

Surface Mount TRANSZORB® Transient Voltage Suppressors

FEATURES

- Very low profile - typical height of 0.65 mm
- Ideal for automated placement
- Oxide planar chip junction
- Uni-directional polarity only
- Peak pulse power: 150 W (10/1000 μ s)
- ESD capability: **15 kV (air), 8 kV (contact)**
- Meets MSL level 1, per J-STD-020C, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Not recommended for PCB bottom side wave mounting
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE

PRIMARY CHARACTERISTICS

V_{WM}	3.3 V to 5.0 V
V_{BR}	4.1 V to 7.07 V
P_{PPM}	150 W
T_J max.	150 °C
Polarity	Uni-directional
Package	MicroSMP

TYPICAL APPLICATIONS

Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting on ICs, MOSFET, signal lines of sensor units for protecting sensitive equipment against transient overvoltages.

MECHANICAL DATA

Case: MicroSMP

Molding compound meets UL 94 V-0 flammability rating
Base P/N-M3 - halogen-free, RoHS compliant, and commercial grade

Base P/NHM3 - halogen-free, RoHS compliant, and automotive grade

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test, HM3 suffix meets JESD 201 class 2 whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

PARAMETER	SYMBOL	VALUE	UNIT
Peak power dissipation with a 10/1000 μ s waveform (fig. 1)	P_{PPM} ⁽¹⁾⁽²⁾	150	W
Peak pulse current with a 10/1000 μ s waveform	I_{PPM} ⁽¹⁾	See next table	A
Power dissipation	$T_M = 120$ °C	P_D ⁽²⁾	1.0
Power dissipation	$T_A = 25$ °C	P_D ⁽³⁾	0.5
Operating junction and storage temperature range	T_J, T_{STG}	- 55 to + 150	°C

Notes

⁽¹⁾ Non-repetitive current pulse, per fig. 1

⁽²⁾ Mounted on 6.0 mm x 6.0 mm copper pads to each terminal

⁽³⁾ Mounted on minimum recommended pad layout

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)												
DEVICE TYPE	DEVICE MARKING CODE	BREAKDOWN VOLTAGE V_{BR} AT I_T ⁽¹⁾ (V)		TEST CURRENT I_T (mA)	STAND-OFF VOLTAGE V_{WM} (V)	MAXIMUM REVERSE LEAKAGE CURRENT I_R AT V_{WM} (μA)	MAXIMUM V_C AT I_{PPM}		R_D	MAXIMUM V_C AT I_{PPM}		
		MIN.	MAX.				10/1000 μs			8/20 μs		
		V_C (V)	I_{PPM} (A)				V_C (V)	I_{PPM} (A)		V_C (V)	I_{PPM} (A)	
MSP3V3	KC	4.10	5.10	1.0	3.3	200	7.6	19.7	0.127	11.5	87	0.074
MSP5.0A	AE	6.40	7.07	10	5.0	100	9.2	16.3	0.131	13.4	75	0.085

Notes

- To calculate maximum clamping voltage at surge current uses the following formula: $V_{CL\ max.} = R_D \times I_{PP} + V_{BR\ max.}$

⁽¹⁾ Pulse test: $t_p \leq 50\ \text{ms}$

THERMAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)					
PARAMETER		SYMBOL	VALUE		UNIT
Typical thermal resistance		$R_{\theta JA}$ ⁽¹⁾	250		$^\circ\text{C/W}$
		$R_{\theta JM}$ ⁽²⁾	30		

Notes
⁽¹⁾ Free air, mounted on recommended PCB 1 oz. pad area; thermal resistance $R_{\theta JA}$ - junction to ambient

⁽²⁾ Units mounted on PCB with 6.0 mm x 6.0 mm copper pad areas; $R_{\theta JM}$ - junction to mount

