

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs

Check for Samples: LMK04826B, LMK04828B

1 INTRODUCTION

1.1 Features

- JEDEC JESD204B Support
- Ultra-Low RMS Jitter and Performance
 - 88 fs RMS jitter (12 kHz to 20 MHz)
 - 91 fs RMS jitter (100 Hz to 20 MHz)
 - -162.5 dBc/Hz noise floor at 245.76 MHz
- Up to 14 Differential Device Clocks from PLL2
 - Up to 7 SYSREF Clocks
 - Maximum clock output frequency 3.1 GHz
 LVPECL, LVDS, HSDS, LCPECL
 - programmable outputs from PLL2
- Up to 1 buffered VCXO/Crystal output from PLL1
 - LVPECL, LVDS, 2xLVCMOS programmable
- Dual Loop PLLatinum™ PLL Architecture
- PLL1
 - Up to 3 redundant input clocks
 - Automatic and manual switch-over modes
 - Hitless switching and LOS

- Integrated Low-Noise Crystal Oscillator Circuit
- Holdover mode when input clocks are lost
- PLL2
 - Normalized [1 Hz] PLL noise floor of -227 dBc/Hz
 - Phase detector rate up to 155 MHz
 - OSCin frequency-doubler
 - Two Integrated Low-Noise VCOs
- 50% duty cycle output divides, 1 to 32 (even and odd)
- Precision digital delay, dynamically adjustable
- 25 ps step analog delay
- Multi-mode: Dual PLL, single PLL, and clock distribution in 0 delay option
- Industrial Temperature Range: –40 to 85°C
- 3.15 V to 3.45 V operation
- Package: 64-pin QFN (9.0 x 9.0 x 0.8 mm)

Device	VCO0 Frequency	VCO1 Frequency
LMK04826	1840 to 1970 MHz	2440 to 2505 MHz
LMK04828	2370 to 2630 MHz	2920 to 3080 MHz

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PLLatinum is a trademark of Texas Instruments.

TEXAS INSTRUMENTS

www.ti.com

1.2 Applications

- Wireless Infrastructure
- Data Converter Clocking
- Networking, SONET/SDH, DSLAM
- Medical / Video / Military / Aerospace
- Test and Measurement

1.3 Description

The LMK04820 family is the industry's highest performance clock conditioner with JEDEC JESD204B support.

The 14 clock outputs from PLL2 can be configured to drive seven JESD204B converters or other logic devices using device and SYSREF clocks. SYSREF can be provided using both DC and AC coupling. Not limited to JESD204B applications, each of the 14 outputs can individually be configured as a high performance outputs for traditional clocking systems.

The high performance combined with features like the ability to trade off between power or performance, dual VCOs, dynamic digital delay, holdover, glitchless analog delay make the LMK04820 family ideal for providing flexible high performance clocking trees.

1.4 Device Configuration Information

NSID	Reference Inputs ⁽¹⁾	OSCout (Buffered OSCin Clock) LVDS/ LVPECL/ LVCMOS ⁽¹⁾	PLL2 Programmable LVDS/LVPECL/HSDS Outputs	VCO0 Frequency	VCO1 Frequency
LMK04826BISQ	Up to 3	Up to 1	14	1840 to 1970 MHz	2440 to 2505 MHz
LMK04828BISQ	Up to 3	Up to 1	14	2370 to 2630 MHz	2920 to 3080 MHz

(1) OSCout may also be third clock input, CLKin2.

1.5 Functional Block Diagrams and Operating Modes

The LMK04820 Family is a flexible device that can be configured for many different use cases. The following simplified block diagrams help show the user the different use cases of the device.

1.5.1 DUAL PLL

Figure 1-1 illustrates the typical use case of the LMK04820 family in dual loop mode. In dual loop mode the reference to PLL1 from CLKin0, CLKin1, or CLKin2. An external VCXO or tunable crystal will be used to provide feedback for the first PLL and a reference to the second PLL. This first PLL cleans the jitter with the VCXO or low cost tunable crystal by using a narrow loop bandwidth. The VCXO or tunable crystal output may be buffered through the OSCout port. The VCXO or tunable crystal is used as the reference to PLL2 and may be doubled using the frequency doubler. The internal VCO drives up to seven divide/delay blocks which drive up to 14 clock outputs.

Hitless switching and holdover functionality are optionally available when the input reference clock is lost. Holdover works by fixing the tuning voltage of PLL1 to the VCXO or tunable crystal.

It is also possible to use an external VCO in place of PLL2's internal VCO. In this case one less CLKin is available as a reference.

Figure 1-1. Simplified Functional Block Diagram for Dual Loop Mode

Field	Register Address	Function	Value	Selected Value
PLL1_NCLK_MUX	0x13F	Selects the input to the PLL1 N divider	0	OSCin
PLL2_NCLK_MUX	0x13F	Selects the input to the PLL2 N divider	0	PLL2_P
FB_MUX_EN	0x13F	Enables the Feedback Mux	0	Disabled
FB_MUX	0x13F	Selects the output of the Feedback Mux	Х	Don't care because FB_MUX is disabled
OSCin_PD	0x140	Powers down the OSCin port	0	Powered up
CLKin0_OUT_MUX	0x147	Selects where the output of CLKin0 is directed.		PLL1
CLKin1_OUT_MUX	0x147	Selects where the output of CLKin1 is directed.	2	PLL1
VCO_MUX	0x138	Selects the VCO 0, 1 or an external VCO	0 or 1	VCO 0 or VCO 1

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

1.5.2 0-DELAY DUAL PLL

Figure 1-2 illustrates the use case of cascaded 0-delay dual loop mode. This configuration differs from duel loop mode Figure 1-1 in that the feedback for PLL2 is driven by a clock output instead of the VCO output. Figure 1-3 illustrates the use case of nested 0-delay dual loop mode. This configuration is similar to the duel PLL in Section 1.5.1 except that the feedback to the first PLL is driven by a clock output. This causes the clock outputs to have deterministic phase relationship with the clock input. Since all the clock outputs can be synchronized together, all the clock outputs can share the same deterministic phase relationship with the clock input signal. The feedback to PLL1 can be connected internally as shown using CLKout6, CLKout8, SYSREF, or externally using FBCLKin (CLKin1).

It is also possible to use an external VCO in place of PLL2's internal VCO; but one less CLKin is available as a reference and external 0-delay feedback is not available.

Figure 1-2. Simplified Functional Block Diagram for Cascaded 0-delay Dual Loop Mode

Table 1-2. Cascaded 0-delay Dual Loop Mode Register Configuration

Field	Register Address	Function	Value	Selected Value
PLL1_NCLK_MUX	0x13F	Selects the input to the PLL1 N divider.	0	OSCin
PLL2_NCLK_MUX	0x13F	Selects the input to the PLL2 N divider	1	Feedback Mux
FB_MUX_EN	0x13F	Enables the Feedback Mux.	1	Feedback Mux Enabled
FB_MUX	0x13F	Selects the output of the Feedback Mux.	0, 1, or 2	Select between DCLKout6, DCLKout8, SYSREF
OSCin_PD	0x140	Powers down the OSCin port.	0	Powered up
CLKin0_OUT_MUX	0x147	Selects where the output of CLKin0 is directed.	0	PLL1
CLKin1_OUT_MUX	0x147	Selects where the output of CLKin1 is directed.	0 or 2	Fin or PLL1
VCO_MUX	0x138	Selects the VCO 0, 1 or an external VCO	0 or 1	VCO 0 or VCO 1

LMK04826B, LMK04828B

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

Figure 1-3. Simplified Functional Block Diagram for Nested 0-delay Dual Loop Mode

Table 1-3 illustrates nested 0-delay mode. This is the same as cascaded except the clock out feedback is to PLL1. The CLKin and CLKout have the same deterministic phase relationship but the VCXO's phase will not be deterministic to the CLKin or CLKouts.

Field	Register Address	Function	Value	Selected Value
PLL1_NCLK_MUX	0x13F	Selects the input to the PLL1 N divider.	1	Feedback Mux
PLL2_NCLK_MUX	0x13F	Selects the input to the PLL2 N divider	0	PLL2 P
FB_MUX_EN	0x13F	Enables the Feedback Mux.	1	Enabled
FB_MUX	0x13F	Selects the output of the Feedback Mux.	0, 1, or 2	Select between DCLKout6, DCLKout8, SYSREF
OSCin_PD	0x140	Powers down the OSCin port.	0	Powered up
CLKin0_OUT_MUX	0x147	Selects where the output of CLKin0 is directed.	2	PLL1
CLKin1_OUT_MUX	0x147	Selects where the output of CLKin1 is directed.	0 or 2	Fin or PLL1
VCO_MUX	0x138	Selects the VCO 0, 1 or an external VCO	0 or 1	VCO 0 or VCO 1

Table 1-3. Nested 0-delay Dual Loop Mode Register Configuration

1.5.3 DETAILED LMK04820 FAMILY BLOCK DIAGRAM

Figure 1-4 illustrates the complete LMK04820 family block diagram.

Figure 1-4. Detailed LMK04820 Family Block Diagram

1.6 Connection Diagram

Table 1-4. Pin Descriptions (1)

Pin Number	Name(s)	I/O	Туре	Description	
1, 2	DCLKout0, DCLKout0*	0	Programmable	Device clock output 0.	
3, 4	SDCLKout1, SDCLKout1*	0	Programmable	SYSREF / Device clock output 1	
5	RESET/GPO	I/O	CMOS	Device reset input or GPO	
6	SYNC/SYSREF_R EQ	I/O	CMOS	Synchronization input or programmable status pin or SYSREF_REQ for requesting continuous SYSREF.	
7, 8, 9	NC			No Connection. These pins must be left floating.	
10	Vcc1_VCO		PWR	Power supply for VCO LDO.	
11	LDObyp1		ANLG	LDO Bypass, bypassed to ground with 10 µF capacitor.	
12	LDObyp2		ANLG	LDO Bypass, bypassed to ground with a 0.1 µF capacitor.	
13, 14	SDCLKout3, SDCLKout3*	0	Programmable	SYSREF / Device Clock output 3.	
15, 16	DCLKout2, DCLKout2*	0	Programmable	Device clock output 2.	
17	Vcc2_CG1		PWR	Power supply for clock outputs 2 and 3.	
18	CS*	I	CMOS	Chip Select	
19	SCK	I	CMOS	SPI Clock	

(1) See Section 7.2 section for recommended connections.

Copyright © 2013, Texas Instruments Incorporated

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Texas Instruments

Table 1-4. Pi	n Descriptions	⁽¹⁾ (continued)
---------------	----------------	----------------------------

Pin Number	Pin Number Name(s) I/O Type Description					
	()	I/O	Туре			
20	SDIO	I/O	CMOS	SPI Data		
21	Vcc3_SYSREF		PWR	Power supply for SYSREF divider and SYNC.		
22, 23	SDCLKout5, SDCKLout5*	0	Programmable	SYSREF / Device clock output 5.		
24, 25	DCLKout4, DCLKout4*	0	Programmable	Device clock output 4.		
26	Vcc4_CG2		PWR	Power supply for clock outputs 4, 5, 6 and 7.		
27, 28	DCLKout6, DCLKout6*	0	Programmable	Device clock output 6.		
29, 30	SDCLKout7, SDCLKout7*	0	Programmable	SYSREF / Device clock output 7.		
31	Status_LD1	I/O	Programmable	Programmable status pin.		
32	CPout1	0	ANLG	Charge pump 1 output.		
33	Vcc5_DIG		PWR	Power supply for the digital circuitry.		
	CLKin1, CLKin1*	I	ANLG	Reference Clock Input Port for PLL1.		
34, 35	FBCLKin, FBCLKin*	I	ANLG	Feedback input for external clock feedback input (0-delay mode).		
	Fin, Fin*	I	ANLG	External VCO Input (External VCO mode).		
36	Vcc6_PLL1		PWR	Power supply for PLL1, charge pump 1.		
37, 38	CLKin0, CLKin0*	I	ANLG	Reference Clock Input Port 0 for PLL1.		
39	Vcc7_OSCout		PWR	Power supply for OSCout port.		
40,41	OSCout, OSCout*	0	Programmable	Buffered output of OSCin port.		
42	Vcc8_OSCin		PWR	Power supply for OSCin		
43, 44	OSCin, OSCin*	Ι	ANLG	Feedback to PLL1, Reference input to PLL2. AC coupled.		
45	Vcc9_CP2		PWR	Power supply for PLL2 Charge Pump.		
46	CPout2	0	ANLG	Charge pump 2 output.		
47	Vcc10_PLL2		PWR	Power supply for PLL2.		
48	Status_LD2	I/O	Programmable	Programmable status pin.		
49, 50	SDCLKout9, SDCLKout9*	0	Programmable	SYSREF / Device clock 9		
51, 52	DCLKout8, DCLKout8*	0	Programmable	Device clock output 8.		
53	Vcc11_CG3		PWR	Power supply for clock outputs 8, 9, 10, and 11.		
54, 55	DCLKout10, DCLKout10*	0	Programmable	Device clock output 10.		
56, 57	SDCLKout11, SDCLKout11*	0	Programmable	SYSREF / Device clock output 11.		
58	CLKin_SEL0	I/O	Programmable	Programmable status pin.		
59	CLKin_SEL1	I/O	Programmable	Programmable status pin.		
60, 61	SDCLKout13, SDCLKout13*	0	Programmable	SYSREF / Device clock output 13.		
62, 63	DCLKout12, DCLKout12*	0	Programmable	Device clock output 12.		
64	Vcc12_CG0		PWR	Power supply for clock outputs 0, 1, 12, and 13.		
DAP	DAP		GND	DIE ATTACH PAD, connect to GND.		

Texas INSTRUMENTS

www.ti.com

1	INTR	ODUCTION	1
	1.1	Features	<u>1</u>
	1.2	Applications	2
	1.3	Description	2
	1.4	Device Configuration Information	. 2
	1.5	Functional Block Diagrams and Operating Modes	<u>3</u>
	1.6	Connection Diagram	7
2	ELEC	CTRICAL SPECIFICATIONS	<u>10</u>
	2.1	Absolute Maximum Ratings	<u>10</u>
	2.2	Package Thermal Resistance	<u>10</u>
	2.3	Recommended Operating Conditions	<u>10</u>
	2.4	Electrical Characteristics	<u>11</u>
	2.5	SPI Timing Diagram	<u>24</u>
	2.6	Differential Voltage Measurement Terminology	<u>25</u>
3	TYPI	CAL PERFORMANCE CHARACTERISTICS	<u>26</u>
	3.1	Clock Output AC Characteristics	<u>26</u>
4	FEA	TURES	<u>28</u>
	4.1	Jitter Cleaning	<u>28</u>
	4.2	JEDEC JESD204B Support	<u>28</u>
	4.3	Three PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and	
		CLKin2/CLKin2*)	<u>28</u>
	4.4	VCXO/Crystal Buffered Output	
	4.5	Frequency Holdover	
	4.6	PLL2 Integrated Loop Filter Poles	<u>29</u>

LMK04826B, LMK04828B SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

	4.7	Internal VCOs	<u>29</u>
	4.8	External VCO Mode	<u>29</u>
	4.9	Clock Distribution	<u>29</u>
	4.10	0-Delay	<u>31</u>
	4.11	Status Pins	<u>31</u>
5	FUN	CTIONAL DESCRIPTIONS	<u>32</u>
	5.1	Modes Of Operation	32
	5.2	SYNC/SYSREF	32
	5.3	JEDEC JESD204B	35
	5.4	Digital Delay	37
	5.5	SYSREF to Device Clock Alignment	41
	5.6	Input Clock Switching	42
	5.7	Digital Lock Detect	43
	5.8	Holdover	<u>44</u>
6	GEN	ERAL PROGRAMMING INFORMATION	<u>46</u>
	6.1	Recommended Programming Sequence	46
	6.2	Register Map	47
	6.3	Device Register Descriptions	51
7	APPI	LICATION INFORMATION	90
	7.1	Digital Lock Detect Frequency Accuracy	90
	7.2	Pin Connection Recommendations	90
	7.3	Driving CLKin AND OSCin Inputs	91
	7.4	Power Supply	93
	7.5	Thermal Management	94
		-	

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

2 ELECTRICAL SPECIFICATIONS

2.1 Absolute Maximum Ratings (1) (2) (3)

Parameter	Symbol	Ratings	Units
Supply Voltage ⁽⁴⁾	V _{CC}	-0.3 to 3.6	V
Input Voltage	V _{IN}	-0.3 to (V _{CC} + 0.3)	V
Storage Temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (solder 4 seconds)	TL	+260	°C
Junction Temperature	TJ	150	°C
Differential Input Current (CLKinX/X*, OSCin/OSCin*, FBCLKin/FBCLKin*, Fin/Fin*)	I _{IN}	± 5	mA
Moisture Sensitivity Level	MSL	3	

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not assure specific performance limits. For assured specifications and test conditions, see the Electrical Characteristics. The assured specifications apply only to the test conditions listed.

(2) This device is a high performance RF integrated circuit with an ESD rating up to 2 kV Human Body Model, up to 150 V Machine Model, and up to 250 V Charged Device Model and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free workstations.

(3) Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

(4) Never to exceed 3.6 V.

2.2 Package Thermal Resistance

Table 2-1. 64-Lead QFN

		LMK0482xB	
Symbol	Thermal Metric ⁽¹⁾	NKD	Units
		64 Pins	
θ_{JA}	Junction-to-ambient thermal resistance (2)	24.3	
θ _{JC} (TOP)	Junction-to-case(top) thermal resistance (3)	6.1	
θ _{JB}	Junction-to-board thermal resistance (4)	3.5	° C/W
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾	0.1	C/W
Ψ_{JB}	Junction-to-board characterization parameter ⁽⁶⁾	3.5	
θ _{JC} (BOTTOM)	Junction-to-case(bottom) thermal resistance (7)	0.7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, Ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, Ψ_{JB} estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

2.3 Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Junction Temperature	TJ			125	°C
Ambient Temperature	T _A	-40	25	85	°C
Supply Voltage	V _{CC}	3.15	3.3	3.45	V

2.4 Electrical Characteristics

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	· · · · ·	Current Consumption				
I _{CC_PD}	Power Down Supply Current			1	3	mA
I _{CC_CLKS}	Supply Current ⁽¹⁾	14 HSDS 8 mA clocks enabled PLL1 and PLL2 locked.		565	665	mA
	CLKin0/0*, CLKin1/1*	, and CLKin2/2* Input Clock Specificat	ions			
f _{CLKin}	Clock Input Frequency		0.001		750	MHz
SLEW _{CLKin}	Clock Input Slew Rate (2)	20% to 80%	0.15	0.5		V/ns
V _{ID} CLKin	Clock Input		0.125		1.55	V
V _{SS} CLKin	Differential Input Voltage ⁽³⁾ Figure 2-2	AC coupled	0.25		3.1	Vpp
M	Clock Input	AC coupled to CLKinX; CLKinX* AC coupled to Ground CLKinX_BUF_TYPE = 0 (Bipolar)	0.25		2.4	Vpp
V _{CLKin}	Single-ended Input Voltage	AC coupled to CLKinX; CLKinX* AC coupled to Ground CLKinX_BUF_TYPE = 1 (MOS)	0.35		2.4	Vpp
	DC offset voltage between	Each pin AC coupled, CLKin0/1/2 CLKin0_BUF_TYPE = 0 (Bipolar)		0		mV
V _{CLKinX-offset}	CLKinX/CLKinX* (CLKinX* - CLKinX)	Each pin AC coupled, CLKin0/1 CLKinX_BUF_TYPE = 1 (MOS)		55		mV
	DC offset voltage between CLKin2/CLKin2* (CLKin2* - CLKin2)	Each pin AC coupled CLKin2_BUF_TYPE = 1 (MOS)		20		mV
V_{CLKin} V_{IH}	High input voltage	DC coupled to CLKinX;	2.0		V _{CC}	V
$V_{\text{CLKin-}} V_{\text{IL}}$	Low input voltage	CLKinX* AC coupled to Ground CLKinX_BUF_TYPE = 1 (MOS)	0.0		0.4	V
	FBCLKin/FBCL	Kin* and Fin/Fin* Input Specifications				
f _{FBCLKin}	Clock Input Frequency for 0-delay with external feedback.	AC coupled CLKin1_BUF_TYPE = 0 (Bipolar)	0.001		750	MHz
f _{Fin}	Clock Input Frequency for external VCO or distribution mode.	AC coupled ⁽⁴⁾ CLKin1_BUF_TYPE = 0 (Bipolar)	0.001		3100	MHz
V _{FBCLKin/Fin}	Single Ended Clock Input Voltage	AC coupled CLKin1_BUF_TYPE = 0 (Bipolar)	0.25		2.0	Vpp
SLEW _{FBCLKin/Fin}	Slew Rate on CLKin ⁽²⁾	AC coupled; 20% to 80%; (CLKinX_BUF_TYPE = 0)	0.15	0.5		V/ns

(1) See applications section Section 7.4 for lcc for specific part configuration and how to calculate lcc for a specific design.

(2) In order to meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to achieve optimal phase noise performance at the device outputs.

(3) See Section 2.6 for definition of V_{ID} and V_{OD} voltages.

