

FEATURES

High Slew Rate – 170 V/ μ s Wide Bandwidth – 28 MHz Fast Settling Time – <200 ns to 0.01% Low Offset Voltage – <500 μ V Unity-Gain Stable Low Voltage Operation ±5 V to ±15 V Low Supply Current – <10 mA Drives Capacitive Loads

APPLICATIONS

High Speed Image Display Drivers High Frequency Active Filters Fast Instrumentation Amplifiers High Speed Detectors Integrators Photo Diode Preamps

GENERAL DESCRIPTION

The OP467 is a quad, high speed, precision operational amplifier. It offers the performance of a high speed op amp combined with the advantages of a precision operational amplifier all in a single package. The OP467 is an ideal choice for applications where, traditionally, more than one op amp was used to achieve this level of speed and precision.

The OP467's internal compensation ensures stable unity-gain operation, and it can drive large capacitive loads without oscillation. With a gain bandwidth product of 28 MHz driving a 30 pF load, output slew rate in excess of 170 V/ μ s, and settling time to 0.01% in less than 200 ns, the OP467 provides excellent dynamic accuracy in high speed data-acquisition systems. The channel-to-channel separation is typically 60 dB at 10 MHz.

The dc performance of OP467 includes less than 0.5 mV of offset, voltage noise density below 6 nV/ $\sqrt{\text{Hz}}$ and total supply current under 10 mA. Common-mode rejection and power supply rejection ratios are typically 85 dB. PSRR is maintained to better than 40 dB with input frequencies as high as 1 MHz. The low offset and drift plus high speed and low noise, make the OP467 usable in applications such as high speed detectors and instrumentation.

The OP467 is specified for operation from ± 5 V to ± 15 V over the extended industrial temperature range (-40°C to +85°C) and is available in 14-lead plastic and ceramic DIP, plus SOL-16 and 20-lead LCC surface mount packages.

Contact your local sales office for MIL-STD-883 data sheet and availability.

Quad Precision, High Speed Operational Amplifier

OP467

PIN CONNECTIONS

14-Lead Ceramic DIP (Y Suffix) and 14-Lead Epoxy DIP (P Suffix)

Figure 1. Simplified Schematic

and or its rties n or Fax: 781/326-8703 **One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Gamma And State State**

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

OP467–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS Offset Voltage	V _{os}	$-40^{\circ}C \le T_A \le +85^{\circ}C$		0.2	0.5 1	mV mV
Input Bias Current	I _B	$V_{CM} = 0 V$ $V_{CM} = 0 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$		150 150	600 700	nA nA
Input Offset Current	I _{OS}	$V_{CM} = 0 V$ $V_{CM} = 0 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$		10 10	100 150	nA nA
Common-Mode Rejection	CMR CMR	$V_{CM} = \pm 12 V$ $V_{CM} = \pm 12 V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$	80 80	90 88	150	dB dB
Large Signal Voltage Gain	A _{VO}	$R_{L} = 2 k\Omega$ $R_{L} = 2 k\Omega, -40^{\circ}C \le T_{A} \le +85^{\circ}C$	83 77.5	86		dB dB
Offset Voltage Drift Bias Current Drift Long Term Offset Voltage Drift	$\begin{array}{c} \Delta V_{OS} / \Delta T \\ \Delta I_B / \Delta T \\ \Delta V_{OS} / \Delta T \end{array}$	Note 1	11.5	3.5 0.2	750	uB μV/°C pA/°C μV
OUTPUT CHARACTERISTICS Output Voltage Swing	Vo	$\begin{split} R_{\rm L} &= 2 \ {\rm k}\Omega \\ R_{\rm L} &= 2 \ {\rm k}\Omega, -40^{\circ}{\rm C} \leq {\rm T}_{\rm A} \leq +85^{\circ}{\rm C} \end{split}$	±13.0 ±12.9	±13.5 ±13.12		V V
POWER SUPPLY Power Supply Rejection Ratio	PSRR	$\pm 4.5 \text{ V} \le \text{V}_{\text{S}} = \pm 18 \text{ V}$ -40°C $\le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$	96 86	120 115		dB dB
Supply Current	I _{SY}	$V_{O} = 0 V$ $V_{O} = 0 V, -40^{\circ}C \le T_{A} \le +85^{\circ}C$		8	10 13	mA mA
Supply Voltage Range	Vs		±4.5		± 18	V
DYNAMIC PERFORMANCE Gain Bandwidth Product Slew Rate	GBP SR	$A_V = +1, C_L = 30 \text{ pF}$ V _{IN} = 10 V Step, R _L = 2 kΩ, C _L = 30 pF $A_V = +1$	125	28 170		MHz V/µs
Full-Power Bandwidth Settling Time Phase Margin Input Capacitance	$\begin{array}{c} BW_{\rho} \\ t_{S} \\ \theta_{0} \end{array}$	$A_V = -1$ $V_{IN} = 10 \text{ V Step}$ To 0.01%, $V_{IN} = 10 \text{ V Step}$		350 2.7 200 45		V/µs MHz ns Degrees
Common Mode Differential				2.0 1.0		pF pF
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density	e _N p-p e _N i _N	f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz		0.15 6 8		µV p-p nV/√Hz pA/√Hz