IMMUNITY TO STATIC ELECTRICAL DISCHARGE TO THE FOLLOWING STANDARDS					
$(T_A = 25^\circ\text{C}$ unless otherwise noted)					
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	CLASS	VALUE
AEC-Q101-001	Human body model (contact mode)	$C = 100\ \text{pF}, R = 1.5\ \text{k}\Omega$	V_C	H3B	$> 8\ \text{kV}$
IEC 61000-4-2 ⁽²⁾	Human body model (air discharge mode) ⁽¹⁾	$C = 150\ \text{pF}, R = 330\ \Omega$		4	$> 15\ \text{kV}$

Notes
⁽¹⁾ Immunity to IEC 61000-4-2 air discharge mode has a typical performance $> 30\ \text{kV}$
⁽²⁾ System ESD standard

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
MSP3V3-M3/89A	0.006	89A	4500	7" diameter plastic tape and reel	
MSP3V3HM3/89A ⁽¹⁾	0.006	89A	4500	7" diameter plastic tape and reel	
MSP5.0A-M3/89A	0.006	89A	4500	7" diameter plastic tape and reel	
MSP5.0AHM3/89A ⁽¹⁾	0.006	89A	4500	7" diameter plastic tape and reel	

Note
⁽¹⁾ Automotive grade

RATINGS AND CHARACTERISTICS CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)