(4) Assured by characterization. ATE tested at 2949.12 MHz.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ °C} < \text{T}_{A} < 85 \text{ °C}.$ Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ °C},$ at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		PLL1 Specifications				
f _{PD1}	PLL1 Phase Detector Frequency				40	MHz
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 0		50		
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 1		150		
	PLL1 Charge	$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 2		250		
I _{CPout1} SOURCE	Pump Source Current ⁽¹⁾					μA
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 14		1450		
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 15		1550		
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 0		-50		
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 1		-150		
	PLL1 Charge	$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 2		-250		
I _{CPout1} SINK	Pump Sink Current ⁽¹⁾					μA
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 14		-1450		
		$V_{CPout1} = V_{CC}/2$, PLL1_CP_GAIN = 15		-1550		
I _{CPout1} %MIS	Charge Pump Sink / Source Mismatch	$V_{CPout1} = V_{CC}/2, T = 25 \ ^{\circ}C$		1	10	%
$I_{CPout1}V_{TUNE}$	Magnitude of Charge Pump Current Variation vs. Charge Pump Voltage	0.5 V < V _{CPout1} < V _{CC} - 0.5 V T _A = 25 °C		4		%
I _{CPout1} %TEMP	Charge Pump Current vs. Temperature Variation			4		%
I _{CPout1} TRI	Charge Pump TRI-STATE Leakage Current	0.5 V < V _{CPout} < V _{CC} - 0.5 V			5	nA
	PLL 1/f Noise at 10 kHz offset.	PLL1_CP_GAIN = 350 µA		-117		
PN10kHz	Normalized to 1 GHz Output Frequency	PLL1_CP_GAIN = 1550 µA		-118		dBc/Hz
PN1Hz	Normalized Phase Noise Contribution	PLL1_CP_GAIN = 350 µA		-221.5		dBc/Hz
FINITIZ	Normalized Phase Noise Contribution	PLL1_CP_GAIN = 1550 µA		-223		UDC/112
		ence Input (OSCin) Specifications				
f _{OSCin}	PLL2 Reference Input ⁽²⁾				500	MHz
SLEW _{OSCin}	PLL2 Reference Clock minimum slew rate on OSCin ⁽³⁾	20% to 80%	0.15	0.5		V/ns
V _{OSCin}	Input Voltage for OSCin or OSCin*	AC coupled; Single-ended (Unused pin AC coupled to GND)	0.2		2.4	Vpp
V _{ID} OSCin	Differential voltage swing		0.2		1.55	V
V _{SS} OSCin	Figure 2-2	AC coupled	0.4		3.1	Vpp
V _{OSCin-offset}	DC offset voltage between OSCin/OSCin* (OSCinX* - OSCinX)	Each pin AC coupled		20		mV
f _{doubler_max}	Doubler input frequency ⁽⁴⁾	EN_PLL2_REF_2X = 1 ⁽⁵⁾ ; OSCin Duty Cycle 40% to 60%			155	MHz

(1) This parameter is programmable

(2) F_{OSCin} maximum frequency assured by characterization. Production tested at 122.88 MHz.

(3) In order to meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to achieve optimal phase noise performance at the device outputs.

(4) Assured by characterization. ATE tested at 122.88 MHz.

(5) The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Crystal	Oscillator Mode Specifications	L.			1
F _{XTAL}	Crystal Frequency Range	Fundamental mode crystal ESR = 200 Ω (10 to 30 MHz) ESR = 125 Ω (30 to 40 MHz)	10		40	MHz
C _{IN}	Input Capacitance of OSCin port	-40 to +85 °C		1		pF
	PLL2 Phase Det	ector and Charge Pump Specifications				
f _{PD2}	Phase Detector Frequency ⁽¹⁾				155	MHz
		$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 0		100		
	PLL2 Charge Pump Source Current	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 1		400		
I _{CPout} SOURCE	(2)	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 2		1600		μA
		$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 3		3200		
		$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 0		-100		
		$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 1		-400		
I _{CPout} SINK	PLL2 Charge Pump Sink Current ⁽²⁾	$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 2		-1600		μA
		$V_{CPout2} = V_{CC}/2$, PLL2_CP_GAIN = 3		-3200		
I _{CPout2} %MIS	Charge Pump Sink/Source Mismatch	$V_{CPout2}=V_{CC}/2$, $T_A = 25 \text{ °C}$		1	10	%
$I_{CPout2}V_{TUNE}$	Magnitude of Charge Pump Current vs. Charge Pump Voltage Variation	0.5 V < V _{CPout2} < V _{CC} - 0.5 V $T_A = 25 \text{ °C}$		4		%
I _{CPout2} %TEMP	Charge Pump Current vs. Temperature Variation			4		%
I _{CPout2} TRI	Charge Pump Leakage	0.5 V < V _{CPout2} < V _{CC} - 0.5 V			10	nA
	PLL 1/f Noise at 10 kHz offset ⁽³⁾ .	PLL2_CP_GAIN = 400 μ A		-118		
PN10kHz	N10kHz Normalized to 1 GHz Output Frequency	PLL2_CP_GAIN = 3200 µA		-121		dBc/Hz
PN1Hz	Normalized Phase Noise Contribution	PLL2_CP_GAIN = 400 µA		-222.5		dBc/Hz
FINITIZ	(4)	PLL2_CP_GAIN = 3200 μA		-227		

(1) Assured by characterization. ATE tested at 122.88 MHz.

(2) This parameter is programmable

 (4) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, L_{PLL_flat}(f), is defined as: PN1HZ=L_{PLL_flat}(f) - 20log(N) - 10log(f_{PDX}). L_{PLL_flat}(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth and f_{PDX} is the phase detector frequency of the synthesizer. L_{PLL_flat}(f) contributes to the total noise, L(f).

 ⁽²⁾ This parameter is programmeter
 (3) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, L_{PLL_flicker}(f), which is dominant close to the carrier. Flicker noise has a 10 dB/decade slope. PN10kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10kHz = L_{PLL_flicker}(10 kHz) - 20log(Fout / 1 GHz), where L_{PLL_flicker}(f) is the single side band phase noise of only the flicker noise's contribution to total noise, L(f). To measure L_{PLL_flicker}(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean crystal are important to isolating this noise source from the total phase noise, L(f). L_{PLL_flicker}(f) can be masked by the reference oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of L_{PLL_flicker}(f) and L_{PLL_flick}(f).

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	In	ternal VCO Specifications				
		VCO0	1840		1970	
4	LMK04826 VCO Tuning Range	VCO1	2440		2505	MHz
f _{VCO}		VCO0	2370		2630	
	LMK04828 VCO Tuning Range	VCO1	2920		3080	MHz
		LMK04826 VCO0		11 to 19		
K	LMK04826 Fine Tuning Sensitivity	LMK04826 VCO1		8 to 11		MHz/V
K _{VCO}		LMK04828 VCO0 at 2457.6 MHz		17 to 27		
	LMK04828 Fine Tuning Sensitivity	LMK04828 VCO1 at 2949.12 MHz		17 to 23		MHz/V
ΔT _{CL}	Allowable Temperature Drift for Continuous Lock	After programming for lock, no changes to output configuration are permitted to assure continuous lock			125	°C

(1) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside the frequency range of -40 °C to 85 °C without violating specifications.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Cond	itions	Min	Тур	Max	Units
		Noise Floor					
			LVDS		-158.1		
			HSDS 6 mA		-159.7		
			HSDS 8 mA		-160.8		
	LMK04826, VCO0, Noise Floor 20 MHz Offset ⁽¹⁾		HSDS 10 mA		-161.3		
L(f) _{CLKout}		245.76 MHz	LVPECL16 /w 240 Ω		-161.8		dBc/Hz
			LVPECL20 /w 240 Ω		-162.0		
			LCPECL		-161.7		
			LVDS		-157.5		
			HSDS 6 mA		-158.9		
			HSDS 8 mA		-159.8		dBc/Hz
	LMK04826, VCO1, Noise Floor 20 MHz Offset ⁽¹⁾	245.76 MHz	HSDS 10 mA		-160.3		
L(f) _{CLKout}			LVPECL16 /w 240 Ω		-160.8		
			LVPECL20 /w 240 Ω		-160.7		
			LCPECL		-160.7		
			LVDS		-156.3		dBc/Hz
			HSDS 6 mA		-158.4		
			HSDS 8 mA		-159.3		
	LMK04828 VCO0 Noise Floor		HSDS 10 mA		-158.9		
L(f) _{CLKout}	LMK04828, VCO0, Noise Floor 20 MHz Offset ⁽²⁾	245.76 MHz	LVPECL16 /w 240 Ω		-161.6		
			LVPECL20 /w 240 Ω		-162.5		
			LCPECL		-162.1		
			LVDS		-155.7		
			HSDS 6 mA		-157.5		
			HSDS 8 mA		-158.1		
	LMK04828, VCO1, Noise Floor		HSDS 10 mA		-157.7		
L(f) _{CLKout}	LMK04828, VCO1, Noise Floor 20 MHz Offset ⁽²⁾	20 MHz Offset ⁽²⁾ 245.76 MHz	LVPECL16 /w 240 Ω		-160.3		dBc/Hz
			LVPECL20 /w 240 Ω		-161.1		
			LCPECL		-160.8		1

Data collected using a Prodyn BIB-100G balun. Loop filter for PLL2 is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 303 kHz, phase margin = 73 degrees. VCO1 Loop filter loop bandwidth = 151 kHz, phase margin = 64 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.
 Data collected using ADT2-1T+ balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 14 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 14 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter bandwidth = 344 kHz, phase margin = 73 degre

loop bandwidth = 233 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Units
CLKout Closed Lo	op Phase Noise Specifications a	Commercial Quality VC	XO ⁽¹⁾	I.	-1 1		
		Offset =	10 kHz		-134.8		
		Offset = 1	100 kHz		-135.4		
			LVDS		-148.2		
L(f) _{CLKout}	LMK04826B VCO0 SSB Phase Noise ⁽²⁾	Offset = 1 MHz	HSDS 8 mA LVPECL16 /w 240 Ω		-148.6		dBc/Hz
			LVDS		-157.8		1
			-160.4]		
			LVPECL16 /w 240 Ω		-161.5		
		Offset =	10 kHz		-134.3		
		Offset = 1	Offset = 100 kHz		-133.7		
			LVDS		-152.5		
L(f) _{CLKout}	LMK04826B VCO1 SSB Phase Noise ⁽²⁾	Offset = 1 MHz	HSDS 8 mA LVPECL16 /w 240 Ω		-153.6		dBc/Hz
			LVDS	-157.3		-	
		Offset = 10 MHz HSDS 8 mA -159.6		1			
			LVPECL16 /w 240 Ω		-160.5		

(1) VCXO used is a 122.88 MHz Crystek CVHD-950-122.880.

(2) Data collected using a Prodyn BIB-100G balun. Loop filter for PLL2 is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 303 kHz, phase margin = 73 degrees. VCO1 Loop filter loop bandwidth = 151 kHz, phase margin = 64 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Units	
	CLKout Closed Loop Phase Noi	se Specifications a Con	nmercial Quality VC	XO (cont	inued) ⁽¹⁾			
		Offset =	1 kHz		-124.3			
		Offset =	10 kHz		-134.7			
		Offset = 1	100 kHz		-136.5			
L(f) _{CLKout}	LMK04828 VCO0	Offset =	1 MHz		-148.4		dBc/H	
SSB	SSB Phase Noise ⁽²⁾		LVDS		-156.4			
		Offset = 10 MHz LVPECL16 /w 240 Ω		-159.1				
					-160.8			
		Offset =	1 kHz		-124.2			
		Offset =	10 kHz		-134.4			
		Offset = 1	100 kHz		-135.2			
L(f) _{CLKout}	LMK04828 VCO1	Offset =	1 MHz		-151.5		dBc/Hz	
LUICLKout	SSB Phase Noise ⁽²⁾		LVDS		-159.9			
		Offset = 10 MHz	HSDS 8 mA		-155.8			
		Oliset = 10 MHz		LVPECL16 /w 240 Ω		-158.1		

(1) VCXO used is a 122.88 MHz Crystek CVHD-950-122.880.

(1) Volte discuise a 122.500 min 2 citystek CVTID 350 122.500.
(2) Data collected using ADT2-1T+ balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter loop bandwidth = 233 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLKout Closed L	oop Jitter Specifications a Comme	ercial Quality VCXO ⁽¹⁾			r	4
		LVDS, BW = 100 Hz to 20 MHz		106		
		LVDS, BW = 12 kHz to 20 MHz		104		
		HSDS 8 mA, BW = 100 Hz to 20 MHz		99		
		HSDS 8 mA, BW = 12 kHz to 20 MHz		97		
	LMK04826B, VCO0 f _{CLKout} = 245.76 MHz	LVPECL16 /w 240 Ω, BW = 100 Hz to 20 MHz		99		fs rms
	Integrated RMS Jitter ⁽²⁾	LVPECL16 /w 240 Ω, BW = 12 kHz to 20 MHz		96		
		LCPECL /w 240 Ω, BW = 100 Hz to 20 MHz		100		
		LCPECL /w 240 Ω , BW = 12 kHz to 20 MHz		100 97 99		_
J _{CLKout}		LVDS, BW = 100 Hz to 20 MHz		99		
		LVDS, BW = 12 kHz to 20 MHz		97		
		HSDS 8 mA, BW = 100 Hz to 20 MHz		92		
		HSDS 8 mA, BW = 12 kHz to 20 MHz		90		
	LMK04826, VCO1 f _{CLKout} = 245.76 MHz	LVPECL16 /w 240 Ω, BW = 100 Hz to 20 MHz		91		fs rms
	Integrated RMS Jitter ⁽²⁾	LVPECL20 /w 240 Ω, BW = 12 kHz to 20 MHz		89		
		LCPECL /w 240 Ω, BW = 100 Hz to 20 MHz		92		
		LCPECL /w 240 Ω, BW = 12 kHz to 20 MHz		89		

(1) VCXO used is a 122.88 MHz Crystek CVHD-950-122.880.

(1) Volta collected using a Prodyn BIB-100G balun. Loop filter for PLL2 is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 303 kHz, phase margin = 73 degrees. VCO1 Loop filter loop bandwidth = 151 kHz, phase margin = 64 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	CLKout Closed Loop Jitter S	pecifications a Commercial Quality VCXO	(continue	ed) ⁽¹⁾		
		LVDS, BW = 100 Hz to 20 MHz		112		
		LVDS, BW = 12 kHz to 20 MHz		109		
		HSDS 8 mA, BW = 100 Hz to 20 MHz		102		
		HSDS 8 mA, BW = 12 kHz to 20 MHz		99		
	LMK04828, VCO0 f _{CLKout} = 245.76 MHz	LVPECL16 /w 240 Ω, BW = 100 Hz to 20 MHz		98		fs rms
	Integrated RMS Jitter ⁽²⁾	LVPECL20 /w 240 Ω, BW = 12 kHz to 20 MHz		95		
		LCPECL /w 240 Ω, BW = 100 Hz to 20 MHz		96		
		LCPECL /w 240 Ω , BW = 12 kHz to 20 MHz		93 108		
J _{CLKout}		LVDS, BW = 100 Hz to 20 MHz		108		
		LVDS, BW = 12 kHz to 20 MHz		105		
		HSDS 8 mA, BW = 100 Hz to 20 MHz		98		
		HSDS 8 mA, BW = 12 kHz to 20 MHz		94		
	LMK04828, VCO1 f _{CLKout} = 245.76 MHz	LVPECL16 /w 240 Ω, BW = 100 Hz to 20 MHz		93		fs rm
Integrated RMS Jitter ⁽²⁾	Integrated RMS Jitter ⁽²⁾	LVPECL20 /w 240 Ω, BW = 12 kHz to 20 MHz		90		
		LCPECL /w 240 Ω, BW = 100 Hz to 20 MHz		91		
		LCPECL /w 240 Ω, BW = 12 kHz to 20 MHz		88		

(1) VCXO used is a 122.88 MHz Crystek CVHD-950-122.880.

(1) Volta collected using ADT2-1T+ balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter loop bandwidth = 233 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Default Powe	r On Reset Clock Output Frequency		r		1
	Default output clock frequency at	LMK04826		235		
f _{CLKout} -startup	device power on ⁽¹⁾	LMK04828		315		MHz
f _{OSCout}	OSCout Frequency				⁽²⁾ 500	MHz
		Clock Skew and Delay				
	$\begin{array}{c} \mbox{DCLKoutX to SDCLKoutY} \\ \mbox{F}_{CLK} = 245.76 \mbox{ MHz}, \mbox{ R}_{L} = 100 \Omega \\ \mbox{ AC coupled } ^{(3)} \end{array}$	Same pair, Same format ⁽⁴⁾ SDCLKoutY_MUX = 0 (Device Clock)			25	
T _{SKEW}	$\label{eq:maximum} \begin{array}{l} \mbox{Maximum DCLKoutX or SDCLKoutY} \\ \mbox{to DCLKoutX or SDCLKoutY} \\ \mbox{F}_{CLK} = 245.76 \mbox{ MHz}, \mbox{ R}_L = 100 \Omega \\ \mbox{ AC coupled} \end{array}$	Any pair, Same format ⁽⁴⁾ SDCLKoutY_MUX = 0 (Device Clock)		50		ps
ts _{JESD204B}	SYSREF to Device Clock setup time base reference. See Section 5.5 to adjust SYSREF to Device Clock setup time as required.	SDCLKoutY_MUX = 1 (SYSREF) SYSREF_DIV = 30 SYSREF_DDLY = 8 (global) SDCLKoutY_DDLY = 1 (2 cycles, local) DCLKoutX_MUX = 1 (Div+DCC+HS) DCLKoutX_DIV = 30 DCLKoutX_DDLY_CNTH = 7 DCLKoutX_DDLY_CNTL = 6 DCLKoutX_HS = 0		-80		ps
f _{ADLY} max	Maximum analog delay frequency	DCLKoutX_MUX = 4		1536		MH:
	LVDS Clock Output	its (DCLKoutX, SDCLKoutY, and OSCou	t)			
V _{OD}	Differential Output Voltage			395		mV
ΔV_{OD}	Change in Magnitude of V _{OD} for complementary output states	T = 25 °C, DC measurement	-60		60	mν
V _{OS}	Output Offset Voltage	AC coupled to receiver input $R_L = 100 \Omega$ differential termination	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} for complementary output states				35	mV
т /т	Output Rise Time	20% to 80%, $R_L = 100 \Omega$, 245.76 MHz		180		-
T _R / T _F	Output Fall Time	80% to 20%, R_L = 100 Ω		100		ps
I _{SA} I _{SB}	Output short circuit current - single ended	Single-ended output shorted to GND $T = 25 \text{ °C}$	-24		24	mA
I _{SAB}	Output short circuit current - differential	Complimentary outputs tied together	-12		12	mA

(1) OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port.

(2) Assured by characterization. ATE tested at 122.88 MHz.

(3) Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid for delay mode.

(4) LVPECL uses 120 Ω emitter resistor, LVDS and HSDS uses 560 Ω shunt.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	6 mA HSDS Cloc	k Outputs (DCLKoutX and SDCLKoutY)				
V _{OH}		T = 25 °C, DC measurement		V _{CC} - 1.05		
V _{OL}		Termination = 50 Ω to V _{CC} - 1.42 V		V _{CC} - 1.64		
V _{OD}	Differential Output Voltage			590		mV
ΔV_{OD}	Change in V _{OD} for complementary output states -80				80	mVpp
	8 mA HSDS Cloc	k Outputs (DCLKoutX and SDCLKoutY)				
エ / エ	Output Rise Time	245.76 MHz, 20% to 80%, R_L = 100 Ω		470		
T _R / T _F	Output Fall Time	245.76 MHz, 80% to 20%, R_L = 100 Ω		170		ps
V _{OH}		T = 25 °C, DC measurement		V _{CC} - 1.26		
V _{OL}		Termination = 50 Ω to V _{CC} - 1.64 V		V _{CC} - 2.06		
V _{OD}	Differential Output Voltage			800		mV
ΔV_{OD}	Change in V _{OD} for complementary output states		-115		115	mVpp
	10 mA HSDS Clo	ck Outputs (DCLKoutX and SDCLKoutY)				
V _{OH}		T = 25 °C, DC measurement		V _{CC} - 0.99		
V _{OL}	Termination -50.0 to			V _{CC} - 1.97		
V _{OD}				980		mVpp
ΔV_{OD}	Change in V _{OD} for complementary output states		-115		115	mVpp

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter Conditions		Min	Тур	Max	Units
	LVPECL Clock	Outputs (DCLKoutX and SDCLKoutY)				
T _R / T _F	20% to 80% Output Rise 80% to 20% Output Fall Time	R _L = 100 Ω, emitter resistors = 240 Ω to GND DCLKoutX_TYPE = 4 or 5 (1600 or 2000 mVpp)		150		ps
	1600 mVpp I VPECI	Clock Outputs (DCLKoutX and SDCLKou	utY)			
			,	V		
V _{OH}	Output High Voltage			V _{CC} - 1.04		V
V _{OL}	Output Low Voltage	DC Measurement Termination = 50 Ω to V _{CC} - 2.0 V		V _{CC} - 1.80		V
V _{OD}	Output Voltage Figure 2-3		760			mV
	2000 mVpp LVPECL	Clock Outputs (DCLKoutX and SDCLKou	ıtY)			
V _{OH}	Output High Voltage			V		
V _{OL}	Output Low Voltage	DC Measurement Termination = 50 Ω to V _{CC} - 2.3 V		V _{CC} - 2.05		V
V _{OD}	Output Voltage Figure 2-3			960		mV
	LCPECL Clock	Outputs (DCLKoutX and SDCLKoutY)				ų.
V _{OH}	Output High Voltage 1		1.57		V	
V _{OL}	Output Low Voltage	age DC Measurement		0.62		V
V _{OD}	Output Voltage Figure 2-3	Termination = 50 Ω to 0.5 V		950		mV
	LVCM	IOS Clock Outputs (OSCout)				
f _{CLKout}	Maximum Frequency	5 pF Load	250			MH
V _{OH}	Output High Voltage	1 mA Load	V _{CC} - 0.1			V
V _{OL}	Output Low Voltage	1 mA Load			0.1	V
I _{OH}	Output High Current (Source)	$V_{CC} = 3.3 \text{ V}, \text{ V}_{O} = 1.65 \text{ V}$	28			mA
I _{OL}	Output Low Current (Sink)	$V_{CC} = 3.3 \text{ V}, \text{ V}_{O} = 1.65 \text{ V}$	28			mA
DUTY _{CLK}	Output Duty Cycle ⁽²⁾	$V_{CC}/2$ to $V_{CC}/2$, F _{CLK} = 100 MHz, T = 25 °C	50			%
T _R	Output Rise Time	20% to 80%, $R_L = 50 \Omega$, $C_L = 5 pF$	400			ps
T _F	Output Fall Time 80% to 20%, $R_{L} = 50 \Omega$, $C_{L} = 5 pF$ 400			ps		

Assured by characterization. ATE tested to 10 MHz.
 Assumes OSCin has 50% input duty cycle.

