**Product data sheet** 

#### 1. General description

The 74ALVC125 is a quad non-inverting buffer/line driver with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input ( $n\overline{OE}$ ). A HIGH on the  $n\overline{OE}$  pin causes the outputs to assume a high-impedance OFF-state.

#### 2. Features

- Wide supply voltage range from 1.65 V to 3.6 V
- 3.6 V tolerant inputs/outputs
- CMOS low power consumption
- Direct interface with TTL levels (2.7 V to 3.6 V)
- Power-down mode
- Latch-up performance exceeds 250 mA
- Complies with JEDEC standards:
  - JESD8-7 (1.65 V to 1.95 V)
  - ◆ JESD8-5 (2.3 V to 2.7 V)
  - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
  - HBM JESD22-A114E exceeds 2000 V
  - MM JESD22-A 115-A exceeds 200 V

#### 3. Ordering information

#### Table 1.Ordering information

| Type number | Package           |          |                                                                                                                                          |          |  |  |  |
|-------------|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
|             | Temperature range | Name     | Description                                                                                                                              | Version  |  |  |  |
| 74ALVC125D  | –40 °C to +85 °C  | SO14     | plastic small outline package; 14 leads;<br>body width 3.9 mm                                                                            | SOT108-1 |  |  |  |
| 74ALVC125PW | –40 °C to +85 °C  | TSSOP14  | plastic thin shrink small outline package; 14 leads; body width 4.4 mm                                                                   | SOT402-1 |  |  |  |
| 74ALVC125BQ | –40 °C to +85 °C  | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm | SOT762-1 |  |  |  |

# nexperia

Quad buffer/line driver; 3-state

#### 4. Functional diagram





Fig 3. Logic diagram (one buffer)

### 5. Pinning information



#### 5.1 Pinning

#### 5.2 Pin description

| Table 2.        | Pin description |                            |
|-----------------|-----------------|----------------------------|
| Symbol          | Pin             | Description                |
| nA              | 2, 5, 9, 12     | data input                 |
| nY              | 3, 6, 8, 11     | bus output                 |
| nOE             | 1, 4, 10, 13    | output enable (active LOW) |
| V <sub>CC</sub> | 14              | supply voltage             |
| GND             | 7               | ground (0 V)               |

#### 6. Functional description

#### Table 3. Function table<sup>[1]</sup>

| Input<br>nOE |    | Output |
|--------------|----|--------|
| nOE          | nA | nY     |
| L            | L  | L      |
| L            | Н  | Н      |
| н            | Х  | Z      |

[1] H = HIGH voltage level

L = LOW voltage level

X= don't care

Z = high-impedance OFF-state

### 7. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

|                  |                         |                                                    |                    |                       | · ·  |
|------------------|-------------------------|----------------------------------------------------|--------------------|-----------------------|------|
| Symbol           | Parameter               | Conditions                                         | Min                | Max                   | Unit |
| V <sub>CC</sub>  | supply voltage          |                                                    | -0.5               | +4.6                  | V    |
| I <sub>IK</sub>  | input clamping current  | V <sub>1</sub> < 0 V                               | -50                | -                     | mA   |
| VI               | input voltage           |                                                    | <u>[1]</u> –0.5    | +4.6                  | V    |
| I <sub>OK</sub>  | output clamping current | $V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V    | -                  | ±50                   | mA   |
| Vo               | output voltage          | output HIGH or LOW state                           | <u>[1][2]</u> –0.5 | V <sub>CC</sub> + 0.5 | V    |
|                  |                         | output 3-state                                     | -0.5               | +4.6                  | V    |
|                  |                         | Power-down mode, $V_{CC} = 0 V$                    | [2] -0.5           | +4.6                  | V    |
| l <sub>O</sub>   | output current          | $V_{O} = 0 V$ to $V_{CC}$                          | -                  | ±50                   | mA   |
| I <sub>CC</sub>  | supply current          |                                                    | -                  | 100                   | mA   |
| I <sub>GND</sub> | ground current          |                                                    | -100               | -                     | mA   |
| T <sub>stg</sub> | storage temperature     |                                                    | -65                | +150                  | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$ | [3] _              | 500                   | mW   |
|                  |                         |                                                    |                    |                       |      |

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] When  $V_{CC} = 0 V$  (Power-down mode), the output voltage can be 3.6 V in normal operation.

