
TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a temporary substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

1. Part number

Example: TMPxxxxxxFG TMPxxxxxxFG

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C

LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb free, notes on lead solderability have been added.

Ι

4. RESTRICTIONS ON PRODUCT USE

The previous obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

2. Package code and dimensions

Previous Part Number (in Body Text)	Previous Package Code (in Body Text)	New Part Number	New Package Code	ОТР
TMP87PP21F	P-QFP80-1420-0.80B	TMP87PP21FG	QFP80 ₇ P-1420-0.80B	_
TMP87PP21DF	P-LQFP80-1212-0.50A	TMP87PP21DFG	LQFP80-P-1212-0.50E	_

^{*:} For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device:

Lead solderability of Pb-free devices (with the G suffix)

Test	Test Conditions	Remark
Solderability	(1) Use of Lead (Pb)	Leads with over 95% solder coverage till lead forming are acceptable.

4. RESTRICTIONS ON PRODUCT USE

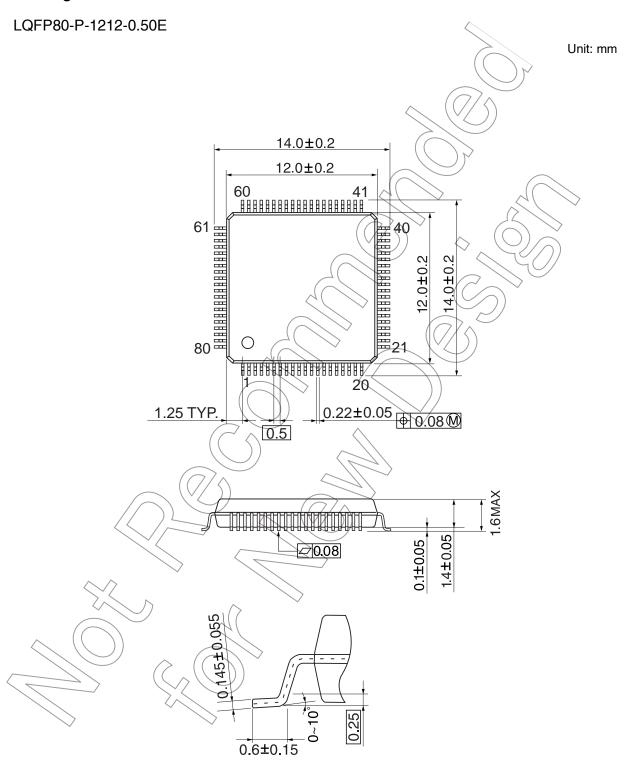
The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and (eliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as

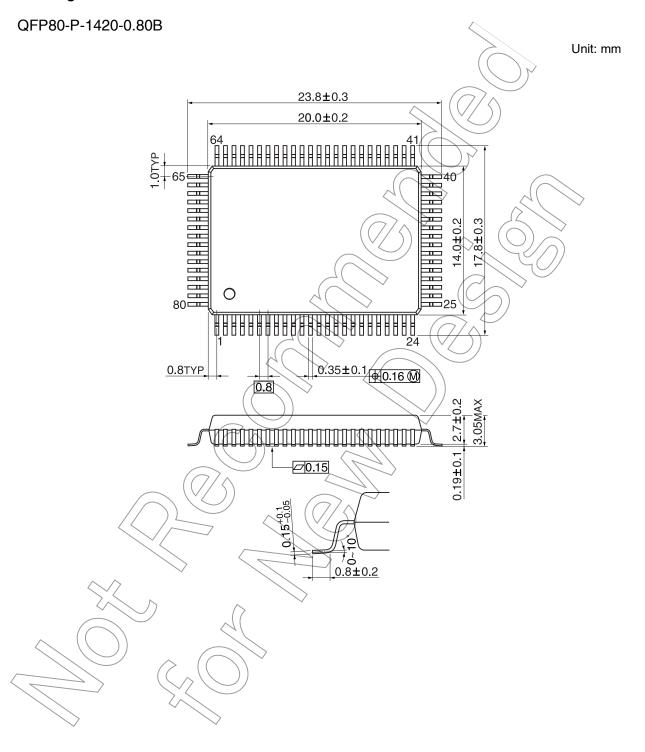
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.


- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations that
 regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring
 as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

(Annex)


Package Dimensions

III 2008-03-06

(Annex)

Package Dimensions

IV 2008-03-06

CMOS 8-Bit Microcontroller

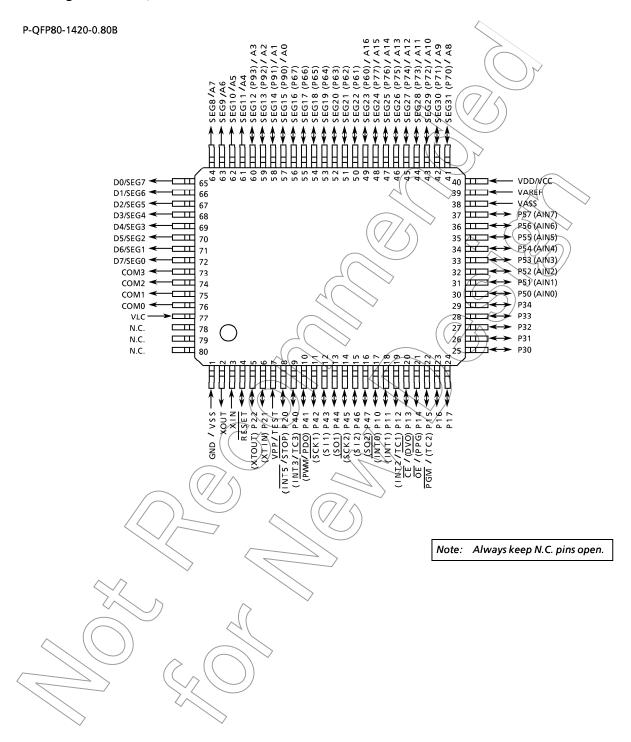
TMP87PP21F TMP87PP21DF

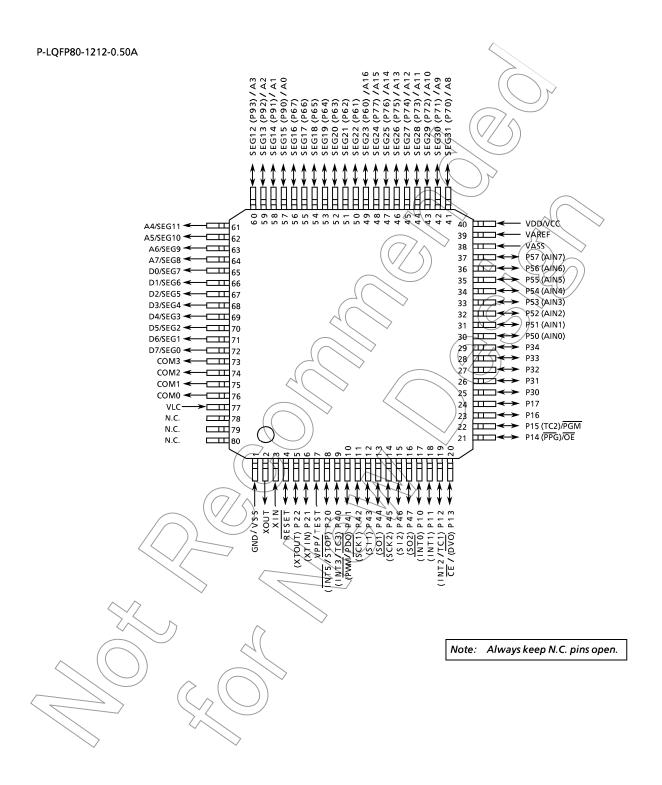
The TMP87PP21 is a One-Time PROM microcontroller with low-power 48 K x 8 bits electrically programmable read only memory for the TMP87CH21C/M21C/P21C system evaluation. The TMP87PP21 is pin compatible with the TMP87CH21C/M21C/P21C. The operations possible with the TMP87CH21C/M21C/P21C can be performed by writing programs to PROM. The TMP87PP21 can write and verify in the same way as the TC571000D using an adaptor socket BM11104/BM11105 and an EPROM programmer.