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ }^{\circ}\text{C} < \text{T}_{A} < 85 \text{ }^{\circ}\text{C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}$, $\text{T}_{A} = 25 \text{ }^{\circ}\text{C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
	Digital Outputs (CLKin_SELX, Status_LDX, and RESET/GP	O)				
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA CLKin_SELX_TYPE = 3, 4, or 6 Status_LDX_TYPE = 3, 4, or 6 RESET_TYPE = 3, 4, or 6	V _{CC} - 0.4			v	
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA CLKin_SELX_TYPE = 3 or 4 Status_LDX_TYPE = 3 or 4 RESET_TYPE = 3 or 4			0.4	v	
		Digital Output (SDIO)					
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA ; During SPI read. SDIO_RDBK_TYPE = 0	V _{CC} - 0.4			V	
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA ; During SPI read. SDIO_RDBK_TYPE = 0 or 1			0.4	V	
	Digital Inputs (CLKin	X_SEL, RESET/GPO, SYNC, SCK, SDIO, o	or CS*)				
V _{IH}	High-Level Input Voltage 1.2			V _{CC}	V		
V _{IL}	Low-Level Input Voltage				0.4	V	
		Digital Inputs (CLKinX_SEL)					
	High-Level Input Current	CLKin_SELX_TYPE = 0, (High Impedance)	-5		5		
I _{IH}	$V_{\rm IH} = V_{\rm CC}$	CLKin_SELX_TYPE = 1 (Pull-up)	-5		5	μA	
		CLKin_SELX_TYPE = 2 (Pull-down)	10		80	1	
	Low-Level Input Current	CLKin_SELX_TYPE = 0, (High Impedance)	-5		5	μA	
Ι _{ΙL}	$V_{IL} = 0 V$	CLKin_SELX_TYPE = 1 (Pull-up)	-40		-5		
		CLKin_SELX_TYPE = 2 (Pull-down)	-5		5	1	
		Digital Input (RESET/GPO)					
I _{IH}	High-Level Input Current V _{IH} = V _{CC}	RESET_TYPE = 2 (Pull-down)	10		80	μA	
		RESET_TYPE = 0 (High Impedance)	-5		5		
IIL	Low-Level Input Current V _{IL} = 0 V	RESET_TYPE = 1 (Pull-up)	-40		-5	μA	
		RESET_TYPE = 2 (Pull-down)	-5		5		
		Digital Inputs (SYNC)	÷				
I _{IH}	High-Level Input Current	$V_{IH} = V_{CC}$			25		
IIL	Low-Level Input Current	$V_{IL} = 0 V$	-5 5		5	μA	
	Di	gital Inputs (SCK, SDIO, CS*)					
I _{IH}	High-Level Input Current	$V_{IH} = V_{CC}$	5		5	μA	
I _{IL}	Low-Level Input Current	$V_{IL} = 0$	-5		5	μA	

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Electrical Characteristics (continued)

 $(3.15 \text{ V} < \text{V}_{CC} < 3.45 \text{ V}, -40 \text{ °C} < \text{T}_{A} < 85 \text{ °C}$. Typical values at $\text{V}_{CC} = 3.3 \text{ V}, \text{T}_{A} = 25 \text{ °C}$, at the Recommended Operating Conditions and are **not** assured.)

Symbol	Parameter Condition		Min	Тур	Max	Units		
SPI Interface Timing								
td _s	Setup time for SDI edge to SCLK rising edge	See SPI Input Timing	10			ns		
td _H	Hold time for SDI edge from SCLK See SPI Input Timing 10					ns		
t _{SCLK}	Period of SCLK	See SPI Input Timing	50 ⁽¹⁾			ns		
t _{HIGH}	High width of SCLK	See SPI Input Timing	25			ns		
t _{LOW}	Low width of SCLK	See SPI Input Timing	25			ns		
tc _s	Setup time for CS* falling edge to SCLK rising edge	See SPI Input Timing	10			ns		
tc _H	Hold time for CS* rising edge from SCLK rising edge	See SPI Input Timing	30			ns		
td _v	SCLK falling edge to valid read back data	See SPI Input Timing	20		20	ns		

(1) 20 MHz

2.5 SPI Timing Diagram

Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed. A slew rate of at least 30 V/ μ s is recommended for these signals. After programming is complete the CS* signal should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this programming.

Figure 2-1. SPI Timing Diagram

2.6 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions causing confusion when reading datasheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader will be able to understand and discern between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and non-inverting signal. The symbol for this first measurement is typically V_{ID} or V_{OD} depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the non-inverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its differential pair. V_{SS} can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{OD} as described in the first description.

Figure 2-2 illustrates the two different definitions side-by-side for inputs and Figure 2-3 illustrates the two different definitions side-by-side for outputs. The V_{ID} and V_{OD} definitions show V_A and V_B DC levels that the non-inverting and inverting signals toggle between with respect to ground. V_{SS} input and output definitions show that if the inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now increasing and decreasing above and below the non-inverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.

 V_{ID} and V_{OD} are often defined as volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

Refer to application note AN-912 Common Data Transmission Parameters and their Definitions for more information.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

INSTRUMENTS

Texas

3 TYPICAL PERFORMANCE CHARACTERISTICS

NOTE

These plots show performance at frequencies beyond what the part is ensured to operate at to give the user an idea of the capabilities of the part, but they do not imply any sort of ensured specification.

3.1 Clock Output AC Characteristics

Figure 3-1. LMK04826B DCLKout2 Phase Noise VCO_MUX = 0 (VCO0) VCO0 = 1966.08 MHz DCLKout2_MUX = 0 (Divider) DCLKout2_DIV = 8 DCLKout2 Frequency = 245.76 MHz LVPECL20 /w 240 Ω emitter resistors CLKout2_3_IDL=1 CLKout2_3_ODL=0 Balun Prodyn BIB-100G PLL2 Loop Filter Bandwidth = 303 kHz PLL2 Phase Margin = 73° Figure 3-2. LMK04826B DCLKout2 Phase Noise VCO_MUX = 1 (VCO1) VCO Frequency = 2457.6 MHz DCLKout2_MUX = 0 (Divider) DCLKout2_DIV = 10 DCLKout2 Frequency = 245.76 MHz LVPECL20 /w 240 Ω emitter resistors CLKout2_3_IDL=1 CLKout2_3_ODL=0 Balun Prodyn BIB-100G PLL2 Loop Filter Bandwidth = 151 kHz PLL2 Phase Margin = 64°

Figure 3-3. LMK04828B DCLKout2 Phase Noise VCO_MUX = 0 (VCO0) VCO0 = 2457.6 MHz DCLKout2_MUX = 0 (Divider) DCLKout2_DIV = 10 DCLKout2 Frequency = 245.76 MHz LVPECL20 /w 240 Ω emitter resistors CLKout2_3_IDL=1 CLKout2_3_ODL=0 Balun ADT2-1T+ PLL2 Loop Filter Bandwidth = 344 kHz PLL2 Phase Margin = 73°

LMK04826B, LMK04828B

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

Figure 3-4. LMK04828B DCLKout2 Phase Noise VCO_MUX = 1 (VCO1) VCO Frequency = 2949.12 MHz DCLKout2_MUX = 0 (Divider) DCLKout2_DIV = 12 DCLKout2 Frequency = 245.76 MHz LVPECL20 /w 240 Ω emitter resistors CLKout2_3_IDL=1 CLKout2_3_ODL=0 Balun ADT2-1T+ PLL2 Loop Filter Bandwidth = 233 kHz PLL2 Phase Margin = 70°

27

4 FEATURES

4.1 Jitter Cleaning

The dual loop PLL architecture of the LMK04820 family provides the lowest jitter performance over a wide range of output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external reference clock and uses an external VCXO or tunable crystal to provide a frequency accurate, low phase noise reference clock for the second stage frequency multiplication PLL (PLL2).

PLL1 typically uses a narrow loop bandwidth (typically 10 Hz to 200 Hz) to retain the frequency accuracy of the reference clock input signal while at the same time suppressing the higher offset frequency phase noise that the reference clock may have accumulated along its path or from other circuits. This "cleaned" reference clock provides the reference input to PLL2.

The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 50 kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency phase noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO or tunable crystal.

Ultra low jitter is achieved by allowing the external VCXO or Crystal's phase noise to dominate the final output phase noise at low offset frequencies and the internal VCO's phase noise to dominate the final output phase noise at high offset frequencies. This results in best overall phase noise and jitter performance.

4.2 JEDEC JESD204B Support

The LMK04820 family provides support for JEDEC JESD204B. The LMK04820 will clock up to 7 JESD204B targets using 7 device clocks (DCLKoutX) and 7 SYSREF clocks (SDCLKoutY). Each device clock is grouped with a SYSREF clock.

It is also possible to re-program SYSREF clocks to behave as extra device clocks for applications which have non-JESD204B clock requirements.

4.3 Three PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and CLKin2/CLKin2*)

The LMK04820 family has up to three reference clock inputs for PLL1. They are CLKin0, CLKin1, and CLKin2. The active clock is chosen based on CLKin_SEL_MODE. Automatic or manual switching can occur between the inputs.

CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers.

CLKin1 is shared for use as an external 0-delay feedback (FBCLKin), or for use with an external VCO (Fin).

CLKin2 is shared for use as OSCout. To use powerdown OSCout, see Section 6.3.3.1.

Fast manual switching between reference clocks is possible with a external pins CLKin_SEL0 and CLKin_SEL1.

4.4 VCXO/Crystal Buffered Output

The LMK04820 family provides OSCout, which by default is a buffered copy of the PLL1 feedback/PLL2 reference input. This reference input is typically a low noise VCXO or Crystal. When using a VCXO, this output can be used to clock external devices such as microcontrollers, FPGAs, CPLDs, etc. before the LMK0482xB is programmed.

The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.

The VCXO/Crystal buffered output can be synchronized to the VCO clock distribution outputs by using Cascaded 0-Delay Mode. The buffered output of VCXO/Crystal has deterministic phase relationship with CLKin.

4.5 Frequency Holdover

The LMK04820 family supports holdover operation to keep the clock outputs on frequency with minimum drift when the reference is lost until a valid reference clock signal is re-established.

4.6 PLL2 Integrated Loop Filter Poles

The LMK04820 family features programmable 3rd and 4th order loop filter poles for PLL2. These internal resistors and capacitor values may be selected from a fixed range of values to achieve either a 3rd or 4th order loop filter response. The integrated programmable resistors and capacitors compliment external components mounted near the chip.

These integrated components can be effectively disabled by programming the integrated resistors and capacitors to their minimum values.

4.7 Internal VCOs

The LMK04820 family has two internal VCOs, selected by VCO_MUX. The output of the selected VCO is routed to the Clock Distribution Path. This same selection is also fed back to the PLL2 phase detector through a prescaler and N-divider.

4.8 External VCO Mode

The Fin/Fin* input allows an external VCO to be used with PLL2 of the LMK04820 family.

Using an external VCO reduces the number of available clock inputs by one.

4.9 Clock Distribution

The LMK04820 family features a total of 14 PLL2 clock outputs driven from the internal or external VCO.

All PLL2 clock outputs have programmable output types. They can be programmed to LVPECL, LVDS, or HSDS, or LCPECL.

If OSCout is included in the total number of clock outputs the LMK04820 family is able to distribute, then up to 15 differential clocks. OSCout may be a buffered version of OSCin, DCLKout6, DCLKout8, or SYSREF.

The following sections discuss specific features of the clock distribution channels that allow the user to control various aspects of the output clocks.

4.9.1 DEVICE CLOCK DIVIDER

Each device clock, DCLKoutX, has a single clock output divider. The divider supports a divide range of 1 to 32 (even and odd) with 50% output duty cycle using duty cycle correction mode. The output of this divider may also be directed to SDCLKoutY, where Y = X + 1.

4.9.2 SYSREF CLOCK DIVIDER

The SYSREF clocks, SDCLKoutY, all share a common divider. The divider supports a divide range of 8 to 8191 (even and odd).

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

Texas Instruments

4.9.3 DEVICE CLOCK DELAY

The device clocks include both a analog and digital delay for phase adjustment of the clock outputs.

The analog delay allows a nominal 25 ps step size and range from 0 to 575 ps of total delay. Enabling the analog delay adds a nominal 500 ps of delay in addition to the programmed value.

The digital delay allows a group of outputs to be delayed from 4 to 32 VCO cycles. The delay step can be as small as half the period of the clock distribution path. e.g. 2 GHz VCO frequency results in 250 ps coarse tuning steps. The coarse (digital) delay value takes effect on the clock outputs after a SYNC event.

There are 2 different ways to use the digital delay.

- 1. Fixed Digital Delay Allows all the outputs to have a known phase relationship upon a SYNC event. Typically performed at startup.
- 2. Dynamic Digital Delay Allows the phase relationships of clocks to change while clocks continue to operate.

4.9.4 SYSREF DELAY

The global SYSREF divider includes a digital delay block which allows a global phase shift with respect to the other clocks.

Each local SYSREF clock output includes both an analog and additional local digital delay for unique phase adjustment of each SYSREF clock.

The local analog delay allows for 150 ps steps.

The local digital delay and SYSREF_HS bit allows the each individual SYSREF output to be delayed from, 1.5 to 11 VCO cycles. The delay step can be as small as half the period of the clock distribution path by using the DCLKoutX_HS bit. e.g. 2 GHz VCO frequency results in 250 ps coarse tuning steps.

4.9.5 GLITCHLESS HALF SHIFT and GLITCHLESS ANALOG DELAY

The device clocks include a features to ensure glitchless operation of the half shift and analog delay operations when enabled.

4.9.6 PROGRAMMABLE OUTPUT FORMATS

For increased flexibility all LMK04820 family device and SYSREF clock outputs, DCLKoutX and SDCLKoutY, can be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. The OSCout can be programmed to an LVDS, LVPECL, or LVCMOS output type.

Any LVPECL output type can be programmed to 1600, or 2000 mVpp amplitude levels. The 2000 mVpp LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000 mVpp differential swing for compatibility with many data converters and is also known as 2VPECL.

LCPECL allows for DC coupling SYSREF to low voltage converters.

4.9.7 CLOCK OUTPUT SYNCHRONIZATION

Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital delay.

The SYNC event must occur for digital delay values to take effect.

4.10 0-Delay

The LMK04820 family supports two types of 0-delay.

- 1. Cascaded 0-delay
- 2. Nested 0-delay

Cascaded 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input clock (OSCin) to the phase of a clock selected by the feedback mux. The 0-delay feedback may performed with an internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin port as selected by the FB_MUX. Because OSCin has a fixed deterministic phase relationship to the feedback clock, OSCout will also have a fixed deterministic phase relationship to the feedback clock. In this mode PLL1 input clock (CLKinX) also has a fixed deterministic phase relationship to PLL2 input clock (OSCin), this results in a fixed deterministic phase relationship between all clocks from CLKinX to the clock outputs.

Nested 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock (CLKinX) to the phase of a clock selected by the feedback mux. The 0-delay feedback may performed with an internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin port as selected by the FB_MUX.

Without using 0-delay mode there will be n possible fixed phase relationships from clock input to clock output depending on the clock output divide value.

Using an external 0-delay feedback reduces the number of available clock inputs by one.

4.11 Status Pins

The LMK0482xB provides status pins which can be monitored for feedback or in some cases used for input depending upon device programming. For example:

- The CLKin_SEL0 pin may indicate the LOS (loss-of-signal) for CLKin0.
- The CLKin_SEL1 pin may be an input for selecting the active clock input.
- The Status_LD1 pin may indicate if the device is locked.
- The Status_LD2 pin may indicate if PLL2 is locked.

The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL lock detect signals, PLL1 Vtune railing, readback, etc. Refer to the programming section of this datasheet for more information.

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

ISTRUMENTS

EXAS

www.ti.com

5 FUNCTIONAL DESCRIPTIONS

5.1 Modes Of Operation

The following section describes the settings to enable various modes of operation for the LMK04820 family. See Section 1.5 for visual diagrams of each mode.

5.2 SYNC/SYSREF

The SYNC and SYSREF signals share the same clocking path. To properly use SYNC and/or SYSREF for JESD204B it is important to understand the SYNC/SYSREF system. Figure 5-1 illustrates the detailed diagram of a clock output block with SYNC circuitry included. Figure 5-2 illustrates the interconnects and highlights some important registers used in controlling the device for SYNC/SYSREF purposes.

Figure 5-1. Device and SYSREF Clock Output Block

LMK04826B, LMK04828B

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

To reset or synchronize a divider, the following conditions must be met:

- 1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.
- SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF signal.
 - If SYSREF block is being used, the SYSREF_PD bit must be clear.
 - If the SYSREF Pulsor is being used, the SYSREF_PLSR_PD bit must be clear.
- 3. SYSREF_DDLY_PD and DCLKoutX_DDLY_PD bits must be clear to power up the digital delay circuitry during SYNC as use requires.
- The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX register selects the SYNC source which resets the SYSREF/CLKoutX dividers provided the corresponding SYNC_DISX bit is clear.
- 5. Other bits which impact the operation of SYNC such as SYNC_1SHOT_EN may be set as desired.

Table 5-1 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.

Name	SYNC_MODE	SYSREF_MUX	Other	Description	
SYNC Disabled	0	0	CLKin0_OUT_MUX ≠ 0	No SYNC will occur.	
Pin or SPI SYNC	1	0	CLKin0_OUT_MUX ≠ 0	Basic SYNC functionality, SYNC pin polarity is selected by SYNC_POL. To achieve SYNC through SPI, toggle the SYNC_POL bit.	
Differential input SYNC	0 or 1	0 or 1	CLKin0_OUT_MUX = 0	Differential CLKin0 now operates as SYNC input.	
JESD204B Pulsor on pin transition.	2	2	SYSREF_PULSE_CNT sets pulse count	Produce SYSREF_PULSE_CNT programmed number of pulses on pin transition. SYNC_POL can be used to cause SYNC via SPI.	
JESD204B Pulsor on SPI programming.	3	2	SYSREF_PULSE_CNT sets pulse count	Programming SYSREF_PULSE_CNT register starts sending the number of pulses.	
Re-clocked SYNC	1	1	SYSREF operational, SYSREF Divider as required for training frame size.	Allows precise SYNC for n-bit frame training patterns for non-JESD converters such as LM97600.	
External SYSREF request	0	2	SYSREF_REQ_EN = 1 Pulsor powered up	When SYNC pin is asserted, continuous SYSERF pulses occur. Turning on and off of the pulses is synchronized to prevent runt pulses from occurring or SYSREF.	
Continuous SYSREF	Х	3	SYSREF_PD = 0 SYSREF_DDLY_PD = 0 SYSREF_PLSR_PD = 1 SDCLKoutY_PD as required per output.	Continuous SYSREF signal.	

Table 5-1. Some Possible SYNC Configurations

5.3 JEDEC JESD204B

5.3.1 HOW TO ENABLE SYSREF

Table 5-2 summarizes the bits needed to make SYSREF functionality operational.

Registe r	Field	Value	Description
0x140	SYSREF_PD	0	Must be clear, power-up SYSREF circuitry.
0x140	SYSREF_DDLY_ PD	0	Must be clear to power-up digital delay circuitry during initial SYNC to ensure deterministic timing.
0x143	SYNC_EN	1	Must be set, enable SYNC.
0x143	SYSREF_CLR	$1 \rightarrow 0$	Do not hold local SYSREF DDLY block in reset except at start. Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared, SYSREF_CLR must be cleared to allow SYSREF to operate.