NOTE ¹Long Term Offset Voltage Drift is guaranteed by 1000 hrs. Life test performed on three independent wafer lots at +125 °C, with an LTPD of 1.3.

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 5.0 V$, $T_A = +25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos			0.3	0.5	mV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			1	mV
Input Bias Current	I _B	$V_{CM} = 0 V$		125	600	nA
	_	V_{CM} = 0 V, -40°C \leq T _A \leq +85°C		150	700	nA
Input Offset Current	I _{OS}	$V_{\rm CM} = 0 V$		20	100	nA
	OV (D	$V_{CM} = 0 V, -40^{\circ}C \le T_A \le +85^{\circ}C$		05	150	nA
Common-Mode Rejection	CMR	$V_{CM} = \pm 2.0 V$	76	85		dB
Lange Signal Valtage Cain	CMR	$V_{CM} = \pm 2.0 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$	76 80	80 83		dB dB
Large Signal Voltage Gain	A _{VO}	$R_{L} = 2 k\Omega$ $R_{L} = 2 k\Omega, -40^{\circ}C \le T_{A} \le +85^{\circ}C$	74	83		dB dB
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$R_L = 2 R_{22}, -40 C \le T_A \le +60 C$	14	35		μV/°C
Bias Current Drift	$\Delta I_{B}/\Delta T$			0.2		pA/°C
				0.2		
OUTPUT CHARACTERISTICS		D 110				
Output Voltage Swing	Vo	$R_{\rm L} = 2 \ k\Omega$	±3.0	±3.5		V
		$R_{L} = 2 \text{ k}\Omega, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$	±3.0	±3.20		V
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$\pm 4.5 \text{ V} \le \text{V}_{\text{S}} = \pm 5.5 \text{ V}$	92	107		dB
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	83	105		dB
Supply Current	I _{SY}	$V_0 = 0 V$		8	10	mA
		$V_{O} = 0 V, -40^{\circ}C \le T_{A} \le +85^{\circ}C$			11	mA
DYNAMIC PERFORMANCE						
Gain Bandwidth Product	GBP	$A_{V} = +1$		22		MHz
Slew Rate	SR	$V_{IN} = 5 \text{ V Step}, R_L = 2 \text{ k}\Omega, C_L = 39 \text{ pF}$				
		$A_V = +1$		90		V/µs
		$A_V = -1$		90		V/µs
Full-Power Bandwidth	BW_{ρ}	$V_{IN} = 5 V Step$		2.5		MHz
Settling Time	t _S	To 0.01% , $V_{IN} = 5$ V Step		280		ns
Phase Margin	θο			45		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _N p-p	f = 0.1 Hz to 10 Hz		0.15		μV p-p
Voltage Noise Density	e _N	f = 1 kHz		7		nV/√Hz
Current Noise Density	i _N	f = 1 kHz		8		pA/√Hz

Specifications subject to change without notice.

