LCD Segment Driver series

For 128~140 Segment type LCD LCD Segment Driver

- Outline

This is LCD segment driver for 126 to 140 segment type display. There is a lineup which is suitable for multi function display and is integrated display RAM and power supply circuit for LCD driving with 4 common output type: BU9728AKV and BU9795AKV/FV/GUW.

```
- 128Segment (SEG32×COM4) Driver BU9728AKV .......P. }
- 140Segment (SEG35×COM4) Driver
BU9795AKV/FV/GUW
.......P. }1
```


BU9728AKV

128Segment (SEG32×COM4) Driver

- Feature (BU9728AKV)

1) 4 wire serial interface ($S C K, S D, \overline{C / D}, \overline{C S}$)
2) Integrated RAM for display data (DDRAM) : 32×4 bit (Max 128 Segment)
3) LCD driving port: 4 Common output, 32 Segment output
4) Display duty: $1 / 4$ duty
5) Integrated Oscillator circuit (external resister type)
6) Integrated Power supply circuit for LCD driving ($1 / 3$ bias)
7) Low voltage / low power consumption design: $+2.5 \sim 5.5 \mathrm{~V}$

- Uses (BU9728AKV)

DVC, Car audio, Telephone

- Absolute Maximum Ratings ($\mathrm{Ta}=25 \mathrm{degree}, \mathrm{VSS}=0 \mathrm{~V}$) (BU9728AKV)

Parameter	Symbol	Limits	Unit	
Power Supply Voltage1	VDD	$-0.3 \sim+7.0$	V	Power supply
Power Supply Voltage2	VLCD	$-0.3 \sim+7.0$	V	LCD drive voltage
Allowable loss	Pd	400	mW	When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 4 mW per degree.
Operational temperature range	Topr	$-40 \sim+85$	degree	
Storage temperature range	Tstg	$-55 \sim+125$	degree	
Input voltage range	VIN	-0.3 to VDD +0.3	V	
Output voltage range	VOUT	-0.3 to VDD +0.3	V	

*This product is not designed against radioactive ray.

- Recommend operating conditions (Ta=25degree, VSS=0V) (BU9728AKV)

Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
Power Supply Voltage 1	VDD	2.5	-	5.5	V	
Power Supply Voltage 2	VLCD	0	-	VDD	V	$\mathrm{VDD} \geqq \mathrm{V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{VSS}$
Oscillator frequency	fOSC	-	36	-	KHz	$\mathrm{Rf}=470 \mathrm{k} \Omega$

*This document is not delivery specifications.

- Electrical Characteristics (BU9728AKV)

DC Characteristics (VDD=2.5~5.5V, VSS=0V, Ta=25degree, unless otherwise specified)

Parameter	$\begin{gathered} \text { Symbo } \\ 1 \end{gathered}$	Limit			$\underset{t}{U n i}$	Condition	Terminal
		Min.	Typ.	Max.			
" H " level input voltage	VIH1	$0.8 \times \mathrm{VDD}$	-	VDD	V	$\begin{aligned} & \mathrm{VO}=0.9 \times \mathrm{VDD} \\ & \text { or } \quad 0.1 \times \mathrm{VDD} \end{aligned}$	SC1, SD, SCK, $\overline{\mathrm{C} / \mathrm{D}}, \overline{\mathrm{CS}}, \overline{\text { RESET }}$
"L" level input voltage	VIL1	0	-	$0.2 \times \mathrm{VDD}$	V	$\begin{aligned} & \text { VO=0.1×VDD } \\ & \text { or } 0.9 \times \text { VDD } \end{aligned}$	
LCD Driver on resistance	RON	-	-	30	k Ω	$\|\triangle \mathrm{VON}\|=0.1 \mathrm{~V}$	SEG0~31, COM0~3
"L" level Input current1	IIL1	-	-	100	$\mu \mathrm{A}$	$\mathrm{VIN}=0$	RESET
"L" level Input current2	IIL2	-	-	2	$\mu \mathrm{A}$	$\mathrm{VIN}=0$	$\begin{aligned} & \text { OSC1, SD, SCK, } \\ & \frac{\mathrm{C} / \mathrm{D}}{\mathrm{C}}, \overline{\mathrm{CS}} \end{aligned}$
"H" level Input current	IIH	-2	-	-	$\mu \mathrm{A}$	VIN=VDD	$\begin{aligned} & \text { OSC1, SD, SCK, } \\ & \frac{\text { C/D }, ~ \overline{C S}, \overline{R E S E T}}{} \end{aligned}$
Input capacitance	Cl	-	5	-	pF		SD, SCK, C / D, C S
		-	0.05	1	$\mu \mathrm{A}$	${ }^{2}$ Display OFF	VDD
Power consumption	IDD	-	40 100	80	$\mu \mathrm{A}$	${ }^{\text {+3 }}$ Display ON ${ }^{4}$ MPU Access	