Product No.	OTP	RAM	Package	√ OTP Adapter	
TMP87PP21F	40 1/ 0 10 14 -	2 K 0 lešte	P-QFP80-1420-0.80B	BM11104	
TMP87PP21DF	48 K × 8 bits	2 K × 8 bits	P-LQFP80-1212-0.50A	BM11105	
			P-LOFPE	30-1212-0.50A	1P87PP21DF

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality, and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily migury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's


The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

Pin Assignments (Top View)

2002-10-31

Pin Functions

The TMP87PP21 has two modes: MCU and PROM.

(1) MCU mode
In this mode, the TMP87PP21 is pin compatible with the TMP87CH21C/M21C/P21C (fix the TEST pin at low level.)

(2) PROM mode

Pin Name (PROM mode)	Input/Output	Functions	Pin Name (MCU mode)
A16			P60
A15 to A8	Input	PROM address inputs	P77 to P70
A7 to A0			SEG8 to 11, P93 to P90
D7 to D0	I/O	PROM data input/outputs	SEG0/to-SEG7
CE		Chip enable signal input (active low)	P13
OE	Input	Output enable signal input (active low)	P14
PGM	pac	Program mode signal input	P15
VPP		+ 12.75 V/5 V (Program supply voltage)	TEST
VCC	Power supply	+ 6.25 V/5 V	VDD
GND	i ower supply	OV	VSS
P37 to P32, P30			133
P47 to P40			
P57 to P50		Pull-up with resistance for input processing.	
P67 to P62			
P11		~ (7/4)	
P21	10		
P31		PROM mode setting pin. Be fixed at high level.	
P61	~		
P17, P16, P12, P10 P22, P20	\mathcal{I}	>	
REȘĘT	4	PROM mode setting pin. Be fixed at low level.	
XIN	Input	\triangleright	
XQUT	Output	Connect an 8 MHz oscillator to stabilize the internal st	ate.
VAREF			
VASS	Power supply	0 V (GND)	
COM3 to COM0	Output		
VLC	LCD driver Power supply	Open	

Operational Description

The following explains the TMP87PP21 hardware configuration and operation. The configuration and functions of the TMP87PP21 are the same as those of the TMP87CH21C/M21C/P21C, except in that a one-time PROM is used instead of an on-chip mask ROM.

The TMP87PP21 is placed in the *single-clock* mode during reset. To use the dual-clock mode, the low-frequency oscillator should be turned on by executing [SET (SYSCR2). XTEN] instruction at the beginning of the program.

1. Operating Mode

The TMP87PP21 has two modes: MCU and PROM.

1.1 MCU mode

The MCU mode is activated by fixing the TEST/VPP pin at low level.

In the MCU mode, operation is the same as with the TMP87CH21C/M21C/P21C (the TEST/VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program Memory

The TMP87PP21 has a $48K \times 8$ bits (addresses 4000_H to FFFF_H in the MCU mode, addresses 14000_H to 1FFFF_H in the PROM mode) of program memory (OTP).

When the TMP87PP21 is used as a system evaluation of the TMP87CH21C/M21C/P21C, the data is written to the program storage area shown in Figure 1-1.

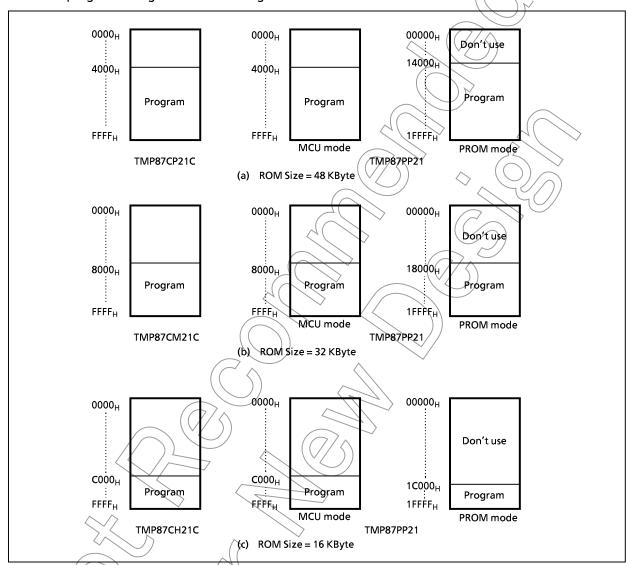


Figure 1-1. Program Storage Area

Note: Either write the data FF_H to the unused area or set the PROM programmer to access only the program storage area.