Table 5-2. SYSREF Bits

Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divder, then configuring the actual SYSREF functionality.

5.3.1.1 Setup of SYSREF Example

The following procedure is a programming example for a system which is to operate with a 3000 MHz VCO frequency. Use DCLKout0 and DCLKout2 to drive converters at 1500 MHz. Use DCLKout4 to drive an FPGA at 150 MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.

1. Program registers 0x000 to 0x1fff as desired. Key to prepare for SYSREF operations:

- (a) Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0
- (b) Setup output dividers as per example: DCLKout0_1_DIV and DCLKout2_3_DIV = 2 for frequency of 1500 MHz. DCLKout4_5_DIV for frequency of 150 MHz.
- (c) Setup output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF
- (d) Setup SYSREF: SYSREF_PD = 0, SYSREF_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0, SYSREF_PULSE_CNT = 1 (2 pulses)
- (e) Clear Local SYSREF DDLY: SYSREF_CLR = 1.

2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B:

- (a) Set device clock and sysref divider digital delays: DCLKout0_1_DDLY, DCLKout2_3_DDLY, DCLKout4_5_DDLY, SYSREF_DDLY.
- (b) Set device clock digital delay half steps: DCLKout0_HS, DCLKout2_HS, DCLKout4_HS.
- (c) Set SYSREF clock digital delay as required to achieve known phase relationships: SDCLKout1_DDLY, SDCLKout3_DDLY, SDCLKout5_DDLY.
- (d) To allow SYNC to effect dividers: SYNC_DIS0 = 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0, SYNC_DISSYSREF = 0
- (e) **Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.**
- 3. Now that dividers are synchronized, **disable SYNC from resetting these dividers.** It is not desired for SYSREF to reset it's own divider or the dividers of the output clocks.
 - (a) Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1, SYNC_DISSYSREF = 1.
- 4. Release reset of local SYSREF digital delay.
 - (a) SYSREF_CLR = 0. Note this bit needs to be set for only 15 VCO clocks after SYSREF_PD = 0.
- 5. Set SYSREF operation.
 - (a) Allow pin SYNC event to start pulsor: SYNC_MODE = 2.
 - (b) Select pulsor as SYSREF signal: SYSREF_MUX = 2.
- Complete! Now asserting the SYNC pin, or toggling SYNC_POL will result in a series of 2 SYSREF pulses.

TEXAS INSTRUMENTS

www.ti.com

5.3.1.2 SYSREF_CLR

The local digital delay of the SDCLKout is implemented as a shift buffer. To ensure no un-wanted pulses occur at this SYSREF output at startup, when using SYSREF, requires clearing the buffers by setting SYSREF_CLR = 1 for 15 VCO clock cycles. After a reset, this bit is set, so it must be cleared before SYSREF output is used.

5.3.2 SYSREF MODES

5.3.2.1 SYSREF Pulsor

This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming. This implements the gapped periodic functionality of the JEDEC JESD204B specification.

When in SYSREF Pulsor mode, programming the field SYSREF_PULSE_CNT in register 0x13E will result in the pulsor sending the programmed number of pulses.

5.3.2.2 Continuous SYSREF

This mode allows for continuous output of the SYSREF clock.

Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF clock to device clock. JESD204B is designed to operate with a single burst of pulses to initialize the system at startup, after which it is theoretically not required to send another SYSREF since the system will continue to operate with deterministic phases.

If continuous operation of SYSREF is required, consider using a SYSREF output from a non-adjacent output or SYSREF from the OSCout pin to minimize crosstalk.

5.3.2.3 SYSREF Request

This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses using the SYNC/SYSREF_REQ pin.

Setup the mode by programming SYSREF_REQ_EN and SYSREF_MUX = 2 (Pulsor). The pulsor does not need to be powered for this mode of operation.

When the SYSREF_REQ pin is asserted, the SYSREF_MUX will synchronously be set to continuous mode providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is un-asserted and the final SYSREF pulse will complete sending synchronously.

5.4 Digital Delay

Digital (coarse) delay allows a group of outputs to be delayed by 4 to 32 VCO cycles. The delay step can be as small as half the period of the VCO cycle by using the DCLKoutX_HS bit. There are two different ways to use the digital delay:

- 1. Fixed digital delay
- 2. Dynamic digital delay

In both delay modes, the regular clock divider is substituted with an alternative divide value. The substitute divide value consists of two values, DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL. The minimum _CNTH/_CNTL value is 2 and the maximum _CNTH/_CNTL value is 16. This will result in a minimum alternative divide value of 4 and a maximum of 32.

5.4.1 FIXED DIGITAL DELAY

Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs will be LOW for a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay should use dynamic digital delay.

5.4.1.1 Fixed Digital Delay Example

Assuming the device already has the following initial configurations, and the application should delay DCLKout2 by one VCO cycle compared to DCLKout0.

- VCO frequency = 2949.12 MHz
- DCLKout0 = 368.64 MHz (DCLKout0_DIV = 8)
- DCLKout2 = 368.64 MHz (DCLKout2_DIV = 8)

The following steps should be followed

- 1. Set DCLKout0_DDLY_CNTH = 4 and DCLKout2_DDLY_CNTH = 4. First part of delay for each clock.
- Set DCLKout0_DDLY_CNTL = 4 and DCLKout2_DDLY_CNTL = 5. Second part of delay for each clock.
- 3. Set DCLKout2_DDLY_PD = 0 and DCLKout2_DDLY_PD = 0. Power up the digital delay circuit.
- 4. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the output to be synchronized.
- 5. Perform SYNC by asserting, then unasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.
- Now that the SYNC is complete, to save power it is allowable to power down DCLKout2_DDLY_PD = 0 and/or DCLKout2_DDLY_PD = 1.
- 7. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1. To prevent the output from being synchronized, very important for steady state operation when using JESD204B.

Figure 5-3. Fixed Digital Delay Example

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

16⁽¹⁾

16⁽¹⁾

5.4.2 DYNAMIC DIGITAL DELAY

Dynamic digital delay allows the phase of clocks to be changed with respect to each other with little impact to the clock signal. This is accomplished by substituting the regular clock divider with an alternate divide value for one cycle. This substitution will occur a number of times equal to the value programmed into the DDLYd_STEP_CNT field for all outputs with DDLYdX_EN = 1.

- By programming a larger alternate divider (delay) value, the phase of the adjusted outputs will be delayed with respect to the other clocks.
- By programming a smaller alternate divider (delay) value, the phase of the adjusted output will advanced with respect to the other clocks.

The following table shows the recommended DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL alternate divide setting for delay by one VCO cycle. The clock will output high during the DCLKoutX_DDLY_CNTH time to permit a continuous output clock. The clock output will be low during the DCLKoutX_DDLY_CNTL time.

Clock Divider CNTH CNTL **Clock Divider** CNTH CNTL

16⁽¹⁾

Table 5-3. Recommended DCLKoutX_DDLY_CNTH/_CNTL values for delay by one VCO cycle

(1) To achieve _CNTH/_CNTL value of 16, 0 must be programmed into the _CNTH/_CNTL field.

5.4.3 SINGLE AND MULTIPLE DYNAMIC DIGITAL DELAY EXAMPLE

In this example two separate adjustments will be made to the device clocks. In the first adjustment a single delay of 1 VCO cycle will occur between DCLKout2 and DCLKout0. In the second adjustment two delays of 1 VCO cycle will occur between DCLKout2 and DCLKout0. At this point in the example, DCLKout2 will be delayed 3 VCO cycles behind DCLKout0.

Assuming the device already has the following initial configurations:

- VCO frequency: 2949.12 MHz
- DCLKout0 = 368.64 MHz, DCLKout0_DIV = 8
- DCLKout2 = 368.64 MHz, DCLKout2_DIV = 8

The following steps illustrate the example above:

- 1. Set DCLKout2_DDLY_CNTH = 4. First part of delay for DCLKout2.
- 2. Set DCLKout2_DDLY_CNTL = 5. Second part of delay for DCLKout2.
- 3. Set DCLKout2_DDLY_PD = 0. Enable the digital delay for DCLKout2.
- 4. Set DDLYd2_EN = 1. Enable dynamic digital delay for DCLKout2.
- 5. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 0. Sync should be disabled to DCLKout0, but not DCLKout2.
- 6. Set SYNC_MODE = 3. Enable SYNC event from SPI write to DDLYd_STEP_CNT's register.
- 7. Set SYNC_MODE = 2, SYSREF_MUX = 2. Setup proper SYNC settings.
- 8. Set DDLYd_STEP_CNT = 1. This begins the **first adjustment**.

Before step 7 DCLKout2 clock edge is aligned with DCLKout0.

After step 7, DCLKout2 counts four VCO cycles high and then five VCO cycles low as programmed by DCLKout2_DDLY_CNTH and DCLKout2_DDLY_CNTL fieldss, effectively delaying DCLKout2 by one VCO cycle with respect to DCLKout0. **This is the first adjustment.**

8. Set DDLYd_STEP_CNT = 2. This begins the **second adjustment**.

Before step 8, DCLKout2 clock edge was delayed 1 VCO cycle from DCLKout0.

After step 8, DCLKout2 counts four VCO cycles high and then five VCO cycles low as programmed by DCLKout2_DDLY_CNTH and DCLKout2_DDLY_CNTL fields twice, delaying DCLKout2 by two VCO cycles with respect to DCLKout0. **This is the second adjustment.**

LMK04826B, LMK04828B

TEXAS INSTRUMENTS

www.ti.com

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

Figure 5-4. Single and Multiple Adjustment Dynamic Digital Delay Example

5.5 SYSREF to Device Clock Alignment

To ensure proper JESD204B operation, the timing relationship between the SYSREF and the Device clock must be adjusted for optimum setup and hold time. The ts_{JESD204B} defines the time between SYSREF and Device Clock for a specific condition of SYSREF divider and Device Clock digital delay. From this point, the SYSREF_DDLY. SDCLKoutY_DDLY, DCLKoutX_DDLY_CNTH, DCLKoutDDLY_CNTL, and DCLKoutX_MUX, SDCKLoutX_ADLY, etc. can be adjusted to provide the required setup and hold time between SYSREF and Device Clock.

It is possible to digitally adjust the SYSREF up to 20 VCO cycles before the SYSREF. So for example with a 2949.12 MHz VCO frequency, $ts_{JESD204B} + 20 * (1/VCO Frequency) = -80 \text{ ps} + 20 * (1/2949.12 \text{ MHz}) = 6.7 \text{ ns}.$

5.6 Input Clock Switching

Manual, pin select, and automatic are three different kinds clock input switching modes can be set with the CLKin_SEL_MODE register.

Below is information about how the active input clock is selected and what causes a switching event in the various clock input selection modes.

5.6.1 INPUT CLOCK SWITCHING - MANUAL MODE

When CLKin_SEL_MODE is 0, 1, or 2 then CLKin0, CLKin1, or CLKin2 respectively is always selected as the active input clock. Manual mode will also override the EN_CLKinX bits such that the CLKinX buffer will operate even if CLKinX is disabled with EN_CLKinX = 0.

If holdover is entered in this mode, then the device will re-lock to the selected CLKin upon holdover exit.

5.6.2 INPUT CLOCK SWITCHING - PIN SELECT MODE

When CLKin_SEL_MODE is 3, the pins CLKin_SEL0 and CLKin_SEL1 select which clock input is active.

Configuring Pin Select Mode

The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input for pin select mode.

The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input for pin select mode.

If the CLKin_SELX_TYPE is set as output, the pin input value is considered "Low."

The polarity of CLKin_SEL0 and CLKin_SEL1 input pins can be inverted with the CLKin_SEL_INV bit.

Table 5-4 defines which input clock is active depending on CLKin_SEL0 and CLKin_SEL1 state.

Pin CLKin_SEL1Pin CLKin_SEL0Active ClockLowLowCLKin0LowHighCLKin1HighLowCLKin2HighHighHoldover

Table 5-4. Active Clock Input - Pin Select Mode, CLKin_SEL_INV = 0

The pin select mode will override the EN_CLKinX bits such that the CLKinX buffer will operate even if CLKinX is disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX = 1) that could be switched to.

5.6.3 INPUT CLOCK SWITCHING - AUTOMATIC MODE

When CLKin_SEL_MODE is 4, the active clock is selected in round-robin order of enabled clock inputs starting upon an input clock switch event. The switching order of the clocks is CLKin0 \rightarrow CLKin1 \rightarrow CLKin2 \rightarrow CLKin0, etc.

For a clock input to be eligible to be switched through, it must be enabled using EN_CLKinX.

Starting Active Clock

Upon programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a particular clock input is the active clock when starting this mode, program CLKin_SEL_MODE to the manual mode which selects the desired clock input (CLKin0, 1, or 2). Wait for PLL1 to lock PLL1_DLD = 1, then select this mode with CLKin_SEL_MODE = 4.

5.7 Digital Lock Detect

Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two signals is less than a specified window size (ϵ) a lock detect count increments. When the lock detect count reaches a user specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted true. Once digital lock detect is true, a single phase comparison outside the specified window will cause digital lock detect to be asserted false. This is illustrated in Figure 5-5.

Figure 5-5. Digital Lock Detect Flowchart

This incremental lock detect count feature functions as a digital filter to ensure that lock detect isn't asserted for only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial phase lock.

See Section 7.1 for more detailed information on programming the registers to achieve a specified frequency accuracy in ppm with lock detect.

The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.

5.7.1 CALCULATING DIGITAL LOCK DETECT FREQUENCY ACCURACY

See Section 7.1 for more detailed information on programming the registers to achieve a specified frequency accuracy in ppm with lock detect.

The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Section 5.8.3 for more info.

5.8 Holdover

Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed tuning voltage is set on CPout1 to operate PLL1 in open loop.

5.8.1 ENABLE HOLDOVER

Program HOLDOVER_EN = 1 to enable holdover mode.

Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage or a tracked voltage.

5.8.1.1 Fixed (Manual) CPout1 Holdover Mode

By programming MAN_DAC_EN = 1, then the MAN_DAC value will be set on the CPout1 pin during holdover.

The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value, then re-program MAN_DAC value to a user desired value based on information from previous DAC read backs. This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.

5.8.1.2 Tracked CPout1 Holdover Mode

By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 will be set on the CPout1 pin during holdover. When the DAC has acquired the current CPout1 voltage, the "DAC_Locked" signal is set which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX respectively.

Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector frequency divided by (DAC_CLK_MULT * DAC_CLK_CNTR).

The DAC update rate should be programmed for ≤ 100 kHz to ensure DAC holdover accuracy.

The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024 kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the device to "look-back" and set CPout1 at at previous "good" CPout1 tuning voltage values before the event which caused holdover to occurre.

The current voltage of DAC value can be read back using RB_DAC_VALUE, see Section 6.3.9.7.

5.8.2 DURING HOLDOVER

PLL1 is run in open loop mode.

- PLL1 charge pump is set to TRI-STATE.
- PLL1 DLD will be un-asserted.
- The HOLDOVER status is asserted
- During holdover If PLL2 was locked prior to entry of holdover mode, PLL2 DLD will continue to be asserted.
- CPout1 voltage will be set to:
 - a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).
 - a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).
- PLL1 will attempt to lock with the active clock input.

The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the PLL1_DLD_MUX or PLL2_DLD_MUX register to "Holdover Status."

5.8.3 EXITING HOLDOVER

Holdover mode can be exited in one of two ways.

- · Manually, by programming the device from the host.
- Automatically, By a clock operating within a specified ppm of the current PLL1 frequency on the active clock input.

5.8.4 HOLDOVER FREQUENCY ACCURACY AND DAC PERFORMANCE

When in holdover mode PLL1 will run in open loop and the DAC will set the CPout1 voltage. If Fixed CPout1 mode is used, then the output of the DAC will be a voltage dependant upon the MAN_DAC register. If Tracked CPout1 mode is used, then the output of the DAC will be the voltage at the CPout1 pin before holdover mode was entered. When using Tracked mode and MAN_DAC_EN = 1, during holdover the DAC value is loaded with the programmed value in MAN_DAC, not the tracked value.

When in Tracked CPout1 mode the DAC has a worst case tracking error of ± 2 LSBs once PLL1 tuning voltage is acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode caused by the DAC tracking accuracy is ± 6.4 mV * Kv. Where Kv is the tuning sensitivity of the VCXO in use. Therefore the accuracy of the system when in holdover mode in ppm is:

Holdover accuracy (ppm) = $\frac{\pm 6.4 \text{ mV} \times \text{Kv} \times 1e6}{\text{VCXO Frequency}}$

Example: consider a system with a 19.2 MHz clock input, a 153.6 MHz VCXO with a Kv of 17 kHz/V. The accuracy of the system in holdover in ppm is:

±0.71 ppm = ±6.4 mV * 17 kHz/V * 1e6 / 153.6 MHz

It is important to account for this frequency error when determining the allowable frequency error window to cause holdover mode to exit.

5.8.5 HOLDOVER MODE - AUTOMATIC EXIT OF HOLDOVER

The LMK048xx device can be programmed to automatically exit holdover mode when the accuracy of the frequency on the active clock input achieves a specified accuracy. The programmable variables include PLL1_WND_SIZE and DLD_HOLD_CNT.

See Section 7.1 to calculate the register values to cause holdover to automatically exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.

It is possible for the time to exit holdover to vary because the condition for automatic holdover exit is for the reference and feedback signals to have a time/phase error less than a programmable value. Because it is possible for two clock signals to be very close in frequency but not close in phase, it may take a long time for the phases of the clocks to align themselves within the allowable time/phase error before holdover exits.

www.ti.com

6 GENERAL PROGRAMMING INFORMATION

LMK04820 family devices are programmed using 24-bit registers. Each register consists of a 1-bit command field (R/W), a 2-bit multi-byte field (W1, W0), a 13-bit address field (A12 to A0) and a 8-bit data field (D7 to D0). The contents of each register is clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS* signal is held low. The serial data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in the CS* signal goes *high* to latch the contents into the shift register. It is recommended to program registers in numeric order, for example 0x000 to 0x1FFF to achieve proper device operation. Each register consists of one more more fields which control the device functionality. See electrical characteristics and Figure 2-1 for timing details.

W1 and W0 shall be written as 0.

6.1 Recommended Programming Sequence

Registers are programmed in numeric order with 0x000 being the first and 0x1FFF being the last register programmed. The recommended programming sequence from POR involves:

- 1. Programming register 0x000 with RESET = 1.
- 2. Programming registers in numeric order from 0x000 to 0x165.
- 3. Programming registers 0x17C and 0x17D.
- 4. Programming registers 0x166 to 0x1FFF.

Program register 0x17C (OPT_REG_1) and 0x17D (OPT_REG_2) before programming PLL2 in registers: 0x166, 0x167, and 0x168 to optimize VCO1 phase noise performance over temperature.

6.1.1 SPI LOCK

When writing to SPI_LOCK, registers 0x1FFD, 0x1FFE, and 0x1FFF should all always be written sequentially.

6.1.2 SYSREF_CLR

When using SYSREF output, SYSREF local digital delay block should be cleared using SYSREF_CLR bit. See Section 5.3.1.2 for more info.

6.2 Register Map

Table 6-1 provides the register map for device programming. Any register can be read from the same data address it is written to.

