

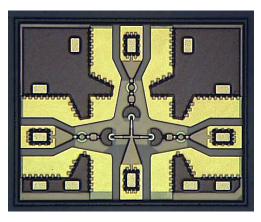
HMIC[™] Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2

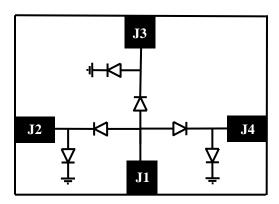
Features

- Specified from 50 MHz to 20 GHz
- Usable up to 26 GHz
- Low Insertion Loss
- · High Isolation
- Low Parasitic Capacitance and Inductance
- RoHS Compliant Surmount™ Package
- · Rugged, Fully Monolithic
- Glass Encapsulated Construction
- Up to +38 dBm C.W. Power Handling¹ @ +25°C
- Silicon Nitride Passivation
- Polymer Scratch Protection

Description


The MASW-003103-1364 is a Surmount™ broadband monolithic SP3T switch using series and shunt connected silicon PIN diodes. This part is designed for use as a moderate signal, high performance switch in applications up to 20 GHz. This Surface Mount chipscale configuration is optimized for broadband performance with minimal associated parasitics usually associated with hybrid MIC designs incorporating beam lead and PIN diodes that require chip and wire assembly.

The MASW-003103-1364 is fabricated using M/A-COM Tech's patented HMIC™ (Heterolithic Microwave Integrated Circuit) process, US Patent 5,268,310. This process allows the incorporation of silicon pedestals that form series and shunt diodes or vias by imbedding them in low loss, low dispersion glass. By using small spacing between elements, this combination of silicon and glass gives HMIC devices low loss and high isolation performance through low millimeter frequencies.


Selective backside metalization is applied producing a Surface Mount device. The topside is fully encapsulated with silicon nitride and has an additional polymer layer for scratch and impact protection. These protective coatings prevent damage to the junction and the anode airbridge during handling and assembly.

. Power Handling Testing performed @ 2GHz

Commitment to produce in volume is not guaranteed.

Functional Schematic

Pin Configuration ²

Pin	Function			
J1	RFC			
J2	RF1			
J3	RF2			
J4	RF3			

2. The exposed pad centered on the chip bottom must be con-

Ordering Information

Part Number	Package
MASW-003103-13640G	50 piece gel pack
MASW-003103-13645P	500 piece reel
MASW-003103-13640P	3000 piece reel
MASW-003103-001SMB	Sample Test Board

North America Tel: 800.366.2266
India Tel: +91.80.43537383
Europe Tel: +353.21.244.6400
China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.

HMIC™ Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2

Electrical Specifications: $T_A = 25^{\circ}C$, $P_{IN} = 0$ dBm, $Z_0 = 50 \Omega$, 20 mA/-10 V

Parameter	Frequency	Units	Min.	Тур.	Max.
Insertion Loss	6 GHz 13 GHz 20 GHz	dB	_ _ _	0.50 0.8 1.2	0.6 1.1 1.4
Isolation	6 GHz 13 GHz 20 GHz	dB	50 37 25	54 40 31	_
Input Return Loss	6 GHz 13 GHz 20 GHz	dB	19 14 14	25 22 21	
Output to Output Isolation	6 GHz 13 GHz 20 GHz	dB		57 42 30	
Switching Speed ³	_	ns	_	20	_
Voltage Rating⁴		V	_	_	80
Input 0.1dB Compression Point	2 GHz	dBm	_	36	

- 3. Typical Switching Speed measured fro 10% to 90 % of detected RF signal driven by TTL compatible drivers.
- 4. Maximum reverse leakage current in either the shunt or series PIN diodes shall be 0.5 uA maximum @ -80 volts.

Absolute Maximum Ratings 5,6

Parameter	Absolute Maximum
Operating Temperature	-65 °C to +125 °C
Storage Temperature	-65 °C to +150 °C
Junction Temperature	+175 °C
Applied Reverse Voltage	-80 V
RF CW Incident Power	38dBm CW @ 2GHz, +25°C
RF CW incident Fower	33dBm CW @ 20GHz,+25°C
Bias Current +25°C	± 50 mA

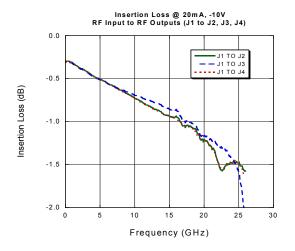
Max Operating Conditions for combination RF Pwr, DC Bias, & Temp: 33dBm CW @ 20mA per Diode @ +85°C @ 2GHz

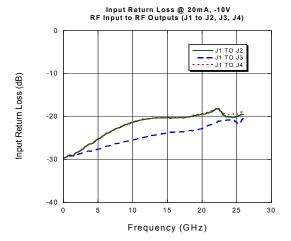
- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM Tech does not recommend sustained operation near these survivability limits.