For SO14 packages: above 70 °C derate linearly with 8 mW/K.
 For TSSOP14 packages: above 60 °C derate linearly with 5.5 mW/K.
 For DHVQFN20 packages: above 60 °C derate linearly with 4.5 mW/K.

74ALVC125\_2

### 8. Recommended operating conditions

| Table 5.              | Recommended operating condit        | ions                               |      |                 |      |
|-----------------------|-------------------------------------|------------------------------------|------|-----------------|------|
| Symbol                | Parameter                           | Conditions                         | Min  | Max             | Unit |
| V <sub>CC</sub>       | supply voltage                      |                                    | 1.65 | 3.6             | V    |
| VI                    | input voltage                       |                                    | 0    | 3.6             | V    |
| Vo                    | output voltage                      | output HIGH or LOW state           | 0    | V <sub>CC</sub> | V    |
|                       |                                     | output 3-state                     | 0    | 3.6             | V    |
|                       |                                     | Power-down mode; $V_{CC} = 0 V$    | 0    | 3.6             | V    |
| T <sub>amb</sub>      | ambient temperature                 | in free air                        | -40  | +85             | °C   |
| $\Delta t / \Delta V$ | input transition rise and fall rate | $V_{CC}$ = 1.65 V to 2.7 V         | 0    | 20              | ns/V |
|                       |                                     | $V_{CC} = 2.7 V \text{ to } 3.6 V$ | 0    | 10              | ns/V |
|                       |                                     | VCC = 2.7 V 10 5.0 V               | 0    | 10              |      |

### 9. Static characteristics

#### Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

| Symbol Par      | Parameter                 | Conditions                                         | -40                 | °C to +8             | 5 °C                 | Unit |
|-----------------|---------------------------|----------------------------------------------------|---------------------|----------------------|----------------------|------|
|                 |                           |                                                    | Min                 | Typ <mark>[1]</mark> | Max                  |      |
| VIH             | HIGH-level input voltage  | $V_{CC} = 1.65 \text{ V}$ to 1.95 V                | $0.65 	imes V_{CC}$ | -                    | -                    | V    |
|                 |                           | $V_{CC}$ = 2.3 V to 2.7 V                          | 1.7                 | -                    | -                    | V    |
|                 |                           | $V_{CC}$ = 2.7 V to 3.6 V                          | 2.0                 | -                    | -                    | V    |
| VIL             | LOW-level input voltage   | $V_{CC} = 1.65 \text{ V}$ to 1.95 V                | -                   | -                    | $0.35 \times V_{CC}$ | V    |
|                 |                           | $V_{CC}$ = 2.3 V to 2.7 V                          | -                   | -                    | 0.7                  | V    |
|                 |                           | $V_{CC}$ = 2.7 V to 3.6 V                          | -                   | -                    | 0.8                  | V    |
| V <sub>он</sub> | HIGH-level output voltage | $V_{I} = V_{IH} \text{ or } V_{IL}$                |                     |                      |                      |      |
|                 |                           | $I_{O}$ = –100 $\mu A;$ $V_{CC}$ = 1.65 V to 3.6 V | $V_{CC} - 0.2$      | -                    | -                    | V    |
|                 |                           | $I_{O} = -6 \text{ mA}; V_{CC} = 1.65 \text{ V}$   | 1.25                | 1.51                 | -                    | V    |
|                 |                           | $I_{O} = -12 \text{ mA}; V_{CC} = 2.3 \text{ V}$   | 1.8                 | 2.10                 | -                    | V    |
|                 |                           | $I_{O} = -18 \text{ mA}; V_{CC} = 2.3 \text{ V}$   | 1.7                 | 2.01                 | -                    | V    |
|                 |                           | $I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$   | 2.2                 | 2.53                 | -                    | V    |
|                 |                           | $I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$   | 2.4                 | 2.76                 | -                    | V    |
|                 |                           | $I_{O} = -24$ mA; $V_{CC} = 3.0$ V                 | 2.2                 | 2.68                 | -                    | V    |
| V <sub>OL</sub> | LOW-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}$                |                     |                      |                      |      |
|                 |                           | $I_O$ = 100 $\mu\text{A};V_{CC}$ = 1.65 V to 3.6 V | -                   | -                    | 0.2                  | V    |
|                 |                           | $I_{O} = 6 \text{ mA}; V_{CC} = 1.65 \text{ V}$    | -                   | 0.11                 | 0.3                  | V    |
|                 |                           | $I_{O}$ = 12 mA; $V_{CC}$ = 2.3 V                  | -                   | 0.17                 | 0.4                  | V    |
|                 |                           | $I_{O}$ = 18 mA; $V_{CC}$ = 2.3 V                  | -                   | 0.25                 | 0.6                  | V    |
|                 |                           | $I_{O}$ = 12 mA; $V_{CC}$ = 2.7 V                  | -                   | 0.16                 | 0.4                  | V    |
|                 |                           | $I_{O}$ = 18 mA; $V_{CC}$ = 3.0 V                  | -                   | 0.23                 | 0.4                  | V    |
|                 |                           | $I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$    | -                   | 0.30                 | 0.55                 | V    |
| 1               | input leakage current     | $V_{CC}$ = 3.6 V; $V_{I}$ = 3.6 V or GND           | -                   | ±0.1                 | ±5                   | μΑ   |