WAFER TEST LIMITS¹ (@ $V_s = \pm 15.0 V$, $T_A = +25^{\circ}C$ unless otherwise noted.)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	V _{OS}		±0.5	mV max
Input Bias Current	IB	$V_{CM} = 0 V$	600	nA max
Input Offset Current	I _{OS}	$V_{CM} = 0 V$	100	nA max
Input Voltage Range ²			±12	V min/max
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 V$	80	dB min
Power Supply Rejection Ratio	PSRR	$V = \pm 4.5 V \text{ to } \pm 18 V$	96	dB min
Large Signal Voltage Gain	A _{VO}	$R_{\rm L} = 2 \ k\Omega$	83	dB min
Output Voltage Range	Vo	$R_{\rm L} = 2 \ k\Omega$	±13.0	V min
Supply Current	I _{SY}	$V_0 = 0 V, R_L = \infty$	10	mA max

NOTES

¹Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing. ²Guaranteed by CMR test.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage±18 V
Input Voltage ² ±18 V
Differential Input Voltage ² ±26 V
Output Short-Circuit DurationLimited
Storage Temperature Range
Y, RC Packages
P, S Packages65°C to +150°C
Operating Temperature Range
OP467A55°C to +125°C
OP467G40°C to +85°C
Junction Temperature Range
Y, RC Packages65°C to +175°C
P, S Packages
Lead Temperature Range (Soldering, 60 sec)+300°C

Package Type	$\theta_A{}^3$	θ_{JC}	Units
14-Lead Cerdip (Y)	94	10	°C/W
14-Lead Plastic DIP (P)	76	33	°C/W
16-Lead SOL (S)	88	23	°C/W
20-Contact LCC (RC)	78	33	°C/W

NOTES

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 2 For supply voltages less than $\pm\,18$ V, the absolute maximum input voltage is equal to the supply voltage.

 ${}^{3}\theta_{JA}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature	Package	Package
	Ranges	Descriptions	Options
OP467AY/883 OP467ARC/883 OP467GP OP467GS OP467GBC	-40° C to $+85^{\circ}$ C	-	Q-14 E-20A N-14 R-16

DICE CHARACTERISTICS

OP467 Die Size 0.111 \times 0.100 inch, 11,100 sq. mils Substrate is Connected to V+, Number of Transistors 165.