Address				Da	ata						
[11:0]	7	6	5	4	3	2	1	0			
0x000	RESET	0	0	SPI_3WIRE _DIS	0	0	0	0			
0x002	0	0	0	0	0	0	0	POWER DOWN			
0x003				ID_DEVI	CE_TYPE						
0x004		ID_PROD[15:8]									
0x005				ID_PR	OD[7:0]						
0x006				ID_MA	SKREV						
0x00C				ID_VN	DR[15:8]						
0x00D				ID_VN	DR[7:0]						
0x100	0	CLKout0_1 _ODL	CLKout0_1 _IDL			DCLKout0_DIV					
0x101		DCLKout0_	DDLY_CNTH			DCLKout0_[DDLY_CNTL				
0x103			DCLKout0_ADLY			DCLKout0_ ADLY_MUX	DCLKo	ut0_MUX			
0x104	0	DCLKout0 _HS	SDCLKout1 _MUX		SDCLKo	ut1_DDLY		SDCLKout _HS			
0x105	0	0	0	SDCLKout1_ ADLY_EN		SDCLKou	ut1_ADLY				
0x106	DCLKout0 _ DDLY_PD	DCLKout0 _ HSg_PD	DCLKout0 _ ADLYg_PD				_DIS_MODE	SDCLKout _PD			
0x107	SDCLKout1 _POL		CLKout1_FMT	1	DCLKout0 _POL		CLKout0_FMT				
0x108	0	CLKout2_3 _ODL	CLKout2_3 _IDL			DCLKout2_DIV					
0x109		DCLKout2_	DDLY_CNTH			_	DDLY_CNTL				
0x10B			DCLKout2_ADLY	1	DCLKout2_ ADLY_MUX DCLKout2_ML			ut2_MUX			
0x10C	0	DCLKout2 _HS	SDCLKout3 _MUX		SDCLKo	SDCLKout3_DDLY		SDCLKout _HS			
0x10D	0	0	0	SDCLKout3 _ ADLY_EN		SDCLKout3_ADLY		1			
0x10E	DCLKout2 _ DDLY_PD	DCLKout2 _ HSg_PD	DCLKout2 _ ADLYg_PD	DCLKout2 _ADLY _PD	CLKout2_3 _PD	SDCLKout3_	_DIS_MODE	SDCLKout _PD			
0x10F	SDCLKout3 _POL		CLKout3_FMT	Γ	DCLKout2 _POL		CLKout2_FMT				
0x110	0	CLKout4_5 _ODL	CLKout4_5 _IDL		Ι	DCLKout4_DIV					
0x111		DCLKout4_I	DDLY_CNTH			DCLKout4_[DDLY_CNTL				
0x113			DCLKout4_ADLY			DCLKout4_ ADLY_MUX	DCLKo	ut4_MUX			
0x114	0	DCLKout4 _HS	SDCLKout5 _MUX		SDCLKout5_DDLY			SDCLKout _HS			
0x115	0	0	0	SDCLKout5 _ ADLY_EN		SDCLKou	ut5_ADLY	1			
0x116	DCLKout4 _ DDLY_PD	DCLKout4 _ HSg_PD	DCLKout4 _ ADLYg_PD	DCLKout4 _ADLY _PD			_DIS_MODE	SDCLKout _PD			
0x117	SDCLKout5 _POL		CLKout5_FMT		DCLKout4 _POL		CLKout4_FMT				
0x118	0	CLKout6_7 _ODL	CLKout6_8 _IDL		1	DCLKout6_DIV					
0x119		DCLKout6_	DDLY_CNTH			DCLKout6_[DDLY_CNTL				

Table 6-1. Register Map

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

Table 6-1. Register Map (continued)

Address				D	ata				
[11:0]	7	6	5	4	3	2	1	0	
0x11B			DCLKout6_ADLY		1	DCLKout6_ ADLY_MUX	DCLKo	ut6_MUX	
0x11C	0	0 DCLKout6 SDCLKout7 _HS _MUX			SDCLKout7_DDLY			SDCLKout7 _HS	
0x11D	0	0	0	SDCLKout7 _ ADLY_EN		SDCLKou	ıt7_ADLY		
0x11E	DCLKout6 _ DDLY_PD	DCLKout6 _ HSg_PD	DCLKout6 _ ADLYg_PD	DCLKout6 _ADLY _PD	CLKout6_7 _PD	SDCLKout7_	_DIS_MODE	SDCLKout7 _PD	
0x11F	SDCLKout7 _POL		CLKout7 _FMT		DCLKout6 _POL		CLKout6_FMT		
0x120	0	CLKout8_9 _ODL	CLKout8_9 _IDL			DCLKout8_DIV			
0x121		DCLKout8_I	DDLY_CNTH			DCLKout8_[DDLY_CNTL		
0x123			DCLKout8_ADLY			DCLKout8 _ ADLY_MUX	DCLKo	ut8_MUX	
0x124	0	DCLKout8 _HS	SDCLKout9 _MUX		SDCLKou	ut9_DDLY		SDCLKout9 _HS	
0x125	0	0	0	SDCLKout9 _ ADLY_EN		SDCLKou	ut9_ADLY		
0x126	DCLKout8 _ DDLY_PD	DCLKout8 _ HSg_PD	DCLKout8 _ ADLYg_PD	DCLKout8 _ADLY _PD	CLKout8_9 _PD	SDCLKout9_	_DIS_MODE	SDCLKout9 _PD	
0x127	SDCLKout9 _POL		CLKout9_FMT	Γ	DCLKout8 _POL				
0x128	0	CLKout10 _11 _ODL	CLKout10 _11_IDL		1	DCLKout10_DIV			
0x129		DCLKout10_	DDLY_CNTH			DCLKout10_	DDLY_CNTL		
0x12B			DCLKout10_ADLY			DCLKout10 _ ADLY_MUX	DCLKou	t10_MUX	
0x12C	0	DCLKout10 _HS	SDCLKout11 _MUX		SDCLKou	Cout11_DDLY		SDCLKout11 _HS	
0x12D	0	0	0	SDCKLout11 _ ADLY_EN		SDCLKou	t11_ADLY	1	
0x12E	DCLKout10 _ DDLY_PD	DCLKout10 _ HSg_PD	DLCLKout10 _ ADLYg_PD	DCLKout10 _ ADLY_PD	CLKout10 _11_PD	SDCLKout11	_DIS_MODE	SDCLKout11 _PD	
0x12F	SDCLKout11 _POL		CLKout11_FMT		DCLKout10 _POL	CLKout10_FMT			
0x130	0	CLKout12 _13 _ODL	CLKout12 _13_IDL		DCLKout12_DIV				
0x131		DCLKout12_	DDLY_CNTH		DCLKout12_DDLY_CNTL				
0x133			DCLKout12_ADLY	,		DCLKout12_ ADLY_MUX	DCLKou	t12_MUX	
0x134	0	DCLKout12 _HS	SDCLKout13 _MUX		SDCLKou	t13_DDLY		SDCLKout13 _HS	
0x135	0	0	0	SDCLKout13 _ ADLY_EN		SDCLKou	t13_ADLY		
0x136	DCLKout12 _ DDLY_PD	DCLKout12 _ HSg_PD	DCLKout12 _ ADLYg_PD	DCLKout12 _ ADLY_PD	CLKout12 _13_PD	SDCLKout13	_DIS_MODE	SDCLKout13 _PD	
0x137	SDCLKout13 _POL		CLKout13_FMT	1	DCLKout12 _POL		CLKout12_FMT		
0x138	0	VCO.	_MUX	OSCout _MUX		OSCou	ut_FMT		
0x139	0	0	0	0	0	0		F_MUX	
0x13A	0								
0x13B		SYSREF_DIV[7:0]							
0x13C	0								
0x13D		-	-	_	_DDLY[7:0]	-			
0x13E	0	0	0	0	0	0	SYSREF_F	PULSE_CNT	
0x13F	0	0	0	PLL2_NCLK _MUX	PLL1_NCLK _MUX	FB_I	MUX	FB_MUX _EN	

48 GENERAL PROGRAMMING INFORMATION

Copyright © 2013, Texas Instruments Incorporated

SNAS605 AP -MARCH 2013-REVISED JUNE 2013

Table 6-1. Register Map (continued)

Address				Da	ata			
[11:0]	7	6	5	4	3	2	1	0
0x140	PLL1_PD	VCO_LDO_PD	VCO_PD	OSCin_PD	SYSREF_GBL _PD	SYSREF_PD	SYSREF _DDLY_PD	SYSREF _PLSR_PD
0x141	DDLYd_ SYSREF_EN	DDLYd12 _EN	DDLYd10 _EN	DDLYd7_EN	DDLYd6_EN	DDLYd4_EN	DDLYd2_EN	DDLYd0_EN
0x142	0	0	0			DLYd_STEP_CN	Т	L
0x143	SYSREF_DDLY _CLR	SYNC_1SHOT _EN	SYNC_POL	SYNC_EN	SYNC_PLL2 _DLD	SYNC_PLL1 _DLD	SYNC_	MODE
0x144	SYNC _DISSYSREF	SYNC_DIS12	SYNC_DIS10	SYNC_DIS8	SYNC_DIS6	SYNC_DIS4	SYNC_DIS2	SYNC_DIS0
0x145	0	1	1	1	1	1	1	1
0x146	0	0	CLKin2_EN	CLKin1_EN	CLKin0_EN	CLKin2_TYPE	CLKin1_TYPE	CLKin0_TYPE
0x147	CLKin_SEL _POL	(CLKin_SEL_MODE	=	CLKin1_C	DUT_MUX	CLKin0_C	DUT_MUX
0x148	0	0		CLKin_SEL0_MU	x	(CLKin_SEL0_TYPI	=
0x149	0	SDIO_RDBK _TYPE		CLKin_SEL1_MU	x	(CLKin_SEL1_TYPI	E
0x14A	0	0		RESET_MUX			RESET_TYPE	
0x14B	LOS_TI	MEOUT	LOS_EN	TRACK_EN	HOLDOVER _ FORCE	MAN_DAC _EN	MAN_C	AC[9:8]
0x14C				MAN_E	DAC[7:0]			
0x14D	0	0			DAC_TR	IP_LOW		
0x14E	DAC_CL	K_MULT			DAC_TR	IP_HIGH		
0x14F				DAC_CL	K_CNTR			
0x150	0	0	0	HOLDOVER _ PLL1_DET	HOLDOVER _LOS _DET	HOLDOVER _VTUNE_DET	HOLDOVER _HITLESS _SWITCH	HOLDOVER _EN
0x151	0	0			HOLDOVER_E	DLD_CNT[13:8]		
0x152				HOLDOVER_	DLD_CNT[7:0]			
0x153	0	0			CLKin0	_R[13:8]		
0x154				CLKin	D_R[7:0]			
0x155	0	0			CLKin1	_R[13:8]		
0x156				CLKin1	I_R[7:0]			
0x157	0	0			CLKin2	_R[13:8]		
0x158				CLKin2	2_R[7:0]			
0x159	0	0			PLL1_	N[13:8]		
0x15A				PLL1_	_N[7:0]			
0x15B	PLL1_W	ND_SIZE	PLL1 _CP_TRI	PLL1 _CP_POL		PLL1_C	P_GAIN	
0x15C	0	0		L	PLL1_DLD	_CNT[13:8]		
0x15D				PLL1_DL	D_CNT[7:0]			
0x15E	0	0		PLL1_R_DLY			PLL1_N_DLY	
0x15F			PLL1_LD_MUX				PLL1_LD_TYPE	
0x160	0	0	0	0		PLL2_	R[11:8]	
0x161				PLL2_	_R[7:0]			
0x162		PLL2_P			OSCin_FREQ		PLL2 _XTAL_EN	PLL2 _REF_2X_EN
0x163	0	0	0	0	0	0	PLL2_N_0	CAL[17:16]
0x164				PLL2_N_	CAL[15:8]			
0x165				PLL2_N	_CAL[7:0]			
0x166	0	0	0	0	0	PLL2_FCAL _DIS	PLL2_N	J[17:16]
0x167				PLL2_	N[15:8]			
0x168				PLL2	_N[7:0]			
0x169	0	PLL2_WI	ND_SIZE	PLL2_C	P_GAIN	PLL2 _CP_POL	PLL 2_CP_TRI	1

Copyright © 2013, Texas Instruments Incorporated

GENERAL PROGRAMMING INFORMATION 49

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

Table 6-1. Register Map (continued) Address Data [11:0] 7 6 5 4 3 2 1 0 SYSREF_REQ_ 0x16A 0 PLL2_DLD_CNT[15:8] ΕN PLL2_DLD_CNT[7:0] 0x16B PLL2_LF_R3 0x16C PLL2_LF_R4 0 0 0x16D PLL2_LF_C4 PLL2_LF_C3 PLL2_LD_MUX PLL2_LD_TYPE 0x16E PLL2_PRE_PD 0x173 0 PLL2_PD 0 0 0 0 0 OPT_REG_1 0x17C 0x17D OPT_REG_2 RB_PLL1_ LD_LOST CLR_PLL1_ LD_LOST 0x182 0 0 0 0 0 RB_PLL1_LD CLR_PLL2_ LD_LOST RB_PLL2_ 0x183 0 0 0 RB_PLL2_LD 0 0 LD_LOST RB_CLKin0_ RB_CLKin2_ RB_CLKin1_ RB_CLKin0_ RB_CLKin1_ 0x184 RB_DAC_VALUE[9:8] Х LOS LOS SEL SEL SEL RB_DAC_VALUE[7:0] 0x185 RB_ HOLDOVER 0x188 0 0 0 Х Х Х Х 0x1FFD SPI_LOCK[23:16] 0x1FFE SPI_LOCK[15:8] SPI_LOCK[7:0] 0x1FFF

www.ti.com

6.3 Device Register Descriptions

The following section details the fields of each register, the Power On Reset Defaults, and specific descriptions of each bit.

In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as X or Y. In these cases the X will represent even numbers from 0 to 12 and the Y will represent odd numbers from 1 to 13. In the case where X and Y are both used in a bit name then Y = X + 1.

6.3.1 SYSTEM FUNCTIONS

6.3.1.1 RESET, SPI_3WIRE_DIS

This register contains the RESET function.

Register 0x000

Bit	Name	POR Default	Description		
7	RESET	0	0: Normal Operation 1: Reset (automatically cleared)		
6:5	NA	0	Reserved		
4	SPI_3WIRE_DIS	0	Disable 3 wire SPI mode. 4 Wire SPI mode is enabled by selecting SPI Read back in one of the output MUX settings. For example CLKin0_SEL_MUX. 0: 3 Wire Mode enabled 1: 3 Wire Mode disabled		
3:0	NA	NA	Reserved		

6.3.1.2 POWERDOWN

This register contains the POWERDOWN function.

Register 0x002

Bit	Name	POR Default	Description
7:1	NA	0	Reserved
0	POWERDOWN	0	0: Normal Operation 1: Powerdown

6.3.1.3 ID_DEVICE_TYPE

This register contains the product device type. This is read only register.

Register 0x003

Bit	Name	POR Default	Description
7:0	ID_DEVICE_TYPE	6	PLL product device type.

6.3.1.4 ID_PROD[15:8], ID_PROD

These registers contain the product identifier. This is read only register.

ID_PROD REGISTER CONFIGURATION, ID_PROD[15:0]

		MSB		LSB
		0x004[7:0]		0x005[7:0]
Bit	Bit Registers Field Name POR Default Description			Description
7:0	0x004	ID_PROD[15:8]	208	MSB of the product identifier.
7:0	0x005	ID_PROD	91	LSB of the product identifier.

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

6.3.1.5 ID_MASKREV

This register contains the IC version identifier. This is read only register.

Register 0x006

Bit	Name	POR Default	Description
7:0 ID MASKREV	37	IC version identifier for LMK04826	
7.0	ID_MASKREV	32	IC version identifier for LMK04828

6.3.1.6 ID_VNDR[15:8], ID_VNDR

These registers contain the vendor identifier. This is read only register.

ID_VNDR REGISTER CONFIGURATION, ID_VNDR[15:0]

MSB	LSB
0x00C[7:0]	0x00D[7:0]

Register 0x00C, 0x00D

Bit	Registers	Name	POR Default	Description
7:0	0x00C	ID_VNDR[15:8]	81	MSB of the vendor identifier.
7:0	0x00D	ID_VNDR	4	LSB of the vendor identifier.

6.3.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls

6.3.2.1 CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKoutX_DIV

These registers control the input and output drive level as well as the device clock out divider values.

POR Default Description Bit Name 7 NA 0 Reserved 6 CLKoutX_Y_ODL 0 Output drive level. 5 CLKoutX_Y_IDL 0 Input drive level. DCLKoutX_DIV sets the divide value for the clock output, the divide may be even or odd. Both even or odd divides output a 50% duty cycle clock if duty cycle correction (DCC) is selected. Divider is unused if DCLKoutX_MUX = 2 (bypass), equivalent divide of 1. $X = 0 \rightarrow 2$ **Field Value** Divider Value $X = 2 \rightarrow 4$ $X = 4 \rightarrow 8$ 0 (0x00) 32 4:0 DCLKoutX_DIV $X = 6 \rightarrow 8$ 1 (1) 1 (0x01) $X = 8 \rightarrow 8$ $X = 10 \rightarrow 8$ 2 (0x02) 2 $X = 12 \rightarrow 2$ 30 30 (0x1E) 31 (0x1F) 31

Register 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130

(1) Not valid if DCLKoutX_MUX = 0, Divider only. Not valid if DCLKoutX_MUX = 3 (Analog Delay + Divider) and DCLKoutX_ADLY_MUX = 0 (without duty cycle correction/halfstep).

6.3.2.2 DCLKoutX_DDLY_CNTH, DCLKoutX_DDLY_CNTL

This register controls the digital delay high and low count values for the device clock outputs.

Register 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131

Bit	Name	POR Default	Description			
			Number of clock cycles the output will be high when digital delay is engaged.			
			Field Value	Delay Values		
			0 (0x00)	16		
7:4	DCLKoutX _DDLY_CNTH	5	1 (0x01)	Reserved		
			2 (0x02)	2		
			15 (0x0F)	15		
		5	Number of clock cycles the output will be low when dynamic digital delay is engaged.			
			Field Value	Delay Values		
			0 (0x00)	16		
3:0	DCLKoutX _DDLY_CNTL		1 (0x01)	Reserved		
			2 (0x02)	2		
			15 (0x0F)	15		

www.ti.com

6.3.2.3 DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX

These registers control the analog delay properties for the device clocks.

Register 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133

Bit	Name	POR Default	Description				
			Device clock analog delay value. Setting this value results in a 500 ps timing delay in additional to the delay of each 25 ps step. Effective range is 500 ps to 1075 ps.				
			Field Value	Delay Value			
			0 (0x00)	0 ps			
7:3	DCLKoutX_ALDY	0	1 (0x01)	25 ps			
			2 (0x02)	50 ps			
			23 (0x17)	575 ps			
2	DCLKoutX_ADLY _MUX	0	This register selects the input to the analog delay for the device clock. Used when $DCLKoutX_MUX = 3$. 0: Divided without duty cycle correction or half step. ⁽¹⁾ 1: Divided with duty cycle correction and half step.				
			This selects the input to the device clock buffer.				
			Field Value	Mux Output			
			0 (0x0)	Divider only ⁽¹⁾			
1:0	DCLKoutX_MUX	0	1 (0x1)	Divider with Duty Cycle Correction and Half Step			
			2 (0x2)	Bypass			
			3 (0x3)	Analog Delay + Divider			

(1) DCLKoutX_DIV = 1 is not valid.

6.3.2.4 DCLKoutX_HS, SDCLKoutY_MUX, SDCLKoutY_DDLY, SDCLKoutY_HS

These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay, and half step.

Register 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134

Bit	Name	POR Default	Description		
7	NA	0	Reserved		
6	DCLKoutX_HS	0	Sets the device clock half step value. Half shift must be zero (0) for a divide of 1. 0: 0 cycles 1: -0.5 cycles		
5	SDCLKoutY_MUX	0	Sets the input the the SDCLKoutX outputs. 0: Device clock output 1: SYSREF output		
			Sets the number of VCO cycles to delay the S	SDCLKout by.	
			Field Value	Delay Cycles	
			0 (0x00)	Reserved	
4:1	SDCLKoutY DDLY	0	1 (0x01)	2	
4.1	SDCLKOULT_DDLT	0	2 (0x02)	3	
			10 (0x0A)	11	
			11 to 15 (0x0B to 0x0F)	Reserved	
0	SDCLKoutY_HS	0	Sets the SYSREF clock half step value. 0: 0 cycles 1: -0.5 cycles		

6.3.2.5 SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY

These registers set the analog delay parameters for the SYSREF outputs.

Register 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135

Bit	Name	POR Default	Description		
7:5	NA	0	Reserved		
4	SDCLKoutY _ADLY_EN	0	Enables analog delay for the SYSREF output. 0: Disabled 1: Enabled		
			Sets the analog delay value for the SYSREF output. Selecting analog delay adds an additional 700 ps in propagation delay. Effective range is 700 ps to 2950 ps.		
			Field Value	Delay Value	
		SDCLKoutY 0	0 (0x0)	0 ps	
	SDCI KoutY		1 (0x1)	600 ps	
3:0			2 (0x2)	750 ps (+150 ps from 0x1)	
			3 (0x3)	900 ps (+150 ps from 0x2)	
			14 (0xE)	2100 ps (+150 ps from 0xD)	
			15 (0xF)	2250 ps (+150 ps from 0xE)	

LMK04826B, LMK04828B SNAS605 AP – MARCH 2013 – REVISED JUNE 2013

6.3.2.6 DCLKoutX_DDLY_PD, DCLKoutX_HSg_PD, DCLKout_ADLYg_PD, DCLKout_ADLY_PD, DCLKoutX_Y_PD, SDCLKoutY_DIS_MODE, SDCLKoutY_PD

This register controls the power down functions for the digital delay, glitchless half step, glitchless analog delay, analog delay, outputs, and SYSREF disable modes.

Bit	Name	POR Default	Description			
7	DCLKoutX _DDLY_PD	0	Powerdown the device clock digital delay circuitry. 0: Enabled 1: Powerdown			
6	DCLKoutX _HSg_PD	1	Powerdown the device clock glitchless half step feature. 0: Enabled 1: Powerdown			
5	DCLKoutX _ADLYg_PD	1	Powerdown the device clock glitchless analo 0: Enabled, analog delay step size of one co 1: Powerdown			
4	DCLKoutX _ADLY_PD	1	Powerdown the device clock analog delay feature. 0: Enabled 1: Powerdown			
3	CLKoutX_Y_PD	$\begin{array}{c} X_{-}Y = 0_{-}1 \rightarrow 1 \\ X_{-}Y = 2_{-}3 \rightarrow 1 \\ X_{-}Y = 4_{-}5 \rightarrow 0 \\ X_{-}Y = 6_{-}7 \rightarrow 0 \\ X_{-}Y = 8_{-}9 \rightarrow 0 \\ X_{-}Y = 10_{-}11 \rightarrow 0 \\ X_{-}Y = 12_{-}13 \rightarrow 1 \end{array}$	Powerdown the clock group defined by X and Y. 0: Enabled 1: Powerdown			
			Configures the output state of the SYSREF			
			Field Value	Disable Mode		
			0 (0x00)	Active in normal operation		
2:1	SDCLKoutY _DIS_MODE		1 (0x01)	If SYSREF_GBL_PD = 1, the output is a logic low, otherwise it is active.		
			2 (0x02)	If SYSREF_GBL_PD = 1, the output is a nominal Vcm voltage ⁽¹⁾ , otherwise it is active.		
			3 (0x03)	Output is a nominal Vcm voltage ⁽¹⁾		
			Powerdown SDCLKoutY and set to the state defined by SDCLKoutY_DIS_MODE			

Register 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136

(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm will be ~0 V, each pin will be ~0 V.