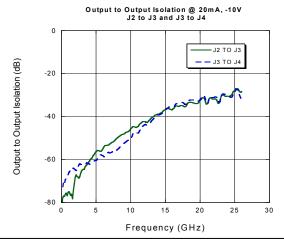
Handling Procedures

Please observe the following precautions to avoid damage:

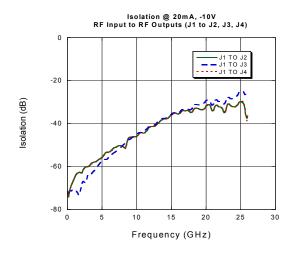
Static Sensitivity

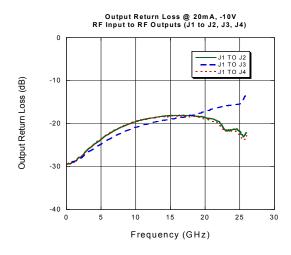

These devices are rated at Class 1A Human Body. Proper ESD control techniques should be used when handling these devices.

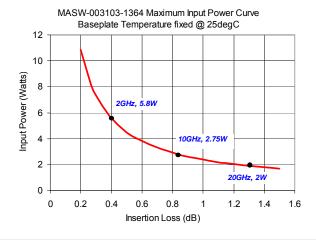



HMIC™ Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2


Typical Performance Curves





3

- **ADVANCED:** Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, ype measurements. Commitment to develop is not guaranteed
- PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588 • India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

HMIC™ Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

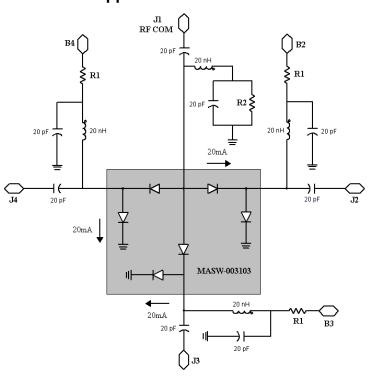
Rev. V2

Bias Control

Optimal operation of the MASW-003103-1364 is achieved by simultaneous application of negative DC voltage and current to the low loss switching arm J2, J3, or J4, and positive DC voltage and current to the remaining switching arms as shown in the applications circuit below. DC return is achieved via R2 on the J1/RF Com Path.

In the low loss state, the series diode must be forward biased with current and the shunt diode reverse biased with voltage. In the isolation arms, the shunt diode is forward biased with current and the series diode is reverse biased with voltage.

Driver Connections


Control Level (DC Currents and Voltages)			Condition of RF Output	Condition of RF Output	Condition of RF Output
B2	В3	B4	J1-J2	J1-J3	J1-J4
-15V ⁷ at -20mA	+20mA	6V at +20mA	Low Loss	Isolation	Isolation
6V at +20mA	-15V ⁷ at -20mA	6V at +20mA	Isolation	Low Loss	Isolation
6V at +20mA	6V at +20mA	-15V ⁷ at -20mA	Isolation	Isolation	Low Loss

^{7.} The voltage applied to the off arm can vary as long as 20mA is applied through the shunt diode on the off arm.

Application Circuit 8,9,10,11,12

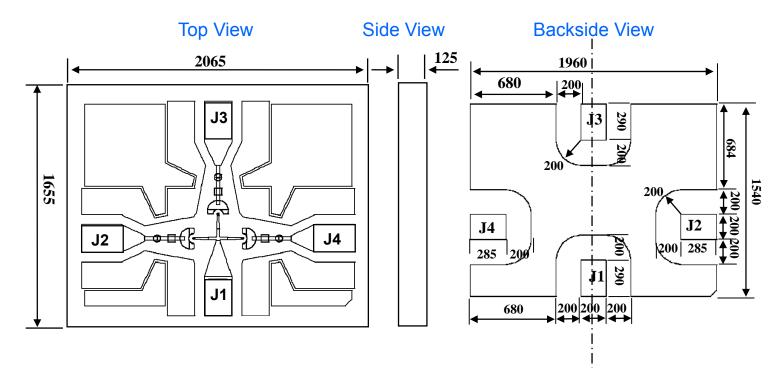
Example:

J1 to J2 \rightarrow Low Loss R1 = 250 Ω R2 = 450 Ω B2 = -15V B3, B4 = 6V

Notes:

- 8. Assume Vf ~ 1V at 20mA
- 9. R1 = $5V / 0.02A = 250\Omega$; R2 = $9V / 0.02A = 450\Omega$
- 10. $P_{R1} = 0.02A \times 0.02A \times 250 = 0.1 W$
- 11. $P_{R2} = 0.02A \times 0.02A \times 450 = 0.18 W$
- 12. Inductors are bias RF chokes. The operating band width of a broad-band PIN diode switch is often dependent on the bias components, particularly the RF bias chokes. It is suggested that the frequency response be checked with all the bias components attached before installing the PIN diode.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.


PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. North America Tel: 800.366.2266
India Tel: +91.80.43537383
Europe Tel: +353.21.244.6400
China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.

HMIC™ Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2

Outline Drawing Footprint

Units in µm

Ground radius is 200um centered on the I/O Pad.

MASW-003103-1364				
DIM	Inc	hes	mm	
	MIN MAX		MIN	MAX
Width	0.06417	0.06614	1.630	1.680
Length	0.08031	0.08228	2.040	2.090
Thickness	0.00394	0.00591	0.100	0.150

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

Visit www.macomtech.com for additional data sheets and product information.

• China Tel: +86.21.2407.1588

• India Tel: +91.80.43537383

HMIC™ Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2

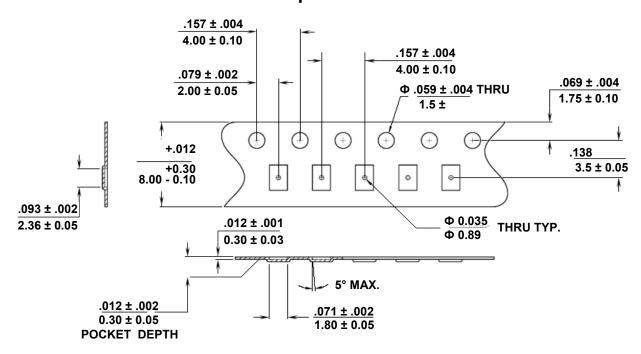
Handling Procedures

Attachment to a circuit board is made simple through the use of standard surface mount technology. Mounting pads are conveniently located on the bottom surface of these devices and are removed from the active junction locations. These devices are well suited for solder attachment onto hard and soft substrates. The use of 80Au/20Sn, or RoHS compliant solders is recommended. For applications where the average power is ≤ 1W, conductive silver epoxy may also be used. Cure per manufacturers recommended time and temperature. Typically 1 hour at 150°C.

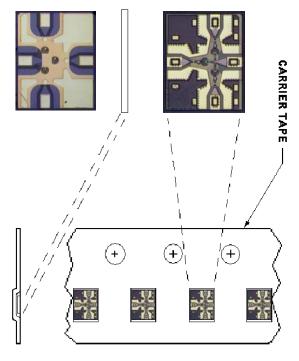
When soldering these devices to a hard substrate, a solder re-flow method is preferred. A vacuum tip pick-up tool and a force of 60 to100 grams applied to the top surface of the device while placing the chip is recommended. When soldering to soft substrates, such as Duroid, it is recommended to use a soft solder at the circuit board to mounting pad interface to minimize stress due to any TCE mismatches that may exist. Position the die so that its mounting pads are aligned with the circuit board mounting pads. Solder reflow should not be performed by causing heat to flow through the top surface of the die to the back. Since the HMIC glass is transparent, the edges of the mounting pads can be visually inspected through the die after attachment is completed.

Typical re-flow profiles for Sn60/Pb40 and RoHS compliant solders is provided in <u>Application Note M538</u>, "Surface Mounting Instructions" and can viewed on the MA-COM Technology Solutions website @ www.macomtech.com

Commitment to produce in volume is not guaranteed.



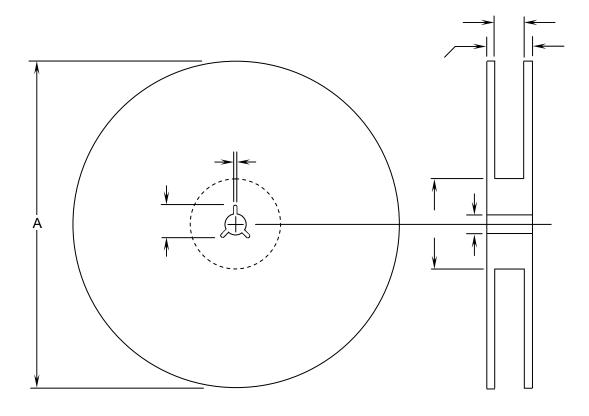
HMIC[™] Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz


Rev. V2

Pocket Tape Information

Carrier Tape Dimensions

Chip Orientation in Tape



HMIC[™] Silicon PIN Diode SP3T Switch 50 MHz - 20 GHz

Rev. V2

Reel Information

DIM	INC	HES	MM		
	MIN.	MAX.	MIN.	MAX.	
Α	6.980	7.019	177.3	178.3	
В	.059	.098	1.5	2.5	
С	.504	.520	12.8	13.2	
D	.795	.815	20.2	20.7	
N	2.146	2.185	54.5	55.5	
W ₁	.331	.337	8.4	8.55	
W_2		.567		14.4	

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.