Typical Performance Characteristics-OP467

Figure 2. Open-Loop Gain, Phase vs. Frequency

Figure 3. Closed-Loop Gain vs. Frequency

Figure 4. Open-Loop Gain vs. Supply Voltage

Figure 5. Closed-Loop Output Impedance vs. Frequency

Figure 6. Gain Linearity vs. Frequency

Figure 7. Max V_{OUT} Swing vs. Frequency

Figure 8. Max V_{OUT} Swing vs. Frequency

Figure 9. Common-Mode Rejection vs. Frequency

Figure 10. Power-Supply Rejection vs. Frequency

Figure 11. Small Signal Overshoot vs. Load Capacitance

Figure 12. Small Signal Overshoot vs. Load Capacitance

Figure 13. Noninverting Gain vs. Capacitive Loads

Figure 14. Channel Separation vs. Frequency

Figure 15. Input Current Noise Density vs. Frequency

Figure 16. Voltage Noise Density vs. Frequency

Figure 17. Settling Time, Negative Edge

Figure 18. Settling Time, Positive Edge

Figure 19. Input Voltage Range vs. Supply Voltage

Figure 20. Noninverting Gain vs. Supply Voltage

Figure 21. Output Swing vs. Load Resistance

Figure 22. Output Swing vs. Load Resistance

Figure 23. Input Offset Voltage Distribution

Figure 24. Input Offset Voltage Distribution

Figure 25. TC V_{OS} Distribution

Figure 27. Phase Margin and Gain Bandwidth vs. Temperature

Figure 28. Slew Rate vs. Temperature

Figure 29. Slew Rate vs. Temperature

Figure 30. Slew Rate vs. Temperature

Figure 31. Slew Rate vs. Temperature

Figure 32. Settling Time vs. Output Step

Figure 33. Supply Current vs. Supply Voltage

Figure 34. Input Bias Current vs. Temperature

Figure 35. Input Offset Current vs. Temperature

APPLICATIONS INFORMATION OUTPUT SHORT-CIRCUIT PERFORMANCE

To achieve a wide bandwidth and high slew rate, the OP467 output is *not* short circuit protected. Shorting the output to ground or to the supplies may destroy the device.

For safe operation, the output load current should be limited so that the junction temperature does not exceed the absolute maximum junction temperature.

To calculate the maximum internal power dissipation, the following formula can be used:

$$P_D = \frac{T_J \text{ max} - T_A}{\theta_{JA}}$$

where T_J and T_A are junction and ambient temperatures respectively, P_D is device internal power dissipation, and θ_{JA} is packaged device thermal resistance given in the data sheet.

UNUSED AMPLIFIERS

It is recommended that any unused amplifiers in a quad package be connected as a unity gain follower with a 1 k Ω feedback resistor with noninverting input tied to the ground plain.

PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS

Satisfactory performance of a high speed op amp largely depends on a good PC layout. To achieve the best dynamic performance, following high frequency layout technique is recommended.

GROUNDING

A good ground plain is essential to achieve the optimum performance in high speed applications. It can significantly reduce the undesirable effects of ground loops and IR drops by providing a low impedance reference point. Best results are obtained with a multilayer board design with one layer assigned to ground plain. To maintain a continuous and low impedance ground, avoid running any traces on this layer.

POWER SUPPLY CONSIDERATIONS

In high frequency circuits, device lead length introduces an inductance in series with the circuit. This inductance, combined with stray capacitance, forms a high frequency resonance circuit. Poles generated by these circuits will cause gain peaking and additional phase shift, reducing the op amp's phase margin and leading to an unstable operation.

A practical solution to this problem is to reduce the resonance frequency low enough to take advantage of the amplifier's power supply rejection.

This is easily done by placing capacitors across the supply line and the ground plain as close as possible to the device pin. Since capacitors also have internal parasitic components, such as stray inductance, selecting the right capacitor is important. To be effective, they should have low impedance over the frequency range of interest. Tantalum capacitors are an excellent choice for their high capacitance/size ratio, but their ESR (Effective Series Resistance) increases with frequency making them less effective. On the other hand, ceramic chip capacitors have excellent ESR and ESL (Effective Series Inductance) performance at higher frequencies, and because of their small size, they can be placed very close to the device pin, further reducing the stray inductance. Best results are achieved by using a combination of these two capacitors. A 5 μ F–10 μ F tantalum parallel with a 0.1 μ F ceramic chip caps are recommended. If additional isolation from high frequency resonances of the power supply is needed, a ferrite bead should be placed in series with the supply lines between the bypass caps and the power supply. A word of caution, addition of the ferrite bead will introduce a new pole and zero to frequency response of the circuit and could cause unstable operation if it is not selected properly.

Figure 36. Recommended Power Supply Bypass

SIGNAL CONSIDERATIONS

Input and output traces need special attention to assure a minimum stray capacitance. Input nodes are very sensitive to capacitive reactance, particularly when connected to a high impedance circuit. Stray capacitance can inject undesirable signals from a noisy line into a high impedance input. Protect high impedance input traces by providing guard traces around them. This will also improve the channel separation significantly.

