

LMV761/LMV762/LMV762Q Low Voltage, Precision Comparator with Push-Pull Output

Check for Samples: LMV761, LMV762

FEATURES

- (V_S = 5V, T_A = 25°C, typical values unless specified)
- Input Offset Voltage 0.2mV
- Input Offset Voltage (Max Over Temp) 1mV
- Input Bias Current 0.2pA
- Propagation Delay (OD = 50mV) 120 nsec
- Low Supply Current 300µA
- CMRR 100dB
- PSRR 110dB
- Extended Temperature Range -40°C to 125°C
- Push-Pull Output
- Ideal for 2.7V and 5V Single Supply Applications
- Available in Space-Saving Packages:
 - 6-Pin SOT-23 (Single w/Shutdown)
 - 8-Pin SOIC (single w/Shutdown)
 - 8-Pin SOIC/VSSOP (Dual without Shutdown)
- LMV762Q is an Automotive Grade Product that is AEC-Q100 Grade 1 Qualified and is Manufactured on an Automotive Grade Flow

APPLICATIONS

- Portable and Battery-Powered Systems
- Scanners
- Set Top Boxes
- · High Speed Differential Line Receiver
- Window Comparators
- Zero-Crossing Detectors
- High Speed Sampling Circuits
- Automotive

DESCRIPTION

The LMV761/LMV762/LMV762Q are precision comparators intended for applications requiring low noise and low input offset voltage. The LMV761 single has a shutdown pin that can be used to disable the device and reduce the supply current. The LMV761 is available in a space saving 6-Pin SOT-23 or 8-Pin SOIC package. The LMV762 dual is available in 8-Pin SOIC or VSSOP package and LMV762Q in VSSOP and SOIC package.

They feature a CMOS input and Push-Pull output stage. The Push-Pull output stage eliminates the need for an external pull-up resistor.

The LMV761/LMV762/LMV762Q are designed to meet the demands of small size, low power and high performance required by portable and battery operated electronics.

The input offset voltage has a typical value of 200µV at room temp and a 1mV limit over temp.

MA.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Typical Circuit

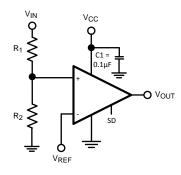


Figure 1. Threshold Detector

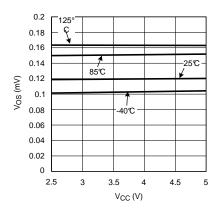


Figure 2. V_{OS} vs. V_{CC}

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)(2)

Human Body Model	2000V			
Machine Model	200\			
	5.5V			
	Supply Voltage			
	Supply Voltage			
Current at Input Pin	±5 mA			
Infrared or Convection (20 sec.)	235°C			
Wave Soldering (10 sec.)	260°C (Lead Temp)			
	150°C			
Storage Temperature Range				
	Machine Model Current at Input Pin Infrared or Convection (20 sec.)			

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test condition, see the Electrical Characteristics.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) Unless otherwise specified human body model is $1.5k\Omega$ in series with 100pF. Machine model 200pF.
- (4) Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output current in excess of ±25 mA over long term may adversely affect reliability.

Operating Ratings

Supply Voltage (V ⁺ – V ⁻)	2.7V to 5.25V	
Temperature Range	-40°C to +125°C	
Package Thermal Resistance ⁽¹⁾	6-Pin SOT-23	265°C/W
	8-Pin SOIC	190°C/W
	8-Pin VSSOP	235°C/W

(1) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Copyright © 2002–2013, Texas Instruments Incorporated

2.7V Electrical Characteristics

Unless otherwise specified, all limited ensured for $T_J = 25^{\circ}C$, $V_{CM} = V^{+}/2$, $V^{+} = 2.7V$, $V^{-} = 0V^{-}$. **Boldface** limits apply at the temperature extremes.⁽¹⁾