${ }^{*} 1$: LCD Driver on resistance is not included internal power supply impedance
*2: V3=0V, All input terminal are connected to VDD or VSS.
*3: V3=0V, Rf=470k Ω, except of OSC1 terminals are connected to VDD or VSS.
*4: V3=0V, Rf=470k Ω, fSCK $=200 \mathrm{kHz}$
AC Characteristics (VDD=2.5~5.5V, VSS=0V, Ta=25degree, unless otherwise specified)

Parameter	$\begin{gathered} \text { Symbo } \end{gathered}$	Limit			Unit	Condition
		Min.	Typ.	Max.		
SCK rise time	tTLH	-	-	100	ns	
SCK fall time	tTHL	-	-	100	ns	
SCK cycle time	tCYC	800	-	-	ns	
Wait time for command	tWAIT	800	-	-	ns	
SCK pulse width " H "	tWH1	300	-	-	ns	
SCK pulse width "L"	tWL1	300	-	-	ns	
SD setup time	tSU1	100	-	-	ns	
SD hold time	tH1	100	-	-	ns	
CS pulse width "H"	tWH2	300	-	-	ns	
$\overline{\text { CS pulse width "L" }}$	tWL2	6400	-	-	ns	
CS setup time	tSU2	100	-	-	ns	
$\overline{\text { CS }}$ hold time	tH2	100	-	-	ns	
C/D setup time	tSU3	100	-	-	ns	
C/D hold time	tH3	100	-	-	ns	Based on SCK $8^{\text {th }}$ clock rising
C/D - CS time *5	tCCH	100	-	-	ns	Based on CS rising
C/D - SCK time *5	tSCH	100	-	-	ns	Based o SCK 8 ${ }^{\text {th }}$ clock falling

*5: Should satisfy either one condition

Fig. BU9728AKV-1 Interface timing

Fig. BU9728AKV-2 Command cycle

- Reference data (BU9728AKV)

Fig. BU9728AKV-3 Frame frequency vs. Resister value

Fig. BU9728AKV-4 Power consumption vs. Power supply

Fig. BU9728AKV-5 Block diagram arrangement

Fig. BU9728AKV-6 Pin

- Terminal description (BU9728AKV)

Terminal	No.	Type	Function
$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Int clock use mode, connect resister between OSC1 and OSC2. Ext clock use mode, input clock from OSC1, OSC2 keep OPEN.
$\mathrm{V} 1 \sim \mathrm{~V} 3$	$3 \sim 5$		Power supply for LCD driving. Keep $\mathrm{VDD} \geqq \mathrm{V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{VSS}$ condition.
VSS	6		VSS terminal
VDD	7		VDD terminal
SCK	8	1	Serial clock input
SD	9	1	Serial data input
$\overline{\mathrm{CS}}$	10	I	Chip select input "L": active
C/D	11	I	Command data judgment input "L": display data, "H": command
COMO~3	12~15	0	LCD COMMON output
RESET	16	I	Reset input terminal. It will be initialized with "L" level input. Reset address counter, Set display off status.
$\begin{gathered} \text { SEGO~ } \\ 31 \end{gathered}$	17~48	0	LCD SEGMENT output

Block Description (BU9728AKV)

ADDRESS COUNTER

An address counter shows the address of DDRAM. Address data are transferred to the address counter automatically when an address set is written in the command/data register.
After data are written in DDRAM, +1 or +2 is done automatically with an address counter. The choice of +1 or +2 is done automatically by the next condition.

DDRAM 8bit writing (in the 8 clock of SCK, C/ $\overline{\mathrm{D}}=$ "L") $\quad \rightarrow+2$
DDRAM 4bit rewriting (in the 8 clock of SCK, C/D= "H") $\rightarrow+1$
And, when it is counted to 1 FH , an address becomes 00 H with an address counter by the next count up.