Quad buffer/line driver; 3-state

| At recomm        | nended operating conditions. | Voltages are referenced to GND (ground =                                                                           | 0 V). |                      |     |      |
|------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|-------|----------------------|-----|------|
| Symbol           | Parameter                    | Conditions                                                                                                         | -4    | 0 °C to +85          | °C  | Unit |
|                  |                              |                                                                                                                    | Min   | Typ <mark>[1]</mark> | Max |      |
| I <sub>OZ</sub>  | OFF-state output current     | $V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}; V_{O} = 3.6 \text{ V or GND};$      | -     | ±0.1                 | ±10 | μA   |
| I <sub>OFF</sub> | power-off leakage current    | $V_{CC}$ = 0 V; V <sub>I</sub> or V <sub>O</sub> = 0 V to 3.6 V                                                    | -     | ±0.1                 | ±10 | μA   |
| I <sub>CC</sub>  | supply current               | $V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC} \text{ or GND};$<br>$I_{O} = 0 \text{ A}$                          | -     | 0.2                  | 10  | μA   |
| $\Delta I_{CC}$  | additional supply current    | per input pin; V <sub>CC</sub> = 3.0 V to 3.6 V;<br>V <sub>I</sub> = V <sub>CC</sub> – 0.6 V; I <sub>O</sub> = 0 A | -     | 5                    | 750 | μA   |
| CI               | input capacitance            |                                                                                                                    | -     | 3.5                  | -   | pF   |

#### Table 6. Static characteristics ... continued

[1] All typical values are measured at V<sub>CC</sub> = 3.3 V (unless stated otherwise) and T<sub>amb</sub> = 25 °C.

#### **10.** Dynamic characteristics

#### Table 7. **Dynamic characteristics**

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

| Symbol Parameter            |                             | Conditions                                         |     | <b>−40 °C to +85</b> |        | 5 °C | Unit |
|-----------------------------|-----------------------------|----------------------------------------------------|-----|----------------------|--------|------|------|
|                             |                             |                                                    | -   | Min                  | Typ[1] | Max  |      |
| t <sub>pd</sub>             | propagation delay           | nA to nY; see Figure 6                             | [2] |                      |        |      |      |
|                             |                             | $V_{CC}$ = 1.65 V to 1.95 V                        |     | 1.3                  | 2.4    | 5.3  | ns   |
|                             |                             | $V_{CC}$ = 2.3 V to 2.7 V                          |     | 1.0                  | 1.7    | 3.2  | ns   |
|                             |                             | $V_{CC} = 2.7 V$                                   |     | -                    | 2.0    | 3.1  | ns   |
|                             |                             | $V_{CC} = 3.0 V \text{ to } 3.6 V$                 |     | 1.1                  | 1.8    | 2.8  | ns   |
| t <sub>en</sub> enable time | nOE to nY; see Figure 7     | [2]                                                |     |                      |        |      |      |
|                             | $V_{CC}$ = 1.65 V to 1.95 V |                                                    | 1.4 | 3.9                  | 6.4    | ns   |      |
|                             | $V_{CC}$ = 2.3 V to 2.7 V   |                                                    | 1.0 | 2.2                  | 4.1    | ns   |      |
|                             |                             | $V_{CC} = 2.7 V$                                   |     | -                    | 2.7    | 4.3  | ns   |
|                             |                             | $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$ |     | 1.0                  | 1.9    | 3.5  | ns   |
| t <sub>dis</sub>            | disable time                | nOE to nY; see Figure 7                            | [2] |                      |        |      |      |
|                             |                             | $V_{CC}$ = 1.65 V to 1.95 V                        |     | 1.8                  | 3.9    | 5.9  | ns   |
|                             |                             | $V_{CC}$ = 2.3 V to 2.7 V                          |     | 1.0                  | 2.1    | 3.4  | ns   |
|                             |                             | $V_{CC} = 2.7 V$                                   |     | -                    | 2.9    | 4.0  | ns   |
|                             |                             | $V_{CC} = 3.0 V \text{ to } 3.6 V$                 |     | 1.4                  | 2.7    | 4.0  | ns   |