1.1.2 Data Memory

The TMP87PP21 has an on-chip 2 K \times 8 bits data memory (static RAM).

1.1.3 Input/Output Circuitry

(1) Control pins

The control pins of the TMP87PP21 are the same as those of the TMP87CH21C4M21C/P21C except that the TEST pin has no built-in pull-down resistance.

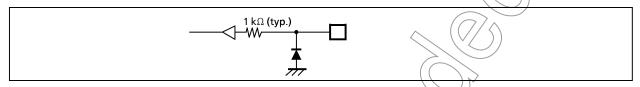


Figure 1-2. TEST pin

(2) I/O ports

The I/O circuitries of the TMP87PP21 I/O ports are the same as circuitries of the TMP87CH21C/M21C/P21C.

1.2 PROM Mode

The PROM mode is activated by setting the TEST, RESET pin and the ports P17 to P10, P22 to P20 and P31, P61 as shown in Figure 1-3. The PROM mode is used to write and verify programs with a general-purpose PROM programmer.

Note: The high-speed programming mode can be used for program operation. (Please set the high-speed programming mode according to each manual of PROM programmer.)

The TMP87PP21 is not supported an electric signature mode, so the ROM type must be set to TC571000D.

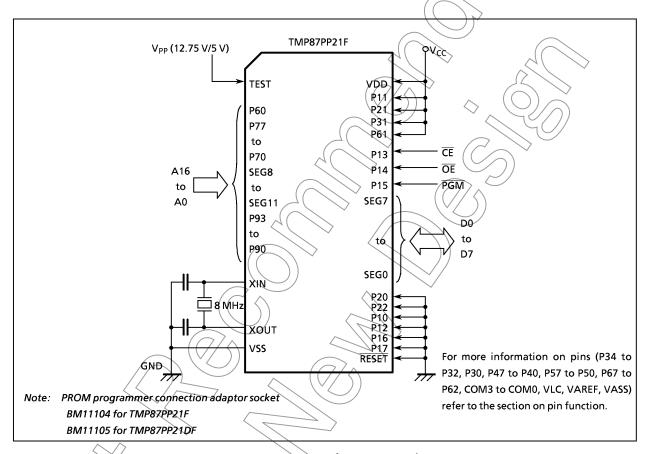
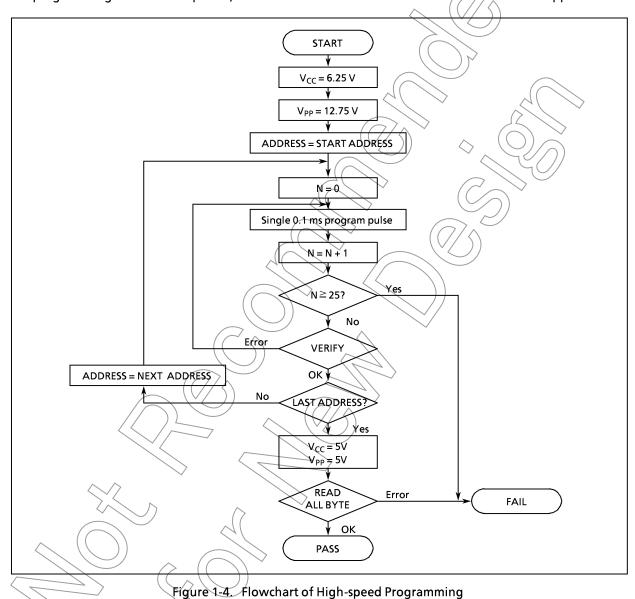



Figure 1-3. Setting for PROM Mode

1.2.1 Programming Flowchart (High-speed Programming Mode)

The high-speed programming mode is achieved by applying the program voltage (\pm 12.75 V) to the VPP pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the \overline{PGM} input. The programmed data is verified. If incorrect, another 0.1 ms program pulse is applied. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

3-21C-121

1.2.2 Writing Method for General-purpose PROM Program

(1) Adapters

BM11104: TMP87PP21F BM11105: TMP87PP21DF

(2) Adapter setting Switch (SW1) is set to side N.