6.3.2.7 SDCLKoutY_POL, SDCLKoutY_FMT, DCLKoutX_POL, DCLKoutX_FMT

These registers configure the output polarity, and format.

REGISTERS 0x107, 0x10F, 0x117, 0x11F, 0x127, 0x12F, 0x137

Bit	Name	POR Default	Description			
7	SDCLKoutY_POL	0	Sets the polarity of SYSREF clocks. 0: Normal 1: Inverted			
			Sets the output format of the SYSREF clocks			
			Field Value	Output Format		
			0 (0x00)	Powerdown		
			1 (0x01)	LVDS		
6:4	SDCLKoutY FMT	0	2 (0x02)	HSDS 6 mA		
0.4	SDCLKOULY_FINIT	0	3 (0x03)	HSDS 8 mA		
			4 (0x04)	HSDS 10 mA		
			5 (0x05)	LVPECL 1600 mV		
			6 (0x06)	LVPECL 2000 mV		
			7 (0x07)	LCPECL		
3	DCLKoutX_POL	0	Sets the polarity of the device clocks. 0: Normal 1: Inverted			
			Sets the output format of the device clocks.			
			Field Value	Output Format		
		$X = 0 \rightarrow 0$	0 (0x00)	Powerdown		
		$\begin{array}{c} X = 0 \rightarrow 0 \\ X = 2 \rightarrow 0 \end{array}$	1 (0x01)	LVDS		
0.0		$X = 4 \rightarrow 1$	2 (0x02)	HSDS 6 mA		
2:0	DCLKoutX_FMT	$\begin{array}{c} X = 6 \rightarrow 1 \\ X = 8 \rightarrow 1 \end{array}$	3 (0x03)	HSDS 8 mA		
		$X = 10 \rightarrow 1$	4 (0x04)	HSDS 10 mA		
		$X = 12 \rightarrow 0$	5 (0x05)	LVPECL 1600 mV		
			6 (0x06)	LVPECL 2000 mV		
			7 (0x07)	LCPECL		

www.ti.com

6.3.3 SYSREF, SYNC, and Device Config

6.3.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT

This register selects the clock distribution source, and OSCout parameters.

D		A 4	~~
Regi	ster	UX1	38

Bit	Name	POR Default	Description			
7	NA	0	Reserved			
			Selects clock distribution path source from VCO0, VCO1, or CLKin (external VCO)			
			Field Value	VCO Selected		
0.5		0	0 (0x00)	VCO 0		
6:5	VCO_MUX	0	1 (0x01)	VCO 1		
			2 (0x02)	CLKin1 (external VCO)		
			3 (0x03)	Reserved		
4	OSCout_MUX	0	Select the source for OSCout: 0: Buffered OSCin 1: Feedback Mux			
			Selects the output format of OSCout. Whe CLKin2.	n powered down, these pins may be used as		
			Field Value	OSCout Format		
			0 (0x00)	Powerdown (CLKin2)		
			1 (0x01)	LVDS		
			2 (0x02)	Reserved		
			3 (0x03)	Reserved		
			4 (0x04)	LVPECL 1600 mVpp		
			5 (0x05)	LVPECL 2000 mVpp		
3:0	OSCout_FMT	4	6 (0x06)	LVCMOS (Norm / Inv)		
			7 (0x07)	LVCMOS (Inv / Norm)		
			8 (0x08)	LVCMOS (Norm / Norm)		
			9 (0x09)	LVCMOS (Inv / Inv)		
			10 (0x0A)	LVCMOS (Off / Norm)		
			11 (0x0B)	LVCMOS (Off / Inv)		
			12 (0x0C)	LVCMOS (Norm / Off)		
			13 (0x0D)	LVCMOS (Inv / Off)		
			14 (0x0E)	LVCMOS (Off / Off)		

6.3.3.2 SYSREF_MUX

This register sets the source for the SYSREF outputs.

Register	0x139
Register	07133

	Register exited				
Bit	Name	POR Default	Description		
7:2	NA	0	Reserved		
			Selects the SYSREF source.		
			Field Value	SYSREF Source	
4.0		VX 0	0 (0x00)	Normal SYNC	
1:0	SYSREF_MUX		1 (0x01)	Re-clocked	
			2 (0x02)	SYSREF Pulser	
			3 (0x03)	SYSREF Continuous	

6.3.3.3 SYSREF_DIV[12:8], SYSREF_DIV[7:0]

These registers set the value of the SYSREF output divider.

Register 0x13A, 0x13B

		MSB				LSB	
	0x13A[4:0]					0x13B[7:0]	
Bit	Registers	Name	POR Default	Description			
7:5	0x13A	NA	0	Reserved			
					Divide value for the SYSREF outputs.		
4.0	4:0 0x13A	SYSREF_DIV[12:8]	12		Field Value	Divide Value	
4.0					0x00 to 0x07	Reserved	
					8 (0x08)	8	
		SYSREF_DIV[7:0] 0		9 (0x09)	9		
7.0	7:0 0x13B		0				
7.0					8190 (0x1FFE)	8190	
					8191 (0X1FFF)	8191	

6.3.3.4 SYSREF_DDLY[12:8], SYSREF_DDLY[7:0]

These registers set the delay of the SYSREF digital delay value.

SYSREF DIGITAL DELAY REGISTER CONFIGURATION, SYSREF_DDLY[12:0]

		MSB			LSB	
		0x13C[4:0]			0x13D[7:0]	
Bit	Registers	Name	POR Default	Descri	otion	
7:5	0x13C	NA	0	Reserve	ed	
				Sets the	e value of the SYSREF digita	al delay.
4.0	4:0 0x13C S	SYSREF_DDLY[12:8]	0		Field Value	Delay Value
4.0					0x00 to 0x07	Reserved
					8 (0x08)	8
		SYSREF_DDLY[7:0]			9 (0x09)	9
7:0	0x13D		8 -			
7.0	7:0 0x13D				8190 (0x1FFE)	8190
					8191 (0X1FFF)	8191

6.3.3.5 SYSREF_PULSE_CNT

This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See Section 6.3.3.2 for further description of SYSREF's outputs.

Programming the register causes the specified number of pulses to be output, if "SYSREF Pulses" is selected by SYSREF_MUX and SYSREF functionality is powered up.

Register 0x13E

Bit	Name	POR Default	Description		
7:2	NA	0	Reserved		
			Sets the number of SYSREF pulses generated when not in continuous mode. See Section 6.3.3.2 for more information on SYSREF modes.		
			Field Value	Number of Pulses	
1:0	SYSREF_PULSE_CNT	YSREF_PULSE_CNT 3	0 (0x00)	1 pulse	
			1 (0x01)	2 pulses	
			2 (0x02)	4 pulses	
			3 (0x03)	8 pulses	

6.3.3.6 PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN

This register controls the feedback feature.

	Register 0x13F		1			
Bit	Name	POR Default	Description			
7:5	NA	0	Reserved			
4	PLL2_NCLK_MUX	0	Selects the input to the PLL2 N Divider 0: PLL Prescaler 1: Feedback Mux): PLL Prescaler		
3	PLL1_NCLK_MUX	0	Selects the input to the PLL1 N Delay. 0: OSCin 1: Feedback Mux			
			When in 0-delay mode, the feedback mux sele PLL1 N Divider.	ects the clock output to be fed back into the		
			Field Value	Source		
2:1	FB_MUX	0	0 (0x00)	DCLKout6		
			1 (0x01)	DCLKout8		
			2 (0x02) SYSREF			
			3 (0x03)	External		
0	FB_MUX_EN	0	When using 0-delay, FB_MUX_EN must be set to 1 power up the feedback mux. 0: Feedback mux powered down 1: Feedback mux enabled			

60 GENERAL PROGRAMMING INFORMATION

6.3.3.7 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_DDLY_PD, SYSREF_PLSR_PD

This register contains powerdown controls for OSCin and SYSREF functions.

	Register 0x140						
Bit	Name	POR Default	Description				
7	PLL1_PD	0	Powerdown PLL1 0: Normal operation 1: Powerdown				
6	VCO_LDO_PD	0	Powerdown VCO_LDO): Normal operation : Powerdown				
5	VCO_PD	0	Powerdown VCO 0: Normal operation 1: Powerdown				
4	OSCin_PD	0	Powerdown the OSCin port. 0: Normal operation 1: Powerdown				
3	SYSREF_GBL_PD	0	Powerdown individual SYSREF outputs depending on the setting of SDCLKoutY_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows many SYSREF outputs to be controlled through a single bit. 0: Normal operation 1: Activate Powerdown Mode				
2	SYSREF_PD	1	Powerdown the SYSREF circuitry and divider. If powered down, SYSREF output mode cannot be used. SYNC cannot be provided either. 0: SYSREF can be used as programmed by individual SYSREF output registers. 1: Powerdown				
1	SYSREF_DDLY_PD	1	Powerdown the SYSREF digital delay circuitry. 0: Normal operation, SYSREF digital delay may be used. Must be powered up during SYNC for deterministic phase relationship with other clocks. 1: Powerdown				
0	SYSREF_PLSR_PD	1	Powerdown the SYSREF pulse generator. 0: Normal operation 1: Powerdown				

6.3.3.8 DDLYdSYSREF_EN, DDLYdX_EN

This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is programmed.

Register 0x141

Bit	Name	POR Default	Description	
7	DDLYd _SYSREF_EN	0	Enables dynamic digital delay on SYSREF outputs	
6	DDLYd12_EN	0	Enables dynamic digital delay on DCLKout12	
5	DDLYd10_EN	0	Enables dynamic digital delay on DCLKout10	
4	DDLYd8_EN	0	Enables dynamic digital delay on DCLKout8	0: Disabled
3	DDLYd6_EN	0	Enables dynamic digital delay on DCLKout6	1: Enabled
2	DDLYd4_EN	0	Enables dynamic digital delay on DCLKout4	
1	DDLYd2_EN	0	Enables dynamic digital delay on DCLKout2	
0	DDLYd0_EN	0	Enables dynamic digital delay on DCLKout0	

6.3.3.9 DDLYd_STEP_CNT

This register sets the number of dynamic digital delay adjustments occur. Upon programming, the dynamic digital delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic digital delay can only be started by SPI.

Other registers must be set: SYNC_MODE = 3

Register 0x142

. .

- - - -

Bit	Name	POR Default	Description			
7:4	NA	0	Reserved			
			Sets the number of dynamic digital delay adjust	stments that will occur.		
			Field Value	SYNC Generation		
			0 (0x00)	No Adjust		
			1 (0x01)	1 step		
3:0	DDLYd_STEP_CNT	0	2 (0x02)	2 steps		
			3 (0x03)	3 steps		
			14 (0x0E)	14 steps		
			15 (0x0F)	15 steps		

6.3.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD, SYNC_MODE

This register sets general SYNC parameters such as polarization, and mode.

	Register 0x143				
Bit	Name	POR Default	Description		
7	SYSREF_CLR	1	Set to clear local SYSREF DDLY Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared, SYSREF_CLR must be cleared to allow SYSREF to operate.		
6	SYNC_1SHOT_EN	0	SYNC one shot enables edge sensitive SYNC. 0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC is asserted. 1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC. This results in the clock being held in SYNC for a minimum amount of time.		
5	SYNC_POL	0	Sets the polarity of the SYNC pin. 0: Normal 1: Inverted		
4	SYNC_EN	1	Enables the SYNC functionality. 0: Disabled 1: Enabled		
3	SYNC_PLL2_DLD	0	0: Off 1: Assert SYNC until PLL2 DLD = 1		
2	SYNC_PLL1_DLD	0	0: Off 1: Assert SYNC until PLL1 DLD = 1		
			Sets the method of gener	ating a SYNC event.	
			Field Value	SYNC Generation	
			0 (0x00)	SYNC Disabled	
1:0	SYNC_MODE	1	1 (0x01)	SYNC event generated from the SYNC Pin	
			2 (0x02)	SYNC event generated from the SYNC Pin (For SYSREF_MUX = Pulsor)	
			3 (0x03)	SYNC event generated from a SPI write (For SYSREF_MUX = Pulsor)	

6.3.3.11 SYNC_DISSYSREF, SYNC_DISX

SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when outputting SYSREF.

Register 0x144

Bit	Name	POR Default	Description			
7	SYNC_DISSYSREF	0	Prevent the SYSREF clocks from becoming synchronized during a SYNC event. If SYNC_DISSYSREF is enabled it will continue to operate normally during a SYNC event.			
6	SYNC_DIS12	0				
5	SYNC_DIS10	0				
4	SYNC_DIS8	0	Prevent the device clock output from becoming synchronized during a SYNC event or			
3	SYNC_DIS6	0	SYSREF clock. If SYNC_DIS bit for a particular output is enabled then it will continue to			
2	SYNC_DIS4	0	operate normally during a SYNC event or SYSREF clock.			
1	SYNC_DIS2	0				
0	SYNC_DIS0	0				

6.3.3.12 FIXED REGISTER

REGISTER 0x145.

Always program this register to value 127.	Alwavs	program	this	reaister	to	value	127.
--	--------	---------	------	----------	----	-------	------

Bit	Name	POR Default	Description
7:0	Fixed Register	0	Always program to 127

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

6.3.4 (0x146 - 0x149) CLKin Control

6.3.4.1 CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE, CLKin1_TYPE, CLKin0_TYPE

This register has CLKin enable and type controls.

Register 0x146

Bit	Name	POR Default	Description		
7:6	NA	0	Reserved		
5	CLKin2_EN	0	Enable CLKin2 to be used during auto-switching of CLKin_SEL_MODE. D: Not enabled for auto mode 1: Enabled for auto mode		
4	CLKin1_EN	1	Enable CLKin1 to be used during auto-switching of CLKin_SEL_MODE. 0: Not enabled for auto mode 1: Enabled for auto mode		
3	CLKin0_EN	1	Enable CLKin0 to be used during auto-switching of CLKin_SEL_MODE. 0: Not enabled for auto mode 1: Enabled for auto mode		
2	CLKin2_TYPE	0	There are two buffer types for CLKin0, 1, and 2: bipolar and CMOS.		
1	CLKin1_TYPE	0	Bipolar is recommended for differential inputs like LVDS or LVPECL. CMOS is recommended for DC coupled single ended inputs.		
0	CLKin0_TYPE	0	0: Bipolar When using bipolar, CLKinX and CLKinX* must be AC coupled. 1: MOS When using CMOS, CLKinX and CLKinX* must be AC or DC coupled if the input signal is differential. If the input signal is single-ended the used input may be either AC or DC coupled and the unused input must AC grounded.		

6.3.4.2 CLKin_SEL_POL, CLKin_SEL_MODE, CLKin1_OUT_MUX, CLKin0_OUT_MUX

	Register 0x147						
Bit	Name	POR Default	Description				
7	CLKin_SEL_POL	0	Inverts the CLKin polarity for use in pin select mode. 0: Active High 1: Active Low				
			Sets the mode used in determining the referen	ce for PLL1.			
			Field Value	CLKin Mode			
			0 (0x00)	CLKin0 Manual			
			1 (0x01)	CLKin1 Manual			
6:4		2	2 (0x02)	CLKin2 Manual			
0.4	CLKin_SEL_MODE	3	3 (0x03)	Pin Select Mode			
			4 (0x04)	Auto Mode			
			5 (0x05)	Reserved			
			6 (0x06)	Reserved			
			7 (0x07)	Reserved			
	CLKin1_OUT_MUX	2	Selects where the output of the CLKin1 buffer is directed.				
			Field Value	CLKin1 Destination			
0.0			0 (0x00)	Fin			
3:2			1 (0x01)	Feedback Mux (0-delay mode)			
			2 (0x02)	PLL1			
			3 (0x03)	Reserved			
			Selects where the output of the CLKin0 buffer	is directed.			
			Field Value	CLKin0 Destination			
1.0			0 (0x00)	SYSREF Mux			
1:0	CLKin0_OUT_MUX	2	1 (0x01)	Reserved			
			2 (0x02)	PLL1			
			3 (0x03)	Reserved			

www.ti.com

6.3.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE

This register has CLKin_SEL0 controls.

Register 0x148

Bit	Name	POR Default	Description				
7:6	NA	0	Reserved				
			This set the output value of the CLKin_SEL0 pin. This register only applies if CLKin_SEL0_TYPE is set to an output mode				
			Field Value	Output For	mat		
			0 (0x00)	Logic Lov	N		
			1 (0x01)	CLKin0 LC	DS		
5:3	CLKin_SEL0_MUX	0	2 (0x02)	CLKin0 Sele	cted		
			3 (0x03)	DAC Locked			
			4 (0x04)	DAC Low			
			5 (0x05)	DAC High			
			6 (0x06)	SPI Readback			
			7 (0x07)	Reserved	b		
			This sets the IO type of the O	CLKin_SEL0 pin.			
			Field Value	Configuration	Function		
			0 (0x00)	Input	Input mode, see		
			1 (0x01)	Input /w pull-up resistor	Section 5.6.2 for		
2:0	CLKin_SEL0_TYPE	2	2 (0x02)	Input /w pull-down resistor	description of input mode.		
			3 (0x03)	Output (push-pull)	Output modes; the		
			4 (0x04)	Output inverted (push-pull)	CLKin_SEL0_MUX		
			5 (0x05)	Reserved	register for description of		
			6 (0x06)	Output (open drain)	outputs.		

6.3.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE

This register has CLKin_SEL1 controls and register readback SDIO pin type.

Register 0x149

Bit	Name	POR Default	Description					
7	NA	0	Reserved					
6	SDIO_RDBK_TYPE	1	Sets the SDIO pin to o 0: Output, push-pull 1: Output, open drain.	pen drain when during SPI readb	back in 3 wire mode.			
				This set the output value of the CLKin_SEL1 pin. This register only applies if CLKin_SEL1_TYPE is set to an output mode.				
			Field Value	Output Format				
			0 (0x00)	Lo	ogic Low			
			1 (0x01)	CL	Kin1 LOS			
5:3	CLKin_SEL1_MUX	0	2 (0x02)	CLKin1 Selected				
			3 (0x03)	DAC Locked				
			4 (0x04)	DAC Low				
			5 (0x05)	D	AC High			
			6 (0x06)	SPI	Readback			
			7 (0x07)	R	eserved			
			This sets the IO type o	f the CLKin_SEL1 pin.				
	CLKin_SEL1_TYPE		Field Value	Configuration	Function			
			0 (0x00)	Input				
			1 (0x01)	Input /w pull-up resistor	Input mode, see Section 5.6.2 for description of input mode.			
2:0		2	2 (0x02)	Input /w pull-down resistor				
			3 (0x03)	Output (push-pull)	_			
			4 (0x04)	Output inverted (push-pull)	Output modes; see the CLKin SEL1 MUX register for			
			5 (0x05)	Reserved	description of outputs.			
			6 (0x06)	Output (open drain)				

www.ti.com

6.3.5 RESET_MUX, RESET_TYPE

This register contains control of the RESET pin.

	Register 0x ²	14A						
Bit	Name	POR Default	Description					
7:6	NA	0	Reserved					
			This sets the output value of the output mode.	This sets the output value of the RESET pin. This register only applies if RESET_TYPE is set to an output mode.				
			Field Value	Outpu	it Format			
			0 (0x00)	Log	ic Low			
			1 (0x01)	Re	served			
5:3	RESET_MUX	0	2 (0x02)	2 (0x02) CLKin2 Selected				
			3 (0x03)	3 (0x03) DAC Locked 4 (0x04) DAC Low				
			4 (0x04)					
			5 (0x05)	DA	C High			
			6 (0x06)	SPI R	leadback			
			This sets the IO type of the RESET pin.					
			Field Value	Configuration	Function			
			0 (0x00)	Input				
			1 (0x01)	Input /w pull-up resistor	Reset Mode Reset pin high = Reset			
2:0	RESET_TYPE	2	2 (0x02)	Input /w pull-down resistor				
			3 (0x03)	Output (push-pull)				
			4 (0x04)	Output inverted (push-pull)	Output modes; see the RESET_MUX register for			
			5 (0x05)	Reserved	description of outputs.			
			6 (0x06)	Output (open drain)				

6.3.6 (0x14B - 0x152) Holdover

6.3.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]

This register contains the holdover functions.