Additionally, any stray capacitance in parallel with the op amp's input capacitance generates a pole in the frequency response of the circuit. The additional phase shift caused by this pole will reduce the circuit's gain margin. If this pole is within the gain range of the op amp, it will cause unstable performance. To reduce these undesirable effects, use the lowest impedance where possible. Lowering the impedance at this node places the poles at a higher frequency, far above the gain range of the amplifier. Stray capacitance on the PC board can be reduced by making the traces narrow and as short as possible. Further reduction can be realized by choosing smaller pad size, increasing the spacing between the traces, and using PC board material with a low dielectric constant insulator (Dielectric Constant of some common insulators: air = 1, Teflon[®] = 2.2, and FR4 = 4.7; with air being an ideal insulator).

Removing segments of the ground plain directly under the input and output pads is recommended.

Outputs of high speed amplifiers are very sensitive to capacitive loads. A capacitive load will introduce a pair of pole and zero to the circuit's frequency response, reducing the phase margin, leading to unstable operation or oscillation.

Generally, it is a good design practice to isolate the amplifier's output from any capacitive load by placing a resistor between the amplifier's output and the rest of the circuits. A series resistor of 10 to 100 ohms is normally sufficient to isolate the output from a capacitive load.

The OP467 is internally compensated to provide stable operation, and is capable of driving large capacitive loads without oscillation.

Sockets are not recommended since they increase the lead inductance/capacitance and reduce the power dissipation of the package by increasing the leads thermal resistance. If sockets must be used, use Teflon or pin sockets with the shortest leads possible.

PHASE REVERSAL

The OP467 is immune to phase reversal; its inputs can exceed the supply rails by a diode drop without any phase reversal.

Figure 37. No Phase Reversal $(A_V = +1)$

SATURATION RECOVERY TIME

The OP467 has a fast and symmetrical recovery time from either rail. This feature is very useful in applications such as high speed instrumentation and measurement circuits, where the amplifier is frequently exposed to large signals that overload the amplifier.

Figure 38. Saturation Recovery Time, Positive Rail

Figure 39. Saturation Recovery Time, Negative Rail

HIGH SPEED INSTRUMENTATION AMPLIFIER

The OP467 performance lends itself to a variety of high speed applications, including high speed precision instrumentation amplifiers. Figure 40 represents a circuit commonly used for data acquisition, CCD imaging and other high speed application.

Circuit gain is set by R_G . A 2 k Ω resistor will set the circuit gain to 2; for unity gain, remove R_G . For any other gain settings use the following formula:

$G = 2/R_G$ Resistor Value is in $k\Omega$

 $R_{\rm C}$ is used for adjusting the dc common-mode rejection, and $C_{\rm C}$ is used for ac common-mode rejection adjustments.

Figure 40. A High Speed Instrumentation Amplifier

Figure 41. Instrumentation Amplifier Settling Time to 0.01% for a 10 V Step Input (Negative Slope)

2.5mV

Figure 42. Instrumentation Amplifier Settling Time to 0.01% for a 10 V Step Input (Positive Slope)

Figure 43. Settling Time Measurement Circuit

2 MHz BIQUAD BANDPASS FILTER

The circuit in Figure 44 is commonly used in medical imaging ultrasound receivers. The 30 MHz bandwidth is sufficient to accurately produce the 2 MHz center frequency, as the measured response shows in Figure 45. When the op amp's bandwidth is too close to the filter's center frequency, the amplifier's internal phase shift causes excess phase shift at 2 MHz, which alters the filter's response. In fact, if the chosen op amp has a bandwidth close to 2 MHz, the combined phase shift of the three op amps will cause the loop to oscillate.

Careful consideration must be given to the layout of this circuit as with any other high speed circuit.

If the phase shift introduced by the layout is large enough, it could alter the circuit performance, or worse, it will oscillate.