(3) PROM programmer specifying

i) PROM type is specified to TC571000D.

Writing voltage: 12.75 V (high-speed program mode)

ii) Data transfer (copy) (Note 1)

In the TMP87PP21, EPROM is within the addresses 14000_H to 1FFFF_H. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in Figure 1-1.

Ex. In the block transfer (copy) mode, executed as below.

ROM capacity of 48 KB: transferred addresses 04000_H to 0FFFF_H to addresses 14000 to 1FFFF_H

iii) Writing address is specified. (Note 1)

Start address: 14000_H End address: 1FFFF_H

(4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

- Note 1: The specifying method is referred to the PROM programmer description. Either write the data FFH to the unused area or set the PROM programmer to access only the program storage area.
- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3: The TMP87PP21 does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying 12 V \pm 0.5 V to the address pin 9 (A9). The signature must not be used.

Electrical Characteristics

Absolute Maximum Ratings

 $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V_{DD}		-0.3 to 6.5	
Program Voltage	V_{PP}	TEST/V _{PP}	- 0.3 to 13.0	.,
Input Voltage	V_{IN}		$/$ 0.3 to V_{DD} + 0.3	V
Output Voltage	V _{OUT}		– 0.3 to V _{DD} + 0.3	
Output Current (Per 1 pin)	I _{OUT1}	Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41)	3.2	
•	I _{OUT2}	P41	30	
Output Current (Total)	Σ l _{OUT1}	Ports P0, P1, P2, P3, P5, P6, P7, P8, P9, P4 (except P41)	120	mA
	Σ I _{OUT2}	P41	30	
Power Dissipation [Topr = 70°C]	PD		350	mW
Soldering Temperature (time)	Tsld		260 (10 s)	
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		- 30 to 70	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	G	onditions	Min	Max	Unit
			fc = 8 MHz	NORMAL1, 2 mode	4.5		
			fc = 4.2 MHz	NORMAL1, 2 mode		5.5	
Supply Voltage	V_{DD}		10=9.2 WH2	IDLE1, 2 mode	2.7		
<			fs	SLOW mode	2.7		
	~~<		32.768 kHz	SLEEP mode			
				STOP mode	2.0		
$\langle \rangle \rangle$	V _{IH1}	Except hysteresis input	L v	_{DD} ≧4.5 V	$V_{DD} \times 0.70$		l v
Input High Voltage	V _{IH2} Hysteresis input	V _{DD} = 4.3 V		$V_{DD} \times 0.75$	V_{DD}		
	V _{IH3}		V	_{DD} <4.5 V	$V_{DD} \times 0.90$		
\wedge (()	V _{IL1}	Except hysteresis input	V _{DD} ≧ 4.5 V			$V_{DD} \times 0.30$	
Input Low Voltage	V _{IL2}	Hysteresis input	•	DD = 4.5 V	0	$V_{DD} \times 0.25$	
	V _{IL3} ((V	_{DD} <4.5 V		$V_{DD} \times 0.10$	
	fc	XIN, XOUT	V _{DD}	= 4.5 to 5.5 V	0.4	8.0	MHz
Clock Frequency	10	MIN, NOOT	V _{DD}	= 2.7 to 5.5 V	0.4	4.2	IVIIIZ
~	fs	XTIN, XŤOUT			30.0	34.0	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL1/2 mode and IDLE1/2 mode.