Register 0x14B

Bit	Name	POR Default	Description		
			This controls the amount of time in which no activity on a CLKin forces a clock switch event.		
			Field Value	Timeout	
7:6	LOS_TIMEOUT	0	0 (0x00)	370 kHz	
			1 (0x01)	2.1 MHz	
			2 (0x02)	8.8 MHz	
			3 (0x03)	22 MHz	
5	LOS_EN	0	Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs. 0: Disabled 1: Enabled		
4	TRACK_EN	1	Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover mode. After device reset, tracking starts at DAC code = 512. Tracking can be used to monitor PLL1 voltage in any mode. 0: Disabled 1: Enabled, will only track when PLL1 is locked.		
3	HOLDOVER _FORCE	0	This bit forces holdover mode. When holdover mode is forced, if MAN_DAC_EN = 1, then the DAC will set the programmed MAN_DAC value. Otherwise the tracked DAC value will set the DAC voltage. 0: Disabled 1: Enabled.		
2	MAN_DAC_EN	1	This bit enables the manual DAC mode. 0: Automatic 1: Manual		
1:0	MAN_DAC[9:8]	2	See Section 6.3.6.2 for more information on the	he MAN_DAC settings.	

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

ISTRUMENTS

EXAS

6.3.6.2 MAN_DAC[9:8], MAN_DAC[7:0]

These registers set the value of the DAC in holdover mode when used manually.

MAN_DAC[9:0]

		MSB			LSB	
		0x14B[1:0]			0x14C[7:0]	
Bit Registers Name POR Description				Description		
7:2	0x14B			See Section 6.3.6.1 for information on these bits.		
	0x14B	4B MAN_DAC[9:8]	2	Sets the value of the manual DAC wh	en in manual DAC mode.	
4.0				Field Value	DAC Value	
1:0				0 (0x00)	0	
				1 (0x01)	1	
	0x14C	0 (x14C MAN_DAC[7:0]	0	2 (0x02)	2	
7:0						
7:0				1022 (0x3FE)	1022	
				1023 (0x3FF)	1023	

6.3.6.3 DAC_TRIP_LOW

This register contains the high value at which holdover mode is entered.

Bit	Name	POR Default	Description		
7:6	NA	0	Reserved		
	DAC_TRIP_LOW	0	Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.		
			Field Value	DAC Trip Value	
			0 (0x00)	1 x Vcc / 64	
5:0			1 (0x01)	2 x Vcc / 64	
			2 (0x02)	3 x Vcc / 64	
			3 (0x03)	4 x Vcc / 64	
			61 (0x17)	62 x Vcc / 64	
			62 (0x18)	63 x Vcc / 64	
			63 (0x19)	64 x Vcc / 64	

Register 0x14D

6.3.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH

This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is entered.

Register 0x14E

Bit	Name	POR Default	Description		
			This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the DAC value is tracked.		
			Field Value	DAC Multiplier Value	
7:6	DAC_CLK_MULT	0	0 (0x00)	4	
			1 (0x01)	64	
			2 (0x02)	1024	
			3 (0x03)	16384	
	DAC_TRIP_HIGH	GH 0	Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.		
			Field Value	DAC Trip Value	
			0 (0x00)	1 x Vcc / 64	
			1 (0x01)	2 x Vcc / 64	
5:0			2 (0x02)	3 x Vcc / 64	
5.0			3 (0x03)	4 x Vcc / 64	
			61 (0x17)	62 x Vcc / 64	
			62 (0x18)	63 x Vcc / 64	
			63 (0x19)	64 x Vcc / 64	

6.3.6.5 DAC_CLK_CNTR

This register contains the value of the DAC when in tracked mode.

Register 0x14F

Bit	Name	POR Default	Description	
			This with DAC_CLK_MULT set the rate at which the DAC is updated. The update rate is = DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF	
			Field Value	DAC Value
			0 (0x00)	0
			1 (0x01)	1
7:0	DAC_CLK_CNTR	127	2 (0x02)	2
			3 (0x03)	3
			253 (0xFD)	253
			254 (0xFE)	254
			255 (0xFF)	255

6.3.6.6 HOLDOVER_PLL1_DET, HOLDOVER_LOS_DET, HOLDOVER_VTUNE_DET, HOLDOVER_HITLESS_SWITCH, HOLDOVER_EN

	Register 0x150		
Bit	Name	POR Default	Description
7:5	NA	0	Reserved
4	HOLDOVER _PLL1_DET	0	This enables the HOLDOVER when PLL1 lock detect signal transitions from high to low. 0: PLL1 DLD does not cause a clock switch event 1: PLL1 DLD causes a clock switch event
3	HOLDOVER _LOS_DET	0	This enables HOLDOVER when PLL1 LOS signal is detected. 0: Disabled 1: Enabled
2	HOLDOVER _VTUNE_DET	0	Enables the DAC Vtune rail detections. When the DAC achieves a specified Vtune, if this bit is enabled, the current clock input is considered invalid and an input clock switch event is generated. 0: Disabled 1: Enabled
1	HOLDOVER _HITLESS _SWITCH	1	Determines whether a clock switch event will enter holdover use hitless switching. 0: Hard Switch 1: Hitless switching (has an undefined switch time)
0	HOLDOVER_EN	1	Sets whether holdover mode is active or not. 0: Disabled 1: Enabled

This register has controls for enabling clock in switch events.

6.3.6.7 HOLDOVER_DLD_CNT[13:8], HOLDOVER_DLD_CNT[7:0]

HOLDOVER_DLD_CNT[13:0]

MSB	LSB
0x151[5:0]	0x152[7:0]

This register has the number of valid clocks of PLL1 PDF before holdover is exited.

Bit	Registers	Name	POR Default	Description Reserved		
7:6	0x151	NA	0			
	0x151	HOLDOVER _DLD_CNT[13:8]	2	The number of valid clocks of PLL1 PDF before holdover mode is exited.		
5.0				Field Value	Count Value	
5:0				0 (0x00)	0	
				1 (0x01)	1	
7:0	0x152	52 HOLDOVER _DLD_CNT[7:0]	0	2 (0x02)	2	
				16382 (0x3FFE)	16382	
				16383 (0x3FFF)	16383	

Registers 0x151 and 0x152

6.3.7 (0x153 - 0x15F) PLL1 Configuration

6.3.7.1 CLKin0_R[13:8], CLKin0_R[7:0]

CLKin0_R[13:0]

MSB	LSB
0x153[5:0]	0x154[7:0]

These registers contain the value of the CLKin0 divider.

Bit	Registers	Name	POR Default	Description			
7:6	0x153	NA	0	Reserved	Reserved		
5:0	0x153			The value of PLL1 N counter when CLKi	n0 is selected.		
		CLKin0_R[13:8]	0	Field Value	Divide Value		
				0 (0x00)	Reserved		
				1 (0x01)	1		
	0x154		120	2 (0x02)	2		
7:0		0x154 CLKin0_R[7:0]					
				16382 (0x3FFE)	16382		
				16383 (0x3FFF)	16383		

6.3.7.2 CLKin1_R[13:8], CLKin1_R[7:0]

CLKin1_R[13:0]

MSB	LSB
0x155[5:0]	0x156[7:0]

These registers contain the value of the CLKin1 R divider.

REGISTERS 0x155 and 0x156

Bit	Registers	Name	POR Default	Description			
7:6	0x155	NA	0	Reserved	Reserved		
				The value of PLL1 N counter when CLKir	n1 is selected.		
F .0	0x155	CLKin1_R[13:8]	0	Field Value	Divide Value		
5:0				0 (0x00)	Reserved		
				1 (0x01)	1		
	0x156	0x156 CLKin1_R[7:0]	150	2 (0x02)	2		
7.0							
7:0				16382 (0x3FFE)	16382		
				16383 (0x3FFF)	16383		

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

STRUMENTS

EXAS

6.3.7.3 CLKin2_R[13:8], CLKin2_R[7:0]

MSB	LSB
0x157[5:0]	0x158[7:0]

REGISTERS 0x157 and 0x158

Bit	Registers	Name	POR Default	Description			
7:6	0x157	NA	0	Reserved			
				The value of PLL1 N counter when CLKi	n2 is selected.		
5.0	0x157	CLKin2_R[13:8]	0	Field Value	Divide Value		
5:0				0 (0x00)	Reserved		
				1 (0x01)	1		
	0x158	0x158 CLKin2_R[7:0]	150	2 (0x02)	2		
7.0							
7:0				16382 (0x3FFE)	16382		
				16383 (0x3FFF)	16383		

6.3.7.4 PLL1_N

PLL1_N[13:8], PLL1_N[7:0]

PLL1_N[13:0]	
MSB	LSB
0x159[5:0]	0x15A[7:0]

These registers contain the N divider value for PLL1.

	REGISTERS 0x159 and 0x15A							
Bit	Registers	Name	POR Default	Description				
7:6	0x159	NA	0	Reserved				
	0x159	PLL1_N[13:8]		The value of PLL1 N counter.				
5.0			0	Field Value	Divide Value			
5:0			0	0 (0x00)	Not Valid			
				1 (0x01)	1			
	0x15A	0x15A PLL1_N[7:0]		2 (0x02)	2			
7:0			120					
				4,095 (0xFFF)	4,095			

REGISTERS 0x159 and 0x15A

6.3.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN

This register controls the PLL1 phase detector.

REGISTER 0x15B

Bit	Name	POR Default	Description		
			PLL1_WND_SIZE sets the window size used error between the reference and feedback of PLL1 lock counter increments.		
			Field Value	Definition	
7:6	PLL1_WND_SIZE	3	0 (0x00)	4 ns	
			1 (0x01)	9 ns	
			2 (0x02)	19 ns	
			3 (0x03)	43 ns	
5	PLL1_CP_TRI	0	This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE. 0: PLL1 CPout1 is active 1: PLL1 CPout1 is at TRI-STATE		
4	PLL1_CP_POL	1	PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope. A positive slope VCXO increases output frequency with increasing voltage. A negative slope VCXO decreases output frequency with increasing voltage. 0: Negative Slope VCO/VCXO 1: Positive Slope VCO/VCXO		
			This bit programs the PLL1 charge pump out	put current level.	
			Field Value	Gain	
			0 (0x00)	50 µA	
			1 (0x01)	150 µA	
3:0	PLL1 CP GAIN	4	2 (0x02)	250 µA	
3.0	PLLI_CP_GAIN	4	3 (0x03)	350 µA	
			4 (0x04)	450 µA	
			14 (0x0E)	1450 µA	
			15 (0x0F)	1550 µA	

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

STRUMENTS

EXAS

6.3.7.6 PLL1_DLD_CNT[13:8], PLL1_DLD_CNT[7:0]

PLL1_DLD_CNT[13:0]

MSB	LSB
0x15C[5:0]	0x15D[7:0]

This register contains the value of the PLL1 DLD counter.

REGISTERS 0x15C and 0x15D

Bit	Registers	Name	POR Default	Description		
7:6	0x15C	NA	0	Reserved		
5:0	0x15C	PLL1_DLD _CNT[13:8]		The reference and feedback of PLL1 mu error as specified by PLL1_WND_SIZE for cycles before PLL1 digital lock detect is a	or this many phase detector	
			32	Field Value	Delay Value	
				0 (0x00)	Reserved	
				1 (0x01)	1	
		x15D PLL1_DLD _CNT[7:0]	0	2 (0x02)	2	
				3 (0x03)	3	
7:0	0x15D					
				16,382 (0x3FFE)	16,382	
				16,383 (0x3FFF)	16,383	

6.3.7.7 PLL1_R_DLY, PLL1_N_DLY

This register contains the delay value for PLL1 N and R delays.

REGISTER 0x15E

Bit	Name	POR Default	Description		
7:6	NA	0	Reserved		
			Increasing delay of PLL1_R_DLY will cause the outputs to lag from CLKinX. For use in 0-delay mode.		
			Field Value	Gain	
			0 (0x00)	0 ps	
			1 (0x01)	205 ps	
5:3	PLL1_R_DLY	0	2 (0x02)	410 ps	
			3 (0x03)	615 ps	
			4 (0x04)	820 ps	
			5 (0x05)	1025 ps	
			6 (0x06)	1230 ps	
			7 (0x07)	1435 ps	
			Increasing delay of PLL1_N_DLY will cause the delay mode.	outputs to lead from CLKinX. For use in 0-	
			Field Value	Gain	
			0 (0x00)	0 ps	
			1 (0x01)	205 ps	
2:0	PLL1_N_DLY	0	2 (0x02)	410 ps	
			3 (0x03)	615 ps	
			4 (0x04)	820 ps	
			5 (0x05)	1025 ps	
			6 (0x06)	1230 ps	
			7 (0x07)	1435 ps	

LMK04826B, LMK04828B

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

www.ti.com

6.3.7.8 PLL1_LD_MUX, PLL1_LD_TYPE

This register configures the PLL1 LD pin.

REGISTER 0x15F

Bit	Name	POR Default	Description	
			This sets the output value of the Status_LD	1 pin.
			Field Value	MUX Value
			0 (0x00)	Logic Low
			1 (0x01)	PLL1 DLD
			2 (0x02)	PLL2 DLD
			3 (0x03)	PLL1 & PLL2 DLD
			4 (0x04)	Holdover Status
			5 (0x05)	DAC Locked
			6 (0x06)	Reserved
			7 (0x07)	SPI Readback
7:3	PLL1_LD_MUX	1	8 (0x08)	DAC Rail
			9 (0x09)	DAC Low
			10 (0x0A)	DAC High
			11 (0x0B)	PLL1_N
			12 (0x0C)	PLL1_N/2
			13 (0x0D)	PLL2_N
			14 (0x0E)	PLL2_N/2
			15 (0x0F)	PLL1_R
			16 (0x10)	PLL1_R/2
			17 (0x11)	PLL2_R ⁽¹⁾
			18 (0x12)	PLL2_R/2 ⁽¹⁾
			Sets the IO type of the Status_LD1 pin.	
			Field Value	TYPE
			0 (0x00)	Reserved
			1 (0x01)	Reserved
2:0	PLL1_LD_TYPE	6	2 (0x02)	Reserved
			3 (0x03)	Output (push-pull)
			4 (0x04)	Output inverted (push-pull)
			5 (0x05)	Reserved
			6 (0x06)	Output (open drain)

(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).

6.3.8 (0x160 - 0x16E) PLL2 Configuration

6.3.8.1 PLL2_R[11:8], PLL2_R[7:0]

PLL2_R[11:0]

MSB	LSB	
0x160[3:0]	0x161[7:0]	

This register contains the value of the PLL2 R divider.

REGISTERS 0x160 and 0x161

Bit	Registers	Name	POR Default	Description	
7:4	0x160	NA	0	Reserved	
				Valid values for the PLL2 R divider.	
3:0	0.460		0	Field Value	Divide Value
3.0	0x160	PLL2_R[11:8]		0 (0x00)	Not Valid
				1 (0x01)	1
	0x161	0x161 PLL2_R[7:0]	2	2 (0x02)	2
				3 (0x03)	3
7:0					
				4,094 (0xFFE)	4,094
				4,095 (0xFFF)	4,095

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

6.3.8.2 PLL2_P, OSCin_FREQ, PLL2_XTAL_EN, PLL2_REF_2X_EN

This register sets other PLL2 functions.

REGISTER 0x162

Bit	Name	POR Default	Description		
			The PLL2 N Prescaler divides the output of th connected to the PLL2 N divider.	e VCO as selected by Mode_MUX1 and is	
			Field Value	Value	
			0 (0x00)	8	
			1 (0x01)	2	
7:5	PLL2_P	2	2 (0x02)	2	
			3 (0x03)	3	
			4 (0x04)	4	
			5 (0x05)	5	
			6 (0x06)	6	
			7 (0x07)	7	
	OSCin_FREQ	OSCin_FREQ 7	The frequency of the PLL2 reference input to the PLL2 Phase Detector (OSCin/OSCin* port) must be programmed in order to support proper operation of the frequency calibration routine which locks the internal VCO to the target frequency.		
			Field Value	OSCin Frequency	
			0 (0x00)	0 to 63 MHz	
4:2			1 (0x01)	>63 MHz to 127 MHz	
			2 (0x02)	>127 MHz to 255 MHz	
			3 (0x03)	Reserved	
			4 (0x04)	>255 MHz to 500 MHz	
			5 (0x05) to 7(0x07)	Reserved	
1	PLL2_XTAL_EN	0	If an external crystal is being used to implement a discrete VCXO, the internal feedback amplifier must be enabled with this bit in order to complete the oscillator circuit. 0: Oscillator Amplifier Disabled 1: Oscillator Amplifier Enabled		
0	PLL2_REF_2X_EN	1	Enabling the PLL2 reference frequency doubler allows for higher phase detector frequencies on PLL2 than would normally be allowed with the given VCXO or Crystal frequency. Higher phase detector frequencies reduces the PLL N values which makes the design of wider loop bandwidth filters possible. 0: Doubler Disabled 1: Doubler Enabled		

6.3.8.3 PLL2_N_CAL

PLL2_N_CAL[17:0]

PLL2 never uses 0-delay during frequency calibration. These registers contain the value of the PLL2 N divider used with PLL2 pre-scaler during calibration for cascaded 0-delay mode. Once calibration is complete, PLL2 will use PLL2_N value. Cascaded 0-delay mode occurs when PLL2_NCLK_MUX = 1.

MSB	—	LSB
0x163[1:0]	0x164[7:0]	0x165[7:0]

REGISTERS 0x163, 0x164, and 0x165

	REDISTERS 0x103, 0x104, and 0x103													
Bit	Registers	Name	POR Default	Description										
7:2	0x163	NA	0	Reserved										
1:0	PLL2_N	PLL2_N _CAL[17:16]	—	PLL2_N	PLL2_N	PLL2_N	Field Value	Divide Value						
1.0	0x163			0	0 (0x00)	Not Valid								
7.0		PLL2_N_CAL[15:8]	PLL2_N_CAL[15:8]	PLL2_N_CAL[15:8]	PLL2_N_CAL[15:8]	PLL2_N_CAL[15:8]						0	1 (0x01)	1
7:0	0x164						0	2 (0x02)	2					
7:0		65 PLL2_N_CAL[7:0]		10										
7:0	0x165		PLL2_N_CAL[7:0] 12		262,143 (0x3FFFF)	262,143								

6.3.8.4 PLL2_FCAL_DIS, PLL2_N

PLL2_N[17:0]

This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168 starts a VCO calibration routine if PLL2_FCAL_DIS = 0.

MSB	—	LSB
0x166[1:0]	0x167[7:0]	0x168[7:0]

REGISTERS 0x166, 0x167, and 0x168

Bit	Registers	Name	POR Default	Description	
7:3	0x166	NA	0	Reserved	
2	0x166	PLL2_FCAL_DIS	0	This disables the PLL2 frequency calibration on programming register 0x168. 0: Frequency calibration enabled 1: Frequency calibration disabled	
1.0	0		0	Field Value	Divide Value
1:0	0x166	PLL2_N[17:16]	0	0 (0x00)	Not Valid
7.0	0.407		0	1 (0x01)	1
7:0	0x167	PLL2_N[15:8]	0	2 (0x02)	2
7:0 0x	0x168		12		
	00108	PLL2_N[7:0]		262,143 (0x3FFFF)	262,143

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

www.ti.com

STRUMENTS

EXAS

6.3.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI

This register controls the PLL2 phase detector.

REGISTER 0x169

Bit	Name	POR Default	Description			
7	NA	0	Reserved	Reserved		
			PLL2_WND_SIZE sets the window size used error between the reference and feedback of PLL2 lock counter increments. This value must	PLL2 is less than specified time, then the		
			Field Value	Definition		
6:5	PLL2_WND_SIZE	2	0 (0x00)	Reserved		
			1 (0x01)	Reserved		
			2 (0x02)	3.7 ns		
			3 (0x03)	Reserved		
			This bit programs the PLL2 charge pump outp illustrates the impact of the PLL2 TRISTATE to	but current level. The table below also bit in conjunction with PLL2_CP_GAIN.		
	PLL2_CP_GAIN	PLL2_CP_GAIN 3	Field Value	Definition		
4:3			0 (0x00)	100 µA		
			1 (0x01)	400 µA		
			2 (0x02)	1600 µA		
			3 (0x03)	3200 µA		
2	PLL2 CP POL	0	PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO requires negative charge pump polarity to be selected. Many VCOs use positive slope. A positive slope VCO increases output frequency with increasing voltage. A negative VCO decreases output frequency with increasing voltage.			
2	PLL2_GP_POL	0	Field Value	Description		
			0	Negative Slope VCO/VCXO		
			1	Positive Slope VCO/VCXO		
1	PLL2_CP_TRI	0	PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump. 0: Disabled 1: TRI-STATE			
0	Fixed Value	1	When programming register 0x169, this field must be set to 1.			

SNAS605 AP - MARCH 2013 - REVISED JUNE 2013

6.3.8.6 SYSREF_REQ_EN, PLL2_DLD_CNT

PLL2_DLD_CNT[15:0]

MSB	LSB
0x16A[5:0]	0x16B[7:0]

This register has the value of the PLL2 DLD counter.