Symbol	Parameter	Condition	Min ⁽²⁾	Typ ⁽³⁾	Max ⁽²⁾	Units	
Vos	Input Offset Voltage			0.2	1.0	mV	
I _B	Input Bias Current ⁽⁴⁾			0.2	50	pA	
Ios	Input Offset Current ⁽⁴⁾			.001	5	pA	
CMRR	Common Mode Rejection Ratio	0V < V _{CM} < V _{CC} - 1.3V	80	100		dB	
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	80	110		dB	
CMVR	Input Common Mode Voltage Range	CMRR > 50dB			-0.3 1.5	V	
\ /	Output Swing High	I _L = 2mA, V _{ID} = 200mV	V ⁺ - 0.35	V ⁺ - 0.1		V	
Vo	Output Swing Low	$I_L = -2mA$, $V_{ID} = -200mV$		90	250	mV	
I _{SC}	Output Short Circuit Current (5)	Sourcing, $V_O = 1.35V$, $V_{ID} = 200mV$	6.0	20		mA	
	Output Short Circuit Current	Sinking, $V_0 = 1.35V$, $V_{ID} = -200mV$	6.0	15		mA	
Is	Supply Current LMV761 (Single Comparator)			275	700	μΑ	
	LMV762/LMV762Q (Both Comparators)			550	1400	μΑ	
I _{OUT} LEAKAGE	Output Leakage I @ Shutdown	\overline{SD} = GND, V_O = 2.7V		0.20		μΑ	
I _{S LEAKAGE}	Supply Leakage I @ Shutdown	\overline{SD} = GND, V_{CC} = 2.7V		0.20	2	μΑ	
	Propagation Delay	Overdrive = 5mV		270			
t _{PD}	$R_{L} = 5.1k\Omega$ $C_{L} = 50pF$	Overdrive = 10mV		205		ns	
	OL = 3001	Overdrive = 50mV		120		1	
t _{SKEW}	Propagation Delay Skew			5		ns	
t _r	Output Rise Time	10% to 90%		1.7		ns	
t _f	Output Fall Time	90% to 10%		1.8		ns	
t _{on}	Turn On Time from Shutdown			6		μs	

¹⁾ Maximum temperature ensured range is −40°C to 125°C.

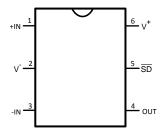
Submit Documentation Feedback

⁽²⁾ All limits are specified by testing or statistical analysis.

⁽³⁾ Typical values represent the most likely parametric norm.

⁽⁴⁾ Specified by design.

⁽⁵⁾ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J = T_A. No ensured specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J > T_A. See Application Information for information on temperature de-rating of this device. Absolute Maximum Rating indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

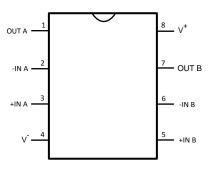
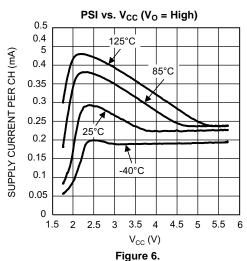

5.0V Electrical Characteristics

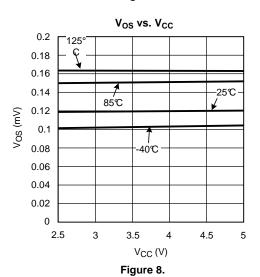

Unless otherwise specified, all limited ensured for $T_J = 25^{\circ}C$, $V_{CM} = V^{+}/2$, $V^{+} = 5.0V$, $V^{-} = 0V^{-}$. **Boldface** limits apply at the temperature extremes.

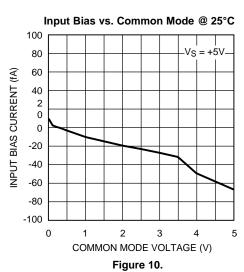
Symbol	Parameter	Condition	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Vos	Input Offset Voltage			0.2	1.0	mV
I _B	Input Bias Current ⁽³⁾			0.2	50	pA
Ios	Input Offset Current ⁽³⁾			0.01	5	pA
CMRR	Common Mode Rejection Ratio	0V < V _{CM} < V _{CC} - 1.3V	80	100		dB
PSRR	Power Supply Rejection Ratio	$V^{+} = 2.7V \text{ to } 5V$	80	110		dB
CMVR	Input Common Mode Voltage Range	CMRR > 50dB			-0.3 3.8	V
V	Output Swing High	I _L = 4mA, V _{ID} = 200mV	V ⁺ - 0.35	V ⁺ - 0.1		V
Vo	Output Swing Low	$I_L = -4mA$, $V_{ID} = -200mV$		120	250	mV
I _{SC}	Output Short Circuit Current ⁽⁴⁾ Sourcing, V _O = 2.5V, V _{ID} = 200r		6.0	60		A
	Output Short Circuit Current	Sinking, $V_O = 2.5V$, $V_{ID} = -200$ mV	6.0	40		mA
	Supply Current LMV761 (Single Comparator)			225	700	μΑ
I _S	LMV762/LMV762Q (Both Comparators)			450	1400	μΑ
I _{OUT} LEAKAGE	Output Leakage I @ Shutdown	\overline{SD} = GND, V_0 = 5.0V		0.20		μΑ
I _{S LEAKAGE}	Supply Leakage I @ Shutdown	$\overline{SD} = GND, V_{CC} = 5.0V$		0.20	2	μA
	Propagation Delay	Overdrive = 5mV		225		
t _{PD}	$R_{L} = 5.1k\Omega$ $C_{L} = 50pF$	Overdrive = 10mV		190		ns
	OL = 00pi	Overdrive = 50mV		120		
t _{SKEW}	Propagation Delay Skew			5		ns
t _r	Output Rise Time	10% to 90%		1.7		ns
t _f	Output Fall Time	90% to 10%		1.5		ns
t _{on}	Turn On Time from Shutdown			4		μs