O DISPLAY DATA RAM (DDRAM)
A display data RAM (DDRAM) is used to store display data. That capacity is 32 address $\times 4$ bits. DDRAM and the relations of the display position are as the following.

DDRAM address

O TIMING GENERATER
It will be started to oscillate by connecting Rf between OSC1, OSC2, and generated display timing signal. Also it will be able to do by external clock input.

(It is possible that Oscillating Frequency is changed with Rf.)
Fig. BU9728AKV-7 Rf Oscillator Circuit

Fig. BU9728AKV-8 External Clock Input

LCD DRIVE POWER SUPPLY

LCD drive power supply occurs by BU9728AKV. LCD voltage is given by VDD- V3, and it causes $\mathrm{V} 1=2 \cdot \mathrm{VLCD} / 3, \mathrm{~V} 2=\mathrm{VLCD} / 3$. When input LCD power supply by using external breeder register etc.
Please keep below condition.
$\mathrm{VDD} \geqq \mathrm{V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{VSS}$

Fig. BU9728AKV-9 Internal Power supply use

Fig. BU9728AKV-10 External Power supply use

DETAIL OF COMMANDS (BU9728AKV)
There is the following thing in the command (The $8 \times n$ clock of SCK is $\mathrm{C} / \mathrm{D}=$ " $\mathrm{H} "$.) of BU9728AKV.ADDRESS SET
MSB

| 0 | 0 | 0 | A | A | A | A | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | LSB

Address data shown as AAAAA by the binary system is set on the address counter. Address does +2 every time indication data input (for 8bit) completes input.

O DISPLAY ON

$$
\begin{aligned}
& \text { MSB } \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & * & * & * & * & * \\
\hline
\end{array}
\end{aligned}
$$LSB

*:Don't Care
There are no relations with the contents of the display data RAM (DDRAM),
And all display is turned on. In this case, the contents of DDRAM don't change.

DISPLAY OFF

LSB
*:Don't Care

There are no relations with the contents of the display data RAM (DDRAM). In this case, the contents of DDRAM don't change.DISPLAY START
MSB

0	1	1	$*$	$*$	$*$	$*$	$*$

*:Don't Care
It will be started to oscillate and to display in accordance with the contents of DDRAM.REWRITING OF THE DISPLAY DATA RAM (DDRAM)
MSB LSB

1	0	0	$*$	D	D	D	D

*:Don't Care
The binary four bits data DDDD are written in DDRAM.
A writing address is address ordered by the address set command.
Then, after this command is carried out, an address does + 1 automatically.

RESET

*:Don't Care
Please execute this command first after Power on. It will be initialized as follow conditions;

- Display OFF
- Address counter reset

Recommendation circuit example (BU9728AKV)

Fig. Bu9728AKV-11 When a contrast adjustment mechanism is used.

INPUT OUTPUT CIRCUIT (BU9728AKV)

Name	I/O	Circuit	Name	I/O	Circuit
SD SCK C/D CS	1		$\begin{aligned} & \text { SEG0 } \\ & \text { SEG31 } \\ & \text { COM0 } \\ & \underset{\sim}{\sim} \\ & \text { COM3 } \end{aligned}$	O	
Name	1/O	Circuit			
$\begin{aligned} & \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$					
Name	1/O	Circuit			
RESET	I				

Fig. BU9728AKV-14 INPUT OUTPUT circuit

Cautions on use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.
(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.
(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.
(9) Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(10) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(12) No Connecting input terminals

In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.
(13) Rush current

When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.

Order form name selection

VQFP48C

BU9795AKV/FV/GUW

- Feature (BU9795AKV/AFV/AGUW)

1) 3wire serial interface (CSB, SD, SCL)
2) Integrated RAM for display data (DDRAM) : 35×4 bit (Max 140 Segment)
3) LCD driving port: 4 Common output,

Segment: 35output (BU9795AKV), 31output (BU9795AGUW), 27output (BU9795AFV)
4) Display duty: $1 / 4$ duty
5) Integrated Buffer AMP for LCD driving power supply
6) $1 / 2$ bias, $1 / 3$ bias selectable
7) No external components
8) Low power/ Ultra low power consumption design: $+2.5 \sim 5.5 \mathrm{~V}$

- Uses (BU9795AKV/AFV/AGUW)

Telephone, FAX, Portable equipment (POS, ECR, PDA etc.),
DSC, DVC, Car audio, Home electrical appliance, Meter equipment etc.