REGISTERS 0x16A and 0x16B

Bit	Registers	Name	POR Default	Description	
7	0x16A	NA	0	Reserved	
6	0x16A	SYSREF_REQ_EN	0	Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for continuous pulses. When using this feature enable pulser and set SYSREF_MUX = 2 (Pulsor).	
		0x16A PLL2_DLD _CNT[13:8]		The reference and feedback of PLL2 mu as specified by PLL2_WND_SIZE for PL lock detect is asserted.	st be within the window of phase error L2_DLD_CNT cycles before PLL2 digital
5:0	0x16A		32	Field Value	Divide Value
				0 (0x00)	Not Valid
				1 (0x01)	1
	0x16B	x16B PLL2_DLD_CNT	0	2 (0x02)	2
				3 (0x03)	3
7:0					
				16,382 (0x3FFE)	16,382
				16,383 (0x3FFF)	16,383

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

6.3.8.7 PLL2_LF_R4, PLL2_LF_R3

This register controls the integrated loop filter resistors.

REGISTER 0x16C

Bit	Name	POR Default	Description		
7:6	NA	0	Reserved		
			Internal loop filter components are available for filters without requiring external components. Internal loop filter resistor R4 can be set accou	• · · ·	
			Field Value	Resistance	
			0 (0x00)	200 Ω	
			1 (0x01)	1 kΩ	
5:3	PLL2_LF_R4	0	2 (0x02)	2 kΩ	
			3 (0x03)	4 kΩ	
			4 (0x04)	16 kΩ	
			5 (0x05)	Reserved	
			6 (0x06)	Reserved	
			7 (0x07)	Reserved	
			Internal loop filter components are available for filters without requiring external components. Internal loop filter resistor R3 can be set accord	-	
			Field Value	Resistance	
			0 (0x00)	200 Ω	
			1 (0x01)	1 kΩ	
2:0	PLL2_LF_R3	0	2 (0x02)	2 kΩ	
			3 (0x03)	4 kΩ	
			4 (0x04)	16 kΩ	
			5 (0x05)	Reserved	
			6 (0x06)	Reserved	
			7 (0x07)	Reserved	

6.3.8.8 PLL2_LF_C4, PLL2_LF_C3

This register controls the integrated loop filter capacitors.

REGISTER 0x16D

Bit	Name	POR Default	Description		
			Internal loop filter components are available for filters without requiring external components. Internal loop filter capacitor C4 can be set account	-	
			Field Value	Resistance	
			0 (0x00)	10 pF	
			1 (0x01)	15 pF	
			2 (0x02)	29 pF	
			3 (0x03)	34 pF	
			4 (0x04)	47 pF	
			5 (0x05)	52 pF	
7:4	PLL2_LF_C4	0	6 (0x06)	66 pF	
			7 (0x07)	71 pF	
			8 (0x08)	103 pF	
			9 (0x09)	108 pF	
			10 (0x0A)	122 pF	
			11 (0x0B)	126 pF	
			12 (0x0C)	141 pF	
			13 (0x0D)	146 pF	
			14 (0x0E)	Reserved	
			15 (0x0F)	Reserved	
			Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop filters without requiring external components. Internal loop filter capacitor C3 can be set according to the following table.		
			Field Value	Resistance	
			0 (0x00)	10 pF	
			1 (0x01)	11 pF	
			2 (0x02)	15 pF	
			3 (0x03)	16 pF	
			4 (0x04)	19 pF	
			5 (0x05)	20 pF	
3:0	PLL2_LF_C3	0	6 (0x06)	24 pF	
			7 (0x07)	25 pF	
			8 (0x08)	29 pF	
			9 (0x09)	30 pF	
			10 (0x0A)	33 pF	
			11 (0x0B)	34 pF	
			12 (0x0C)	38 pF	
			13 (0x0D)	39 pF	
			14 (0x0E)	Reserved	
			15 (0x0F)	Reserved	

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

www.ti.com

6.3.8.9 PLL2_LD_MUX, PLL2_LD_TYPE

This register sets the output value of the Status_LD2 pin.

REGISTER 0x16E

Bit	Name	POR Default	Description		
			This sets the output value of the Status_LD	02 pin.	
			Field Value	MUX Value	
			0 (0x00)	Logic Low	
			1 (0x01)	PLL1 DLD	
			2 (0x02)	PLL2 DLD	
			3 (0x03)	PLL1 & PLL2 DLD	
			4 (0x04)	Holdover Status	
			5 (0x05)	DAC Locked	
			6 (0x06)	Reserved	
			7 (0x07)	SPI Readback	
7:3	PLL2_LD_MUX	2	8 (0x08)	DAC Rail	
			9 (0x09)	DAC Low	
			10 (0x0A)	DAC High	
			11 (0x0B)	PLL1_N	
			12 (0x0C)	PLL1_N/2	
			13 (0x0D)	PLL2_N	
			14 (0x0E)	PLL2_N/2	
			15 (0x0F)	PLL1_R	
			16 (0x10)	PLL1_R/2	
			17 (0x11)	PLL2_R ⁽¹⁾	
			18 (0x12)	PLL2_R/2 ⁽¹⁾	
			Sets the IO type of the Status_LD2 pin.		
		6	Field Value	ТҮРЕ	
			0 (0x00)	Reserved	
	PLL2_LD_TYPE		1 (0x01)	Reserved	
2:0			2 (0x02)	Reserved	
			3 (0x03)	Output (push-pull)	
			4 (0x04)	Output inverted (push-pull)	
			5 (0x05)	Reserved	
			6 (0x06)	Output (open drain)	

(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).

6.3.9 (0x16F - 0x1FFF) Misc Registers

6.3.9.1 PLL2_PRE_PD, PLL2_PD

REGISTER 0x173

Bit	Name	Description	
7	N/A	Reserved	
6	PLL2_PRE_PD	werdown PLL2 prescaler Normal Operation Powerdown	
5	PLL2_PD	Powerdown PLL2 0: Normal Operation 1: Powerdown	
4:0	N/A	Reserved	

6.3.9.2 OPT_REG_1

This register must be written with the following value depending on which LMK04820 family part is used to optimize VCO1 phase noise performance over temperature. This register must be written before writing register 0x168 when using VCO1.

REGISTER 0x17C

Bit	Name	Description
7:0	OPT_REG_1	24: LMK04826 21: LMK04828

6.3.9.3 OPT_REG_2

This register must be written with the following value depending on which LMK04820 family part is used to optimize VCO1 phase noise performance over temperature. This register must be written before writing register 0x168 when using VCO1.

REGISTER 0x17D

Bit	Name	Description	
7:0	OPT_REG_2	119: LMK04826 51: LMK04828	

6.3.9.4 RB_PLL1_LD_LOST, RB_PLL1_LD, CLR_PLL1_LD_LOST

REGISTER 0x182

D'4	Newse	Description	
Bit	Name	Description	
7:3	N/A	Reserved	
2	RB_PLL1_LD_LOST	This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD is low.	
1	RB_PLL1_LD	Read back 0: PLL1 DLD is high. Read back 1: PLL1 DLD is low.	
0	CLR_PLL1_LD_LOST	To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0. 0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge. 1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL1_LD_LOST to become set again.	

6.3.9.5 RB_PLL2_LD_LOST, RB_PLL2_LD, CLR_PLL2_LD_LOST

REGISTER 0x0x183

Bit	Name	Description
7:3	N/A	Reserved
2	RB_PLL2_LD_LOST	This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD is low.
1	RB_PLL2_LD	Read back 0: PLL2 DLD is high. Read back 1: PLL2 DLD is low.

TEXAS INSTRUMENTS

www.ti.com

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

Bit	Name	Description	
0	CLR_PLL2_LD_LOST	To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0. 0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge. 1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL2_LD_LOST to become set again.	

6.3.9.6 RB_DAC_VALUE(MSB), RB_CLKinX_SEL, RB_CLKinX_LOS

This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.

REGISTER 0x184

Bit	Name	Description
7:6	RB_DAC_VALUE[9:8]	See RB_DAC_VALUE section.
5	RB_CLKin2_SEL	Read back 0: CLKin2 is not selected for input to PLL1. Read back 1: CLKin2 is selected for input to PLL1.
4	RB_CLKin1_SEL	Read back 0: CLKin1 is not selected for input to PLL1. Read back 1: CLKin1 is selected for input to PLL1.
3	RB_CLKin0_SEL	Read back 0: CLKin0 is not selected for input to PLL1. Read back 1: CLKin0 is selected for input to PLL1.
2	N/A	
1	RB_CLKin1_LOS	Read back 1: CLKin1 LOS is active. Read back 0: CLKin1 LOS is not active.
0	RB_CLKin0_LOS	Read back 1: CLKin0 LOS is active. Read back 0: CLKin0 LOS is not active.

6.3.9.7 RB_DAC_VALUE

Contains the value of the DAC for user readback.

Field Name	MSB	LSB
RB_DAC_VALUE	0x184 [7:6]	0x185 [7:0]

REGISTERS 0x184 and 0x185

Bit	Registers	Name	POR Default	Description		
7:6	0x184	RB_DAC_ VALUE[9:8]	2	DAC value is 512 on power on reset, if PLL1 locks upon power-up the DAC value will change.		
7:0	0x185	RB_DAC_ VALUE[7:0]	0			

6.3.9.8 RB_HOLDOVER

Blank

REGISTER 0x188

Bit	Name	Description
7:5	N/A	Reserved
4	RB_HOLDOVER	Read back 0: Not in HOLDOVER. Read back 1: In HOLDOVER.
3:0	N/A	Reserved

6.3.9.9 SPI_LOCK

Prevents SPI registers from being written to, except for 0x1FFD, 0x1FFE, 0x1FFF. These registers must be written to sequentially and in order: 0x1FFD, 0x1FFE, 0x1FFF.

These registers cannot be read back.

MSB	—	LSB
0x1FFD [7:0]	0x1FFE [7:0]	0x1FFF [7:0]

REGISTERS 0x1FFD, 0x1FFE, and 0x1FFF

Bit	Registers	Name	POR Default	Description
7:0	0x1FFD	SPI_LOCK[23:16]	0	0: Registers unlocked. 1 to 255: Registers locked
7:0	0x1FFE	SPI_LOCK[15:8]	0	0: Registers unlocked. 1 to 255: Registers locked
7:0	0x1FFF	SPI_LOCK[7:0]	83	0 to 82: Registers locked 83: Registers unlocked 84 to 256: Registers locked

89

7 APPLICATION INFORMATION

7.1 Digital Lock Detect Frequency Accuracy

The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals of the PLL for each event to occur. When a PLL digital lock event occurs the PLL's digital lock detect is asserted true. When the holdover exit event occurs, the device will exit holdover mode.

Event	PLL	Window size	Lock count
PLL1 Locked	PLL1	PLL1_WND_SIZE	PLL1_DLD_CNT
PLL2 Locked	PLL2	PLL2_WND_SIZE	PLL2_DLD_CNT
Holdover exit	PLL1	PLL1_WND_SIZE	HOLDOVER_DLD_CNT

For a digital lock detect event to occur there must be a "lock count" number of phase detector cycles of PLLX during which the time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the user programmable "window size." Since there must be at least "lock count" phase detector events before a lock event occurs, a minimum digital lock event time can be calculated as "lock count" / f_{PDX} where X = 1 for PLL1 or 2 for PLL2.

By using Equation 1, values for a "lock count" and "window size" can be chosen to set the frequency accuracy required by the system in ppm before the digital lock detect event occurs:

$$ppm = \frac{1e6 \times PLLX _WND_SIZE \times f_{PDX}}{PLLX \ DLD \ CNT}$$

(1)

The effect of the "lock count" value is that it shortens the effective lock window size by dividing the "window size" by "lock count".

If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by "window size", then the "lock count" value is reset to 0.

7.1.1 Minimum Lock Time Calculation Example

To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and PLL2_DLD_CNT = 10,000. Then the minimum lock time of PLL2 will be 10,000 / 40 MHz = 250 μ s.

7.2 Pin Connection Recommendations

7.2.1 V_{CC} PINS AND DECOUPLING

All Vcc pins must always be connected.

7.2.2 UNUSED CLOCK OUTPUTS

Leave unused clock outputs floating and powered down.

7.2.3 UNUSED CLOCK INPUTS

Unused clock inputs can be left floating.

7.3 Driving CLKin AND OSCin Inputs

7.3.1 DRIVING CLKin PINS WITH A DIFFERENTIAL SOURCE

Both CLKin ports can be driven by differential signals. It is recommended that the input mode be set to bipolar (CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04820 family internally biases the input pins so the differential interface should be AC coupled. The recommended circuits for driving the CLKin pins with either LVDS or LVPECL are shown in Figure 7-1 and Figure 7-2.

Figure 7-1. CLKinX/X* Termination for an LVDS Reference Clock Source

Figure 7-2. CLKinX/X* Termination for an LVPECL Reference Clock Source

Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in the Section 2.4 table.

Figure 7-3. CLKinX/X* Termination for a Differential Sinewave Reference Clock Source

LMK04826B, LMK04828B

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

7.3.2 DRIVING CLKin PINS WITH A SINGLE-ENDED SOURCE

The CLKin pins of the LMK04820 family can be driven using a single-ended reference clock source, for example, either a sine wave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be used. In the case of the sine wave source that is expecting a 50 Ω load, it is recommended that AC coupling be used as shown in the circuit below with a 50 Ω termination.

NOTE

The signal level must conform to the requirements for the CLKin pins listed in the Section 2.4 table. CLKinX_BUF_TYPE is recommended to be set to bipolar mode (CLKinX_BUF_TYPE = 0).

Figure 7-4. CLKinX/X* Single-ended Termination

If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode (CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC coupled, MOS-mode clock inputs given in the table of Section 2.4. If AC coupling is used, the CLKinX_BUF_TYPE should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must meet the specifications for AC coupled, bipolar mode clock inputs given in the table of Section 2.4. In this case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC coupling capacitor is sufficient.

Figure 7-5. DC Coupled LVCMOS/LVTTL Reference Clock

7.4 Power Supply

7.4.1 CURRENT CONSUMPTION / POWER DISSIPATION CALCULATIONS

From Table 7-1 the current consumption can be calculated for any configuration. Data below is typical and not assured.

Table 7-1. Typical Current Consumption for Selected Functional Blocks (T_A = 25 °C, V_{CC} = 3.3 V)

Block	Condition	Condition						
	Core and Functional	l Blocks	-					
Core	Dual Loop, Internal VCO0	PLL1 and PLL2 locked	131.5	433.95	-			
VCO	VCO1 is selected		6	19.8	-			
OSCin Doubler	Doubler is enabled	EN_PLL2_REF_2X = 1	3	9.9	-			
CLKin	Any one of the CLKinX is en	abled	4.9	16.17	-			
	Holdover is enabled	HOLDOVER_EN = 1	1.3	4.29	-			
Holdover	Hitless switch is enabled	HOLDOVER_HITLESS_S WITCH = 1	0.9	2.97	-			
	Track mode	TRACK_EN = 1	2.5	8.25	-			
SYNC_EN = 1								
SYSREF	Enabled	SYSREF_PD = 0	27.2	89.76	-			
	Dynamic Digital Delay enabled	SYSREF_DDLY_PD = 0	5	16.5	-			
	Pulser is enabled	SYSREF_PLSR_PD = 0	4.1	13.53				
	SYSREF Pulses mode	SYSREF_MUX = 2	3	9.9				
	SYSREF Continuous mode	SYSREF Continuous mode SYSREF_MUX = 3						
	Clock Group)		-j				
Enabled	Any one of the CLKoutX_Y_	PD = 0	20.1	66.33				
IDL	Any one of the CLKoutX_Y_	IDL = 1	2.2	7.26				
ODL	Andy one of the CLKoutX_Y	_ODL = 1	3.2	10.56				
	Divider Only	DCLKoutX_MUX = 0	13.6	44.88				
Clock Divider	Divider + DCC + HS	DCLKoutX_MUX = 1	17.7	58.41				
	Analog Delay + Divider	DCLKoutX_MUX = 3	13.6	44.88				
	Clock Output Bu	ffers						
LVDS	100 Ω differential termination	า	6	19.8	-			
	HSDS 6 mA, 100 Ω different	tial termination	8.8	29.04	-			
HSDS	HSDS 8 mA, 100 Ω different	HSDS 8 mA, 100 Ω differential termination						
	HSDS 10 mA, 100 Ω differen	HSDS 10 mA, 100 Ω differential termination						
	OSCout Buffe	rs						
LVDS	100 Ω differential termination	n	18.5	61.05	-			
LVCMOS	LVCMOS Pair	150 MHz	42.6	140.58	-			
	LVCMOS Single	150 MHz	27	89.1	-			

SNAS605 AP-MARCH 2013-REVISED JUNE 2013

7.5 Thermal Management

Power consumption of the LMK04820 family of devices can be high enough to require attention to thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times θ_{JA} should not exceed 125°C.

The package of the device has an exposed pad that provides the primary heat removal path as well as excellent electrical grounding to a printed circuit board. To maximize the removal of heat from the package a thermal land pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.

Figure 7-6. Recommended Land and Via Pattern

SNAS605 AP -MARCH 2013-REVISED JUNE 2013

Changes from Revision AO (March 2013) to Revision AP

Page

•	Changed datasheet title from LMK04828 to LMK0482xB	
•	Added LMK04826 to frequency table	
•	Changed - increased LMK04828B VCO0 maximum frequency from 2600 MHz to 2630 MHz	. 1
٠	Changed - expanded LMK04828B VCO1 frequency range from 2945 - 3005 MHz to 2920 MHz - 3080 MHz	. 1
٠	Changed image from LMK04828B to LMK0482xB	. 1
•	Changed LMK04828 family to LMK04820 family	. 2
•	Added LMK04826 to Device Configuration Information Table	. 2
•	Changed - increased LMK04828B VCO0 max frequency from 2600 MHz to 2630 MHz	. 2
•	Changed - expanded LMK04828B VCO1 frequency range from 2945 - 3005 MHz to 2920 MHz - 3080 MHz	
•	Changed image from LMK04828 to LMK0482xB	
•	Changed - corrected value of PLL2_P selection to be 0 to correspond with register programming definition	. 3
•	Changed image from LMK04828 to LMK0482xB	
•	Changed image from LMK04828 to LMK0482xB	
•	Changed thermal table header from LMK04828B to LMK0482xB	10
•	Added LMK04826 VCO Range Specification	
•	Changed - increased LMK04828B VCO0 max frequency from 2600 MHz to 2630 MHz	14
•	Changed - expanded LMK04828B VCO1 frequency range from 2945 - 3005 MHz to 2920 MHz - 3080 MHz	
•	Added LMK04826 K _{VCO} Specification	
•	Added clarification of LMK04828 specification vs LMK04826 specification for K _{VCO}	14
•	Added LMK04826 noise floor data	15
•	Changed - clarified phase noise data section header	16
•	Added LMK04826 phase noise data	
•	Added LMK04826 jitter data	18
•	Added LMK04826 f _{CLKout-startup} spec	20
٠	Added clarification of LMK04828 specification vs. LMK04826 specification for f _{CLKout-startup}	20
٠	Added LMK04826B Phase Noise Performance Graph for VCO0	26
•	Added LMK04826B Phase Noise Performance Graph for VCO1	26
•	Added Added PLL2 loop filter bandwidth and phase margin info to plot	27
•	Changed LMK04828 to LMK0482xB in VCXO/Crystal Buffered Output section	28
•	Changed LMK04828 to LMK0482xB in Status Pins section	31
•	Added LMK04826 register setting	52
•	Added LMK04826 register setting	87
•	Added LMK04826 register setting	87

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
LMK04826BISQ/NOPB	ACTIVE	WQFN	NKD	64	1000	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04826BISQ	Samples
LMK04826BISQE/NOPB	ACTIVE	WQFN	NKD	64	250	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04826BISQ	Samples
LMK04826BISQX/NOPB	ACTIVE	WQFN	NKD	64	2000	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04826BISQ	Samples
LMK04828BISQ/NOPB	ACTIVE	WQFN	NKD	64	1000	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04828BISQ	Samples
LMK04828BISQE/NOPB	ACTIVE	WQFN	NKD	64	250	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04828BISQ	Samples
LMK04828BISQX/NOPB	ACTIVE	WQFN	NKD	64	2000	Green (RoHS & no Sb/Br)	SN	Level-3-260C-168 HR		K04828BISQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

3-Jul-2013

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK04826BISQ/NOPB	WQFN	NKD	64	1000	330.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1
LMK04826BISQE/NOPB	WQFN	NKD	64	250	178.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1
LMK04826BISQX/NOPB	WQFN	NKD	64	2000	330.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1
LMK04828BISQ/NOPB	WQFN	NKD	64	1000	330.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1
LMK04828BISQE/NOPB	WQFN	NKD	64	250	178.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1
LMK04828BISQX/NOPB	WQFN	NKD	64	2000	330.0	16.4	9.3	9.3	1.3	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Jun-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMK04826BISQ/NOPB	WQFN	NKD	64	1000	367.0	367.0	38.0
LMK04826BISQE/NOPB	WQFN	NKD	64	250	213.0	191.0	55.0
LMK04826BISQX/NOPB	WQFN	NKD	64	2000	367.0	367.0	38.0
LMK04828BISQ/NOPB	WQFN	NKD	64	1000	367.0	367.0	38.0
LMK04828BISQE/NOPB	WQFN	NKD	64	250	213.0	191.0	55.0
LMK04828BISQX/NOPB	WQFN	NKD	64	2000	367.0	367.0	38.0

MECHANICAL DATA

NKD0064A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.