Figure 44. 2 MHz Biquad Filter

Figure 45. Biquad Filter Response

Figure 46. Quad DAC Unipolar Operation

FAST I-TO-V CONVERTER

The fast slew rate and fast settling time of the OP467 are well suited to the fast buffers and I-to-V converters used in variety of applications. The circuit in Figure 46 is a unipolar quad D/A converter consisting of only two ICs. The current output of the DAC8408 is converted to a voltage by the OP467 configured as an I-to-V converter. This circuit is capable of settling to 0.1% within 200 ns. Figures 47 and 48 show the full-scale settling time of the outputs. To obtain reliable circuit performance, keep the traces from the DAC's I_{OUT} to the inverting inputs of the OP467 short to minimize parasitic capacitance.

							260.	0ns		
90			\	•			••••	••••	••••	••••
-			Ν							
-				ľ						
-	~				\mathbf{r}	4		<u>التحقق</u>		
10										
0%••••	§	••••		•	••••		••••	••••	••••	••••
	2V	50n	١V					100	ns	

Figure 47. Voltage Output Settling Time

Figure 48. Voltage Output Settling Time

Figure 49. DAC V_{OUT} Settling Time Circuit

OP467 SPICE MACRO-MODEL * Node assignments			* * COMN	* * COMMON-MODE STAGE WITH ZERO AT 1.26 kHz							
INDUC 2	assignin		noninverting input	*							
			inverting input	ECM	13	98	POLY (2) (1,20)	(2,20) 0 0 . 5 0 . 5			
			positive supply	R8	13	14	1E6				
			negative supply	R9	14	98	25.119				
*			output	C3	13	14	126.721E-12				
. SUBCKT OP467 1 2 99 50 27				*							
. SOBCRI 01407 1 2 99 50 21				* POLE A	AT 400	E6					
*				*							
* INPU	Γ STAC	θE		R10	15	98	1E6				
*				C4	15	98	0.398E–15				
I1	4	50	10E-3	G2	98	15	(10,20) 1E–6				
CIN	1	2	1E-12	*							
IOS	1	2	5E-9	* OUTPU	TT ST	AGE					
Q1	5	2	8 QN	*	01 51	IOL					
Q2	6	7	9 QN	ISY	99	50	-8.183E-3				
R3	99	5	185.681	RMP1	99 99	20	96 . 429E3				
R4	99	6	185.681	RMP2	20	20 50	96.429E3				
R5	8	4	180.508	RO1	20 99	26	200				
R6	9	4	180.508	RO1 RO2	26	20 50	200				
EOS	7	1	POLY (1) (14,20) 50E-6 1	L1	26	27	1E–7				
EREF	98	0	(20,0) 1	GO1	26	99	(99,15) 5E–3				
*				GO1 GO2	50	26	(15,50) 5E–3				
* GAIN	STAGE	ANT	DOMINANT POLE AT 1.5 kHz	G02 G4	23	20 50	(15,26) 5E–3				
*	011101			G5	24	50	(26,15) 5E-3				
R7	10	98	3.714E6	V3	21	26	50				
C2	10	98	28.571E–12	V4	26	22	50				
G1	98	10	(5,6) 5.386E-3	D3	15	21	DX				
V1	99	11	1.6	D9 D4	22	15	DX				
V2	12	50	1.6	D5	99	23	DX				
D1	10	11	DX	D6	99	24	DX				
D2	12	10	DX	D7	50	23	DY				
RC	10	28	1.4E3	D8	50	24	DY				
CC	28	27	12E–12		20	21	DI				
50	20	21		*							
						* MODELS USED					
				*							
				. MODEL QN NPN (BF=33.333E3)							

- . MODEL DX D
- . MODEL DY D (BV=50)

. ENDS OP467

Figure 50. SPICE Macro-Model Output Stage

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Wide-Body SOL (S Suffix) (R-16)

20-Terminal Leadless Ceramic Chip Carrier (RC Suffix) (E-20A)

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.