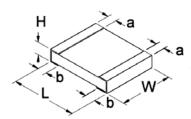
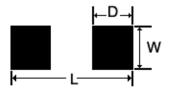
Resistive Product Solutions

Features:


- Handles 2W of power
- Resistances from 0.1Ω to $1M\Omega$
- RoHS compliant / lead-free
- TCR of ± 100 ppm/°C
- 1% and 5% tolerances
- Runs significantly cooler than standard thick film 2512 chip

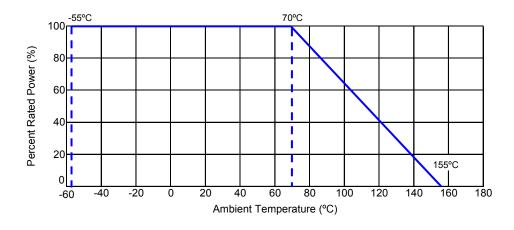

Electrical Specifications									
Type / Code	Package Type	Power Rating (Watts) @ 70°C	Maximum Working	Maximum Overload	Resistance Temperature	Ohmic Range (Ω) and Tolerance			
			Voltage (1)	Voltage	Coefficient	1%	5%		
RHC2512	2512	2W	200V	400V	±100 ppm/°C	0.1 - 1M	0.1 - 1M		

(1) Lesser of √PR or maximum working voltage

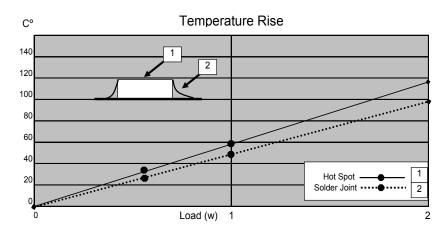
Please refer to the High Power Resistor Application Note (page 4) for more information on designing and implementing high power resistor types.

Mechanical Specifications									
Type / Code	L Body Length	W Body Width	H Body Height	a Top Termination	b Bottom Termination	Unit			
RHC2512	0.248 ± 0.008 6.30 ± 0.20	0.126 ± 0.008 3.20 ± 0.20	0.024 ± 0.004 0.60 ± 0.10	0.028 ± 0.008 0.70 ± 0.20	0.087 ± 0.008 2.20 ± 0.20	inches mm			

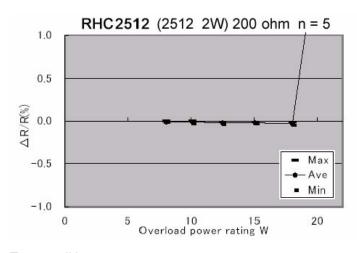
Solder Pad Dimensions									
Type / Code	L	W	D	Unit					
	Total Length	Total Width	Pad Depth						
RHC2512	0.315	0.138	0.118	inches					
KIIC2512	8.00	3.50	3.00	mm					

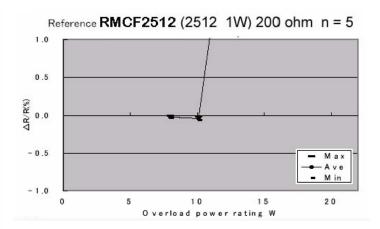

Performance Characteristics							
Test	Typical						
Moisture Resistance	±1%						
Load Life	±1%						
Resistance to Soldering	±1%						
Temperature Cycling	±1%						
Thermal Shock	±1%						
Short Time Overload	±1%						
Insulation Resistance	≥1MΩ						

Operating Temperature Range: -55°C to +155°C


High Power Thick Film Chip Resistor

Resistive Product Solutions

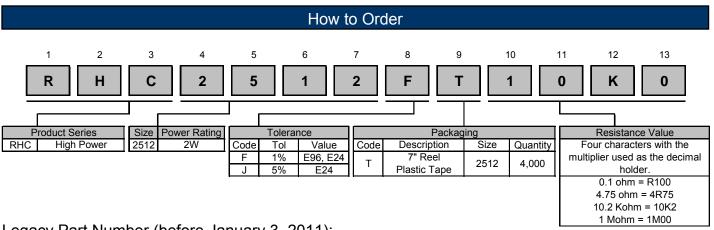

Power Derating Curve:



Temperature Rise:

Repeated Overload:

Test condition:

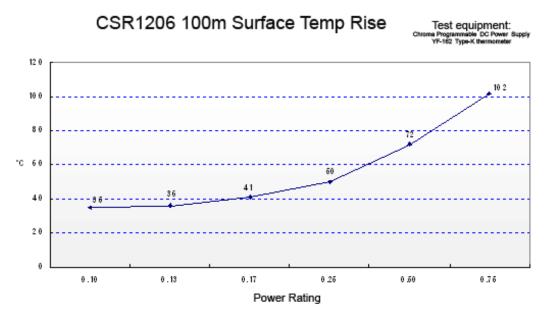

Voltage (Power): 2.0, 2.25, 2.5, 2.75, 3.0, 3,25 times of rated voltage. (8W, 10.1W, 12.5W, 15.1W, 18W, 21.1W)

Applied time:

Each voltage 5 seconds.

As a reference test, the RMC was tested with the same rated voltage and testing substrate.

Resistive Product Solutions


Legacy Part Number (before January 3, 2011):

SEI Type			Code		Nominal Resistance	Tole	rance		Pack	aging	
	RHC		2512		10K	1%		R			
Туре	Description	Code	Wattage	Size		Tolerance	Values	SEI Types	Pkg Qty	Description	Code
RHC	High Power	2512	2W	2512		1%	E24, E96	2512	4,000	7" reel	R
						5%	E24	2312	4,000	plastic tape	18

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100 degrees C for the CSS / CSSH series and 70 degrees C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR 100 milliohm at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

The 102 degrees C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72 degrees C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, vias through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values $\leq 50~\text{m}\Omega$. This should be taken into account when designing.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.