#### Quad buffer/line driver; 3-state

| Symbol         Parameter                      |                                                        | bund = 0 V). For test circuit see <u>Figure 8</u> . Conditions |   | -40 | Unit   |     |    |
|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|---|-----|--------|-----|----|
|                                               |                                                        |                                                                |   | Min | Typ[1] | Max |    |
| C <sub>PD</sub> power dissipation capacitance | per buffer; $V_1$ = GND to $V_{CC}$ ; $V_{CC}$ = 3.3 V | [3]                                                            |   |     |        |     |    |
|                                               | outputs HIGH or LOW state                              |                                                                | - | 27  | -      | pF  |    |
|                                               |                                                        | outputs 3-state                                                |   | -   | 5      | -   | pF |

#### Table 7. Dynamic characteristics ... continued

[1] Typical values are measured at  $T_{amb} = 25 \ ^{\circ}C$ 

[2]  $t_{pd}$  is the same as  $t_{PHL}$  and  $t_{PLH}$ . ten is the same as tPZH and tPZL.  $t_{\text{dis}}$  is the same as  $t_{\text{PHZ}}$  and  $t_{\text{PLZ}}.$ 

[3]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).  $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:  $f_i$  = input frequency in MHz;  $f_o$  = output frequency in MHz C<sub>L</sub> = output load capacitance in pF V<sub>CC</sub> = supply voltage in Volts N = number of inputs switching  $\Sigma(C_L \times V_{CC}^2 \times f_o)$  = sum of the outputs

#### 11. Waveforms



#### Table 8. **Measurement points**

| Supply voltage   | Input              | Output             | Dutput                   |                          |  |  |
|------------------|--------------------|--------------------|--------------------------|--------------------------|--|--|
| V <sub>CC</sub>  | V <sub>M</sub>     | V <sub>M</sub>     | V <sub>X</sub>           | V <sub>Y</sub>           |  |  |
| 1.65 V to 1.95 V | 0.5V <sub>CC</sub> | 0.5V <sub>CC</sub> | V <sub>OL</sub> + 0.15 V | V <sub>OH</sub> – 0.15 V |  |  |
| 2.3 V to 2.7 V   | $0.5V_{CC}$        | 0.5V <sub>CC</sub> | V <sub>OL</sub> + 0.15 V | V <sub>OH</sub> – 0.15 V |  |  |
| 2.7 V            | 1.5 V              | 1.5 V              | V <sub>OL</sub> + 0.3 V  | V <sub>OH</sub> – 0.3 V  |  |  |
| 3.0 V to 3.6 V   | 1.5 V              | 1.5 V              | V <sub>OL</sub> + 0.3 V  | V <sub>OH</sub> – 0.3 V  |  |  |