- Line-up

Parameter	BU9795AKV	BU9795AFV	BU9795AGUW
Segment output	35	27	31
Common output	4	4	4
Package	VQFP48C	SSOP-B40	VBGA48W040

- Absolute Maximum Ratings ($\mathrm{Ta}=25 \mathrm{degree}, \mathrm{VSS}=0 \mathrm{~V}$) (BU9795AKV/AFV/AGUW)

Parameter	Symbol	Limits	Unit	Remark
Power supply voltage1	VDD	$-0.5 \sim+7.0$	V	Power supply
Power supply voltage2	VLCD	$-0.5 \sim$ VDD	V	LCD drive voltage
Allowable loss	Pd	0.6	W	When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 6 mW per degree.(BU9795AKV)
		0.7	W	When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 7 mW per degree (BU9795AFV)
		0.27	W	When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 2.7 mW per degree (BU9795AGUW)
Input voltage range	VIN	$\begin{aligned} & -0.5 \sim \\ & \mathrm{VDD}+0.5 \end{aligned}$	V	
Operational temperature range	Topr	-40 ~ +85	degree	
Storage temperature range	Tstg	$-55 \sim+125$	degree	

*This product is not designed against radioactive ray.

- Recommend operating conditions (Ta=25degree,VSS=0V) (BU9795AKV/AFV/AGUW)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
Power Supply voltage1	VDD	2.5	-	5.5	V	Power supply
Power Supply voltage2	VLCD	0	-	VDD-2.4	V	LCD drive voltage

* Please use VDD-VLCD $\geqq 2.4 \mathrm{~V}$ condition.
- Electrical Characteristics(BU9795AKV/AFV/AGUW)

DC Characteristics (VDD=2.5~5.5V, VSS=0V, Ta=-40~85degree, unless otherwise specified)

Parameter	$\begin{gathered} \text { Symb } \\ \text { ol } \end{gathered}$	Limit			Unit	Condition
		MIN	TYP	MAX		
"H" level input voltage	VIH	0.7VDD	-	VDD	V	
"L" level input voltage	VIL	VSS	-	0.3VDD	V	
" H " level input current	IIH	-	-	1	uA	
"L" level input current	IIL	-1	-	-	uA	
LCD Driver on resistance	RON	-	3.5	-	k Ω	lload= $\pm 10 \mathrm{uA}$
	RON	-	3.5	-	k Ω	
VLCD supply voltage	VLCD	0	-	VDD -2.4	V	VDD-VLCD $\geqq 2.5 \mathrm{~V}$
Standby current	Ist	-	-	5	uA	Display off, Oscillator off
Power consumption 1	IDD1	-	12.5	30	uA	VDD $=3.3[\mathrm{~V}], \mathrm{Ta}=25$, Power save mode1, FR=70Hz 1/3 bias, Frame inverse
Power consumption 2	IDD2	-	20	40	uA	$\mathrm{VDD}=3.3[\mathrm{~V}], \mathrm{Ta}=25$, Normal mode, $\mathrm{FR}=80 \mathrm{~Hz}$ $1 / 3$ bias, Line inverse

- Oscillation Characteristics (BU9795AKV/AFV/AGUW)
(VDD=2.5~5.5V,VSS=0V, Ta=-40~85degree)

Parameter	Symb ol	Limit			Unit	Condition
		TYP	MAX			
Frame frequency	fcLK	56	80	104	Hz	FR $=80 \mathrm{~Hz}$ setting
Frame frequency1	fcLK1	70	80	90	Hz	VDD $=3.5 \mathrm{~V}, 25$ degree

- MPU interface Characteristics (BU9795AKV/AFV/AGUW) (VDD=2.5V~5.5V,VSS=0V, Ta=-40~85degree)