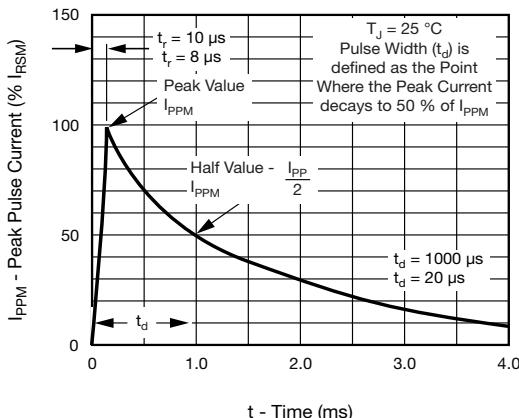


Fig. 1 - Pulse Waveform

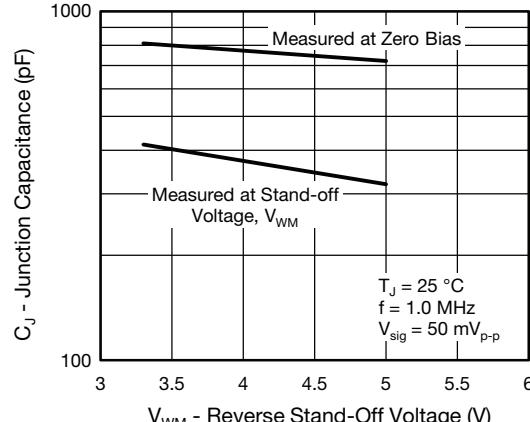


Fig. 4 - Typical Junction Capacitance

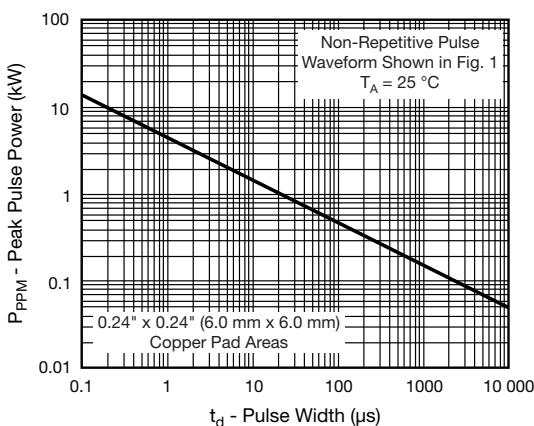


Fig. 2 - Peak Pulse Power Rating Curve

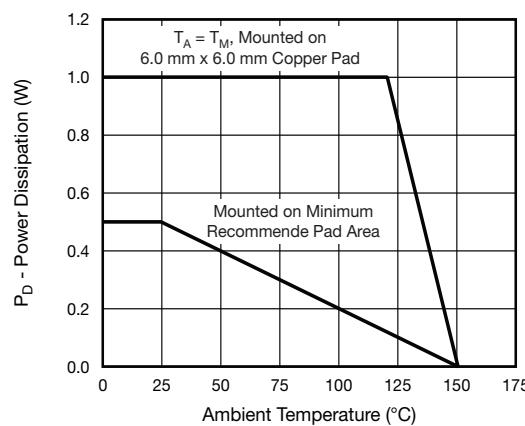


Fig. 5 - Power Dissipation Derating Curve

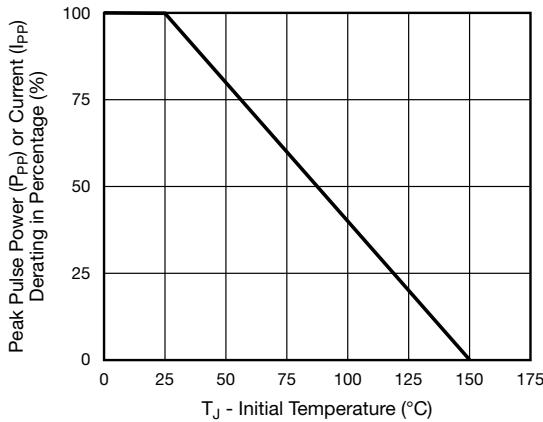


Fig. 3 - Pulse Power or Current vs. Initial Junction Temperature

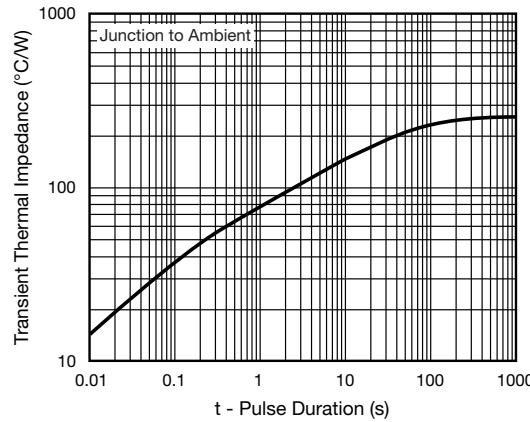
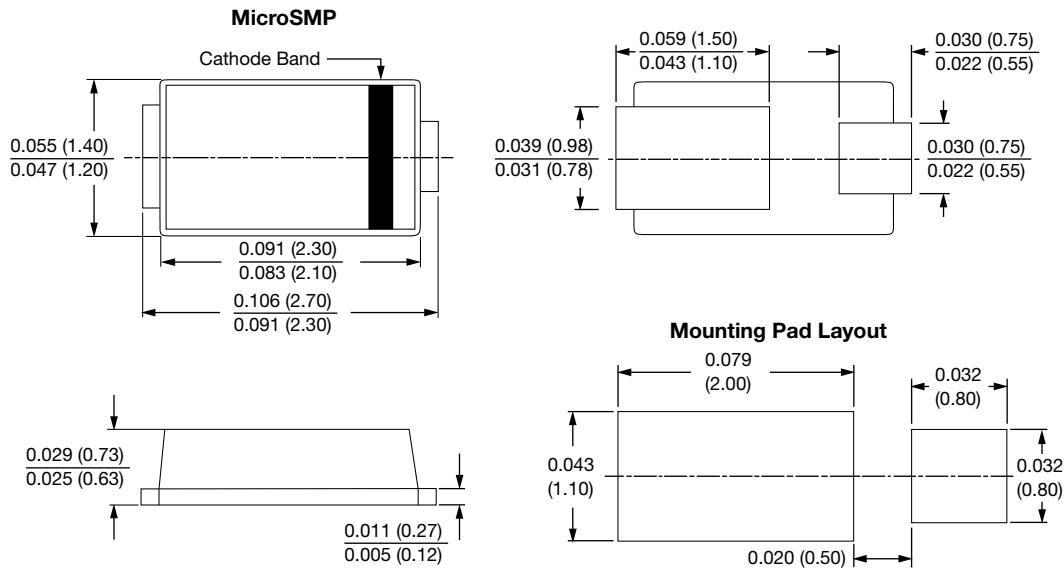



Fig. 6 - Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помошь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помошь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.