#### Nexperia

## 74ALVC125

#### Quad buffer/line driver; 3-state



#### Fig 7. Enable and disable times



#### Table 9. Test data

| Supply voltage   | Input           | Input                           |       | Load  |                                     | V <sub>EXT</sub>                    |                                     |  |
|------------------|-----------------|---------------------------------|-------|-------|-------------------------------------|-------------------------------------|-------------------------------------|--|
|                  | VI              | t <sub>r</sub> , t <sub>f</sub> | CL    | RL    | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PLZ</sub> , t <sub>PZL</sub> | t <sub>PHZ</sub> , t <sub>PZH</sub> |  |
| 1.65 V to 1.95 V | V <sub>CC</sub> | $\leq$ 2.0 ns                   | 30 pF | 1 kΩ  | open                                | $2 \times V_{CC}$                   | GND                                 |  |
| 2.3 V to 2.7 V   | V <sub>CC</sub> | $\leq$ 2.0 ns                   | 30 pF | 500 Ω | open                                | $2 \times V_{CC}$                   | GND                                 |  |
| 2.7 V            | 2.7 V           | ≤ 2.5 ns                        | 50 pF | 500 Ω | open                                | 6 V                                 | GND                                 |  |
| 3.0 V to 3.6 V   | 2.7 V           | ≤ 2.5 ns                        | 50 pF | 500 Ω | open                                | 6 V                                 | GND                                 |  |

74ALVC125\_2 Product data sheet

Quad buffer/line driver; 3-state

#### 12. Package outline



#### Fig 9. Package outline SOT108-1 (SO14)

Quad buffer/line driver; 3-state



Fig 10. Package outline SOT402-1 (TSSOP14)

Quad buffer/line driver; 3-state



#### DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 11. Package outline SOT762-1 (DHVQFN14)

### **13. Abbreviations**

| Table 10. | Abbreviations               |
|-----------|-----------------------------|
| Acronym   | Description                 |
| CDM       | Charged-Device Model        |
| DUT       | Device Under Test           |
| ESD       | ElectroStatic Discharge     |
| HBM       | Human Body Model            |
| MM        | Machine Model               |
| TTL       | Transistor-Transistor Logic |

### 14. Revision history

#### Table 11. Revision history

| Document ID    | Release date                                                                                                                                | Data sheet status     | Change notice | Supersedes  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-------------|--|--|
| 74ALVC125_2    | 20080110                                                                                                                                    | Product data sheet    | -             | 74ALVC125_1 |  |  |
| Modifications: | <ul> <li>The format of this data sheet has been redesigned to comply with the new identity guidelines<br/>of NXP Semiconductors.</li> </ul> |                       |               |             |  |  |
|                | <ul> <li>Legal texts have been adapted to the new company name where appropriate.</li> </ul>                                                |                       |               |             |  |  |
|                | <ul> <li><u>Section 3</u>: DHVQFN14 package added.</li> </ul>                                                                               |                       |               |             |  |  |
|                | <ul> <li><u>Section 7</u>: derating values added for DHVQFN14 package.</li> </ul>                                                           |                       |               |             |  |  |
|                | <ul> <li><u>Section 12</u>: outline drawing added for DHVQFN14 package.</li> </ul>                                                          |                       |               |             |  |  |
| 74ALVC125_1    | 20021118                                                                                                                                    | Product specification | -             | -           |  |  |
|                |                                                                                                                                             |                       |               |             |  |  |

### **15. Legal information**

#### 15.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

#### **15.2 Definitions**

use of such information.

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of

**Short data sheet** — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

#### 15.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

**Suitability for use** — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### **16. Contact information**

For additional information, please visit: http://www.nexperia.com

For sales office addresses, send an email to: salesaddresses@nexperia.com

#### Quad buffer/line driver; 3-state

#### **17. Contents**

| 1          | General description 1              |
|------------|------------------------------------|
| 2          | Features 1                         |
| 3          | Ordering information 1             |
| 4          | Functional diagram 2               |
| 5          | Pinning information 2              |
| 5.1<br>5.2 | Pinning                            |
| 6          | Functional description 3           |
| 7          | Limiting values                    |
| 8          | Recommended operating conditions 4 |
| 9          | Static characteristics 4           |
| 10         | Dynamic characteristics 5          |
| 11         | Waveforms 6                        |
| 12         | Package outline 8                  |
| 13         | Abbreviations 11                   |
| 14         | Revision history 11                |
| 15         | Legal information 12               |
| 15.1       | Data sheet status 12               |
| 15.2       | Definitions 12                     |
| 15.3       | Disclaimers                        |
| 15.4       | Trademarks 12                      |
| 16         | Contact information 12             |
| 17         | Contents 13                        |



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.