Parameter	Symb ol	Limit			Unit	Condition
		TYP	MAX			
Input rise time	tr	-	-	80	ns	
Input fall time	tf	-	-	80	ns	
SCL cycle time	tSCY	400	-	-	ns	
"H" SCL pulse width	tSHW	100	-	-	ns	
"L" SCL pulse width	tSLW	100	-	-	ns	
SD setup time	tSDS	20	-	-	ns	
SD hold time	tSDH	50	-	-	ns	
CSB setup time	tCSS	50	-	-	ns	
CSB hold time	tCSH	50	-	-	ns	
"H" CSB pulse width	tCHW	50	-	-	ns	

Fig.BU9795AKV/FV/GUW-1 3wire Serial timing waveform

- Block Diagram

Fig. BU9795AKV /AFV /AGUW-2A BU9795AKV Block diagram

- Pin Arrangement

Fig. BU9795AKV /AFV /AGUW-3A BU9795AKV Pin arrangement

- Terminal description

Terminal	Terminal No.	I/O	Function
INHb	48	I	Input terminal for turn off display H: turn on display L: turn off display
TEST	47	I	Test input (ROHM use only) Must be connect to VSS
OSCIO	43	I	External clock input Ex clock and Int clock can be changed by command. Must be connect to VSS when use internal oscillation circuit.
SD	46	I	serial data input
SCL	45	I	serial data transfer clock
CSB	44	I	Chip select : "L" active
VSS	42		GND
VDD	41		Power supply
VLCD	40		Power supply for LCD driving
SEG0-34	$1-35$	O	SEGMENT output for LCD driving
COM0-3	$36-39$	O	COMMON output for LCD driving

Fig. BU9795AKV /AFV /AGUW-2B BU9795AFV Block diagram

Fig. BU9795AKV /AFV /AGUW-3B BU9795AFV Pin arrangement

- Terminal description

Terminal	Terminal No.	I/O	Function
INHb	36	I	Input terminal for turn off display H: turn on display L: turn off display
TEST	35	I	Test input (ROHM use only) Must be connect to VSS
OSCIO	31	I	External clock input Ex clock and Int clock can be changed by command. Must be connect to VSS when use internal oscillation circuit.
SD	34	I	serial data input
SCL	33	I	serial data transfer clock
CSB	32	I	Chip select : "L" active
VSS	30		GND
VDD	29		Power supply
VLCD	28	I	Power supply for LCD driving
SEG4-30	$1-23$,	O	SEGMENT output for LCD driving
COM0-3	$24-27$	O	COMMON output for LCD driving

* BU9795AGUW
- Block Diagram

Fig. BU9795AKV /AFV /AGUW-2C BU9795AGUW Block diagram

- Pin Arrangement

Fig. BU9795AKV /AFV /AGUW-3C BU9795AGUW Pin arrangement

- Terminal description

Terminal	I/O	Function
INHb	I	Input terminal for turn off display H: turn on display L: turn off display
TEST	I	Test input (ROHM use only) Must be connect to VSS
OSCIO	I	External clock input Ex clock and Int clock can be changed by command. Must be connect to VSS when use internal oscillation circuit.
SD	I	serial data input
SCL	I	serial data transfer clock
CSB	I	Chip select : "L" active
VSS		GND
VDD		Power supply
VLCD	I	Power supply for LCD driving
SEG2-32	O	SEGMENT output for LCD driving
COM0-3	O	COMMON output for LCD driving

(Caution) About terminal number, please refer to above pin arrangement

- Command Description (BU9795AKV/AFV/AGUW)

D7 (MSB) is bit for command or data judgment.
Refer to Command and data transfer method.

C: 0 : Next byte is RAM write data.
1: Next byte is command.

Mode Set (MODE SET)

MSB LSB

D7	D6		D5	D4	D3	D2	

(*:Don't care)
Set display ON and OFF

Setting	P3	Reset initialize condition
Display OFF (DISPOFF)	0	\bigcirc
Display ON (DISPON)	1	

Set bias level

Setting	P2	Reset initialize condition
$1 / 3$ Bias	0	\circ
$1 / 2$ Bias	1	

- Address set (ADSET)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
C	0	0	P4	P3	P2	P1	P0

Address data is specified in $\mathrm{P}[4: 0$] and P 2 (ICSET command) as follows.