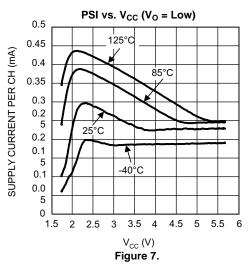
- (1) All limits are specified by testing or statistical analysis.
- (2) Typical values represent the most likely parametric norm.
- (3) Specified by design.
- (4) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J = T_A. No ensured specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J > T_A. See Application Information for information on temperature de-rating of this device. Absolute Maximum Rating indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

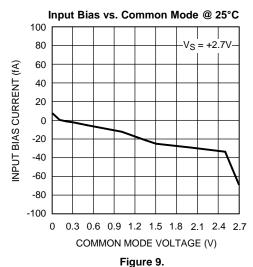
Connection Diagrams


Figure 3. LMV761 (Single) 6-Pin SOT-23 Top View


Figure 4. LMV761 (Single) 8-Pin SOIC Top View


Figure 5. LMV762/LMV762Q (Dual) 8-Pin SOIC and VSSOP Top View


Typical Performance Characteristics

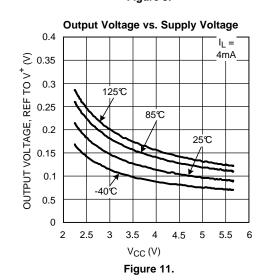




Figure 12.

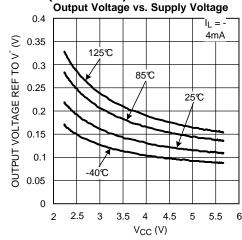


Figure 13.

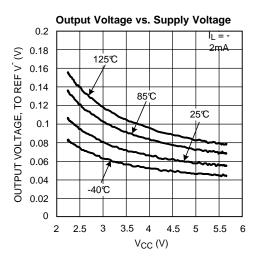
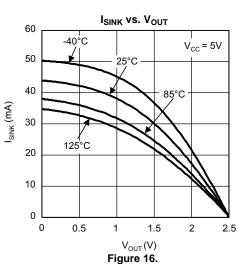



Figure 14.

I_{SOURCE} vs. V_{OUT} 80 -40°C $V_{CC} = 5V$ 70 25°C 60 85°C 50 ISINK (mA) 40 30 20 10 0 0 0.5 1.5 2 2.5 V_{OUT} (V)

Figure 15.

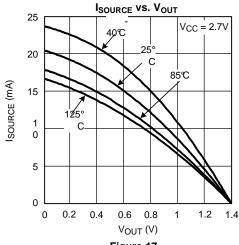
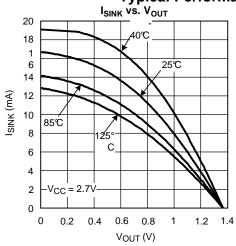



Figure 17.

Typical Performance Characteristics (continued)

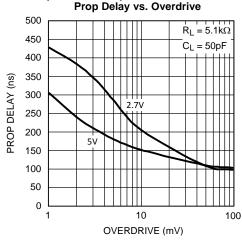


Figure 19.

