2.0	First Release.		PH
25/06/14	2.1	Electrical Characteristics updated	11-19	PH

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.