MSB				LSB	
Internal register Address [5] Address [4] • • Ait of each command ICSET [P2] ADSET [P4] • •	ADSET [P0]				

- Display control (DISCTL)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
C	0	1	P4	P3	P2	P1	P0

Set Frame frequency

Setting	P 4	P 3	Reset initialize condition
80 Hz	0	0	0
71 Hz	0	1	
64 Hz	1	0	
53 Hz	1	1	

Set LCD drive waveform

Setting	P2	Reset initialize condition
Line inversion	0	\circ
Frame inversion	1	

Set Power save mode

Setting	P1	P0	Reset initialize condition
Power save mode 1	0	0	
Power save mode 2	0	1	
Normal mode	1	0	\circ
High power mode	1	1	

* VDD-VLCD $>=3.0 \mathrm{~V}$ is required for High power mode.

- Set IC Operation (ICSET)

MSB LSB

D7	D6	D5	D4	D3	D1	D0	
C	1	1	0	1	P2	P1	P0

P2: MSB data of DDRAM address. Please refer to "ADSET" command.

Setting	P2	Reset initialize condition
Address MSB‘0’	0	0
Address MSB'1'	1	

Set Software Reset condition

Setting	P1
No operation	0
Software Reset	1

Switch between internal clock and external clock.

Setting	P0	Reset initialize condition
Internal clock	0	\circ
External clock input	1	

- Blink control (BLKCTL)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
C	1	1	1	0	*	P1	P0

Set blink condition

Setting	P1	P0	Reset initialize condition
OFF	0	0	0
0.5 Hz	0	1	
1 Hz	1	0	
2 Hz	1	1	

- All pixel control (APCTL)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
C	1	1	1	1	1	P1	P0

All display set ON. OFF

Setting	P1	Reset initialize condition
Normal	0	\circ
All pixel ON	1	

Setting	P0	Reset initialize condition
Normal	0	\circ
All pixel OFF	1	

Function description (BU9795AKV/AFV/AGUW)

- Command and data transfer method

- 3-SPI (3wire Serial interface)

This device is controlled by 3 -wire signal (CSB, SCL, and SD).
First, Interface counter is initialized with $\mathrm{CSB}=$ " H ", and CSB="L" makes SD and SCL input enable.
The protocol of 3-SPI transfer is as follows.
Each command starts with Command or Data judgment bit (D/C) as MSB data, and continuously in order of D6 to D0 are followed after CSB $=$ "L".
(Internal data is latched at the rising edge of SCL, it converted to 8bits parallel data at the falling edge of $8^{\text {th }}$ CLK.)

D/C = "H" : Command D/C = "L" : Data

Fig. BU9795AKV /AFV /AGUW-10 3-SPI Command/Data transfer format
-Write display data and transfer method

* BU9795AKV

This LSI have Display Data RAM (DDRAM) of $35 \times 4=140$ bit.
The relationship between data input and display data, DDRAM data and address are as follows.

8 bit data will be stored in DDRAM. The address to be written is the address specified by Address set command, and the address is automatically incremented in every 4 bit data.
Data can be continuously written in DDRAM by transmitting Data continuously. (When RAM data is written successively after writing RAM data to 22h (SEG34), the address is returned to 00h (SEGO) by the auto-increment function.

As data transfer to DDRAM happens every 4bit data, it will be cancelled if it changes CSB="L" \rightarrow "H" before 4bits data transfer.

As SEG0, SEG1, SEG2, SEG3, SEG31, SEG32, SEG33, SEG34 are not output, these address will be dummy address.

As data transfer to DDRAM happens every 4bit data, it will be cancelled if it changes CSB="L" \rightarrow "H" before 4bits data transfer.
*BU9795AGUW
As SEG0, SEG1, SEG33, SEG34 are not output, these address will be dummy address.

As data transfer to DDRAM happens every 4bit data, it will be cancelled if it changes CSB="L" \rightarrow " ${ }^{\prime \prime}$ " before 4bits data transfer.

- Reset (initial) condition

Initial condition after execute Software Reset is as follows.

- Display is OFF.
- DDRAM address is initialized (DDRAM Data is not initialized).
- Refer to Command Description about initialize value of register.

- Cautions of Power-On condition (BU9795AKV /AFV /AGUW)

This LSI has "P.O.R" (Power-On Reset) circuit and Software Reset function.
Please keep the following recommended Power-On conditions in order to power up properly.

1. Please set power up conditions to meet the recommended $t R, t F$, t OFF, and V bot spec below in order to ensure P.O.R operation.