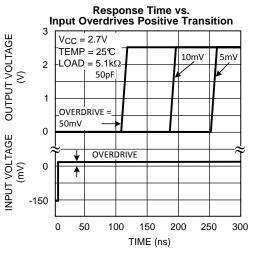
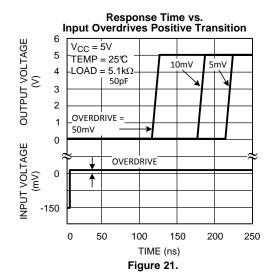
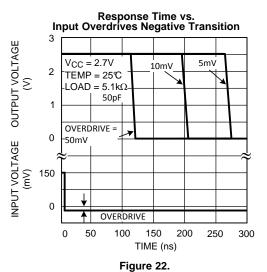




Figure 20.

Response Time vs.
Input Overdrives Negative Transition **OUTPUT VOLTAGE** 10mV 5mV $V_{CC} = 5V$ 3 $-LOAD = 5.1k\Omega$ 50pF 2 OVERDRIVE = 0 50mV INPUT VOLTAGE (E) 150 **OVERDRIVE** 0 50 150 200 250 TIME (ns)

Figure 23.

APPLICATION INFORMATION

BASIC COMPARATOR

A basic comparator circuit is used to convert analog input signals to digital output signals. The comparator compares an input voltage (V_{IN}) at the non-inverting input to the reference voltage (V_{REF}) at the inverting pin. If V_{IN} is less than V_{REF} the output (V_O) is low (V_{OL}) . However, if V_{IN} is greater than V_{REF} , the output voltage (V_O) is high (V_{OH}) .

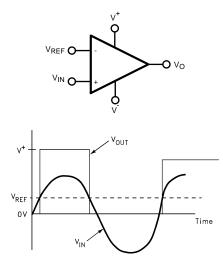
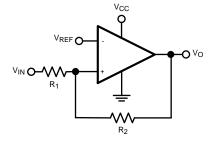


Figure 24. Basic Comparator

HYSTERESIS

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input is near the comparator's input offset voltage. This tends to occur when the voltage on one input is equal or very close to the other input voltage. Adding hysteresis can prevent this problem. Hysteresis creates two switching thresholds (one for the rising input voltage and the other for the falling input voltage). Hysteresis is the voltage difference between the two switching thresholds. When both inputs are nearly equal, hysteresis causes one input to effectively move quickly past the other. Thus, moving the input out of the region in which oscillation may occur.

Hysteresis can easily be added to a comparator in a non-inverting configuration with two resistors and positive feedback Figure 25. The output will switch from low to high when V_{IN} rises up to V_{IN1} , where V_{IN1} is calculated by


$$V_{IN1} = [V_{REF}(R_1 + R_2)] / R_2$$
 (1)

The output will switch from high to low when V_{IN} falls to V_{IN2} , where V_{IN2} is calculated by

$$V_{IN2} = [V_{REF}(R_1 + R_2) - (V_{CC} R_1)] / R_2$$
(2)

The Hysteresis is the difference between V_{IN1} and V_{IN2} .

$$\Delta V_{IN} = V_{IN1} - V_{IN2} = [V_{REF}(R_1 + R_2) / R_2] - [V_{REF}(R_1 + R_2)] - [(V_{CC} R_1) / R_2] = V_{CC} R_1 / R_2$$
(3)

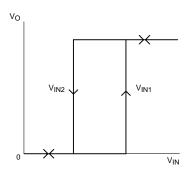


Figure 25. Non-Inverting Comparator Configuration

INPUT

The LMV761/LMV762 have near zero input bias current. This allows very high resistance circuits to be used without any concern for matching input resistances. This also allows the use of very small capacitors in R-C type timing circuits. This reduces the cost of the capacitors and amount of board space used.

SHUTDOWN MODE

The LMV761 features a low-power shutdown pin that is activated by driving \overline{SD} low. In shutdown mode, the output is in a high impedance state, supply current is reduced to 20nA and the comparator is disabled. Driving \overline{SD} high will turn the comparator on. The \overline{SD} pin should not be left unconnected due to the fact that it is a high impedance input. When left unconnected, the output will be at an unknown voltage. Also do not three-state the \overline{SD} pin.

The maximum input voltage for \overline{SD} is 5.5V, referred to ground and is not limited by V_{CC} . This allows the use of 5V logic to drive \overline{SD} while V_{CC} operates at a lower voltage, such as 3V. The logic threshold limits for \overline{SD} are proportional to V_{CC} .

BOARD LAYOUT AND BYPASSING

The LMV761/LMV762 is designed to be stable and oscillation free, but it is still important to include the proper bypass capacitors and ground pickups. Ceramic 0.1µF capacitors should be placed at both supplies to provide clean switching. Minimize the length of signal traces to reduce stray capacitance.