Fig. BU9795AKV /AFV /AGUW-18 Power on-off waveform
2. If it is difficult to meet above conditions, execute the following sequence after Power-On. Because it doesn't accept the command in power off, it is necessary to care that correspondence by software reset doesn't become alternative to POR function completely.
(1) CSB="L" \rightarrow " ${ }^{\prime \prime}$ " condition

Fig. BU9795AKV-19 CSB Timing
(2) After CSB"H" \rightarrow "L", execute Software Reset (ICSET command).

- IO Circuit (BU9795AKV /AFV /AGUW)

VDD

Fig. BU9795AKV /AFV /AGUW-20 IO circuit

Cautions on use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.
(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.
(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down
(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.
(9) Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(10) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to $D C$ bias and changes in the capacitance due to temperature, etc.
(12) No Connecting input terminals

In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.
(13) Rush current

When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.

Order form name selection

VQFP48C

<Dimension>

(Unit:mm)

SSOP-B40
<Dimension>

VBGA048W040

<Tape and Reel information>

Tape	Embossed carrier tape (with dry pack)
Quantity	2500 pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand.)

The contents described herein are correct as of July, 2008
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO ITD
Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set

- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
The products described herein utilize silicon as the main material.
The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

	Contact us for further information about the products.					
	San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670	Tianjin	TEL: +86-22-23029181	FAX: $+86-22-23029183$
	Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691	Shanghai	TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
	Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164	Hangzhou	TEL: +86-571-87658072	FAX: +86-571-87658071
	Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008	Nanjing	TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
	Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973	Ningbo	TEL: +86-574-87654201	FAX: +86-574-87654208
Excellence in Electronics	Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858	Qingdao	TEL: +86-532-5779-312	FAX:+86-532-5779-653
	Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942	Suzhou	TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
	Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702	Wuxi	TEL: +86-510-82702693	FAX: +86-510-82702992
	Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002	Shenzhen	TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
	Duisseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400	Dongguan	TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
	Munich	TEL: +49-899-216168	FAX: +49-899-216176	Fuzhou	TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
	Stuttgart	TEL: +49-711-72723710	FAX: +49-711-72723720	Guangzhou	TEL: +86-20-3878-8100	FAX: +86-20-3825-5965
	France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080	Huizhou	TEL:+86-752-205-1054	FAX: +86-752-205-1059
	United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788	Xiamen	TEL: +86-592-238-5705	FAX: +86-592-239-8380
	Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789	Zhuhai	TEL: +86-756-3232-480	FAX: +86-756-3232-460
	Espoo	TEL: +358-9725-54491	FAX: +358-9-7255-4499	Hong Kong	TEL: +852-2-740-6262	FAX: $+852-2-375-8971$
ROHM CO., LTD.	Salo	TEL: + 358-2-7332234	FAX: +358-2-7332237	Taipei	TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
	Oulu	TEL: + $358-8-5372930$	FAX: + 358-8-5372931	Kaohsiung	TEL: +886-7-237-0881	FAX: $+886-7-238-7332$
	Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410	Singapore	TEL: +65-6332-2322	FAX: +65-6332-5662
	Hungary	TEL: +36-1-4719338	FAX: $+36-1-4719339$	Philippines	TEL: +63-2-807-6872	FAX: +63-2-809-1422
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto615-8585, Japan	Poland	TEL: +48-22-5757213	FAX: +48-22-5757001	Thailand	TEL: +66-2-254-4890	FAX: $+66-2-256-6334$
	Russia	TEL: + 7-95-980-6755	FAX: +7-95-937-8290	Kuala Lumpur	TEL: +60-3-7958-8355	FAX: $+60-3-7958-8377$
TEL: +81-75-311-2121 FAX:+81-75-315-0172	Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715	Penang	TEL: +60-4-2286453	FAX: +60-4-2286452
URL http: // www. rohm. com	Masan	TEL: +82-55-240-6234	FAX: $+82-55-240-6236$	Kyoto	TEL: +81-75-365-1218	FAX: $+81-75-365-1228$
	Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537	Yokohama	TEL: +81-45-476-2290	FAX: +81-45-476-2295
KTC LSI Development Headquarters	Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489			

Abstract

\section*{Notes}

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD.

The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

Contact us : webmaster@ rohm.co.jp

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