Submit Documentation Feedback

REVISION HISTORY

CI	hanges from Revision G (March 2013) to Revision H	Pa	ge
•	Changed layout of National Data Sheet to TI format		10

Submit Documentation Feedback

27-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Sampl
LMV761MA	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 125	LMV76 1MA	Sampl
LMV761MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV76 1MA	Sampl
LMV761MAX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 125	LMV76 1MA	Samp
LMV761MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV76 1MA	Samp
LMV761MF	ACTIVE	SOT-23	DBV	6	1000	TBD	Call TI	Call TI	-40 to 125	C22A	Samp
LMV761MF/NOPB	ACTIVE	SOT-23	DBV	6	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C22A	Samp
LMV761MFX	ACTIVE	SOT-23	DBV	6	3000	TBD	Call TI	Call TI	-40 to 125	C22A	Samp
LMV761MFX/NOPB	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C22A	Samp
LMV762MA	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 125	LMV7 62MA	Samp
LMV762MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV7 62MA	Samp
LMV762MAX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 125	LMV7 62MA	Samp
LMV762MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV7 62MA	Samp
LMV762MM	ACTIVE	VSSOP	DGK	8	1000	TBD	Call TI	Call TI	-40 to 125	C23A	Sam
LMV762MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C23A	Samp
LMV762MMX	ACTIVE	VSSOP	DGK	8	3500	TBD	Call TI	Call TI	-40 to 125	C23A	Samp
LMV762MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C23A	Sam
LMV762QMA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV76 2QMA	Sam
LMV762QMAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LMV76 2QMA	Sam

PACKAGE OPTION ADDENDUM

27-Mar-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LMV762QMM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C32A	Samples
LMV762QMMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	C32A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

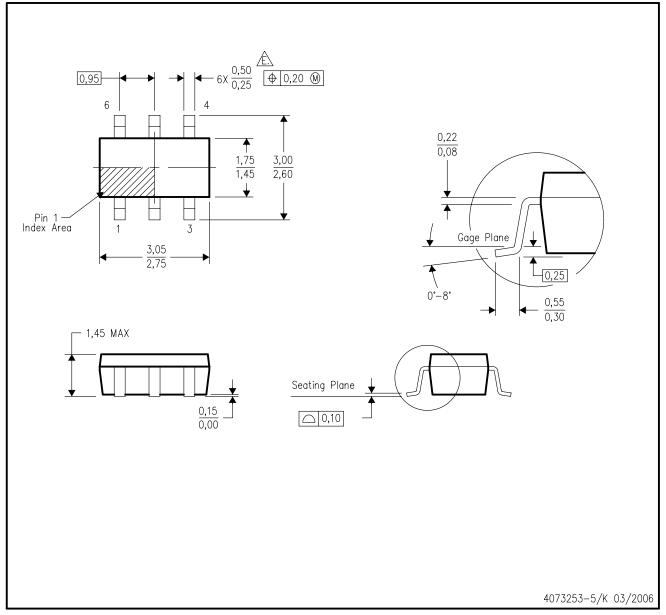
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

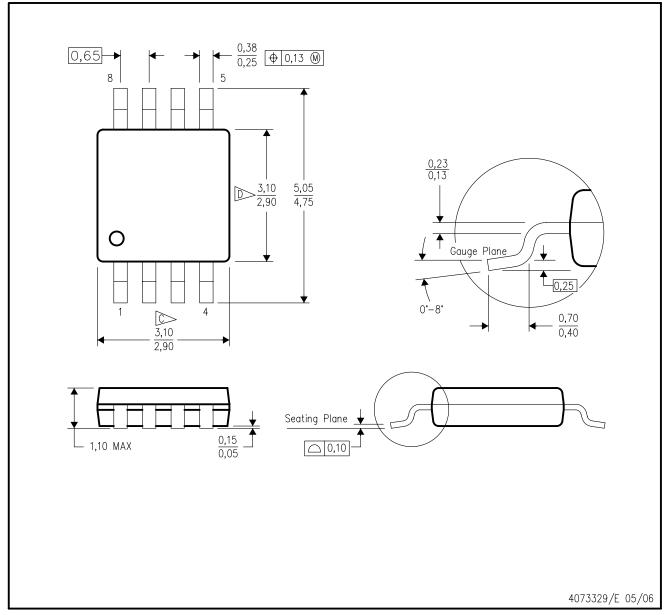

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.