DC Characteristics

 $(V_{SS} = 0 \text{ V, Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		(-	0.9	_	٧
	I _{IN1}	TEST		>^			
Input Current	I _{IN2}	Open drain ports and tri-state ports	V _{DD} = 5.5 V, V _{IN} = 5.5 V/0 V	<u>)</u>	_	± 2	μΑ
	I _{IN3}	RESET, STOP					
Input Low Current	I_{IL}	Push-pull ports	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	_	_	– 2	mA
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage Current	I _{LO}	Open drain ports Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V}$	- (2	μΑ
Output High Voltage	V _{OH1}	Push-pull ports P4 ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -200 \mu\text{A}$	2.4	D) - /_	-	
Output High voltage	V_{OH2}	Tri- state ports P1, P5 ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1		/	v
Output Low Voltage	V _{OL}	Except XOUT and P41	$V_{DD} = 4.5 \text{ V, } I_{OL} = 1.6 \text{ mA}$	-)	0.4	
Output Low Current	I _{OL3}	P41	V _{DD} = 4.5 V, V _{OL} = 1.0 V	()	20	-	
Supply Current in NORMAL 1 , 2 mode			V _{DD} = 5.5 V fc = 8 MHz	<u></u>	12	18	mA
Supply Current in IDLE 1, 2 mode			fs = 32.768 kHz V _{IN} = 5.3 V/0.2 V	_	6	10	
Supply Current in SLOW mode	I _{DD}		V _{DD} = 3.0 V fs = 32.768 kHz	_	30	60	
Supply Current in SLEEP mode			V _{IN} = 2.8 V/0.2 V LCD driver is not enable	_	15	30	μΑ
Supply Current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{1N} = 5.3 \text{ V}/0.2 \text{ V}$	_	0.5	10	
Segment Output Low Resistance	Ros1	SEG31 to SEG0			20		
Common Output Low/ Resistance	R _{OC1}	COM3 to COM0			20		
Segment Output High Resistance	R _{OS2}	SEG31 to SEG0	V _{DD} = 5 V		200		kΩ
Common Output High Resistance	R _{OC2}	COM3 to COM0	$V_{DD} - V_{LC} = 3 V$	_	200		
	Vo2/3	_()		3.8	4.0	4.2	
Segment/Common Output Voltage	V _{O 1/2}	SEG31 to SEG0 and COM3 to COM0		3.3	3.5	3.7	v
	V _{O 1/3}			2.8	3.0	3.2	

Note 1: Typical values show those at Topr = 25°C, $V_{DD} = 5 V$.

Note 2: Input Current; The current through pull-up or pull-down resistor is not included.

Note 3: I_{DD}: Except for I_{REF}

Note 4: Output resistors Ros, Roc indicate "on" when switching levels.

Note 5: $V_{O2/3}$ indicates an output voltage at the 2/3 level when operating in the 1/4 or 1/3 duty mode.

Note 6: $V_{O1/2}$ indicates an output voltage at the 1/2 level when operating in the 1/2 duty or static mode.

Note 7: $V_{O1/3}$ indicates an output voltage at the 1/3 level when operating in the 1/4 or 1/3 duty mode.

Note 8: When using LCD, it is necessary to consider values of Ros1/2 and Roc1/2.

Note 9: Times for SEG/COM output switching on: Ros1, Roc1: 26/fc, 2/fs (s)

Ros2, Roc2: 1/(n, f_F)

(1/n: duty, f_F : frame frequency)

AD Conversion Characteristics

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Reference Voltage	V_{AREF}	V > 2 5 V	2.7		$^{\triangleright}$ V _{DD}	
Analog Reference Voltage	V _{ASS}	$V_{AREF} - V_{ASS} \ge 2.5 V$	V _{SS}	<u></u>	1.5	٧
Analog Input Voltage	V_{AIN}		VASS	// {}	V _{AREF}	
Analog Supply Current	I _{REF}	$V_{AREF} = 5.5 \text{ V}, \ V_{ASS} = 0.0 \text{ V}$	7	0.5	1.0	mΑ
Nonlinearity Error		$V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$		> -	± 1	
Zero Point Error		V _{AREF} = 5.000 V V _{ASS} = 0.000 V	<u> </u>	_	± 1	LSB
Full Scale Error		or $V_{DD} = 2.7 \text{ V}, V_{SS} = 0.0 \text{ V}$		- <	±	LSB
Total Error		V _{AREF} = 2.700 V V _{ASS} = 0.000 V	>>-	-8	±2	

Note: Quantizing error is not contained in those errors.

AC Characteristics - 1

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$

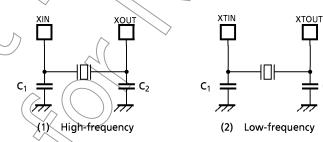
Parameter	Symbol	Conditions	Min		Max	Unit
Machine Cycle Time		In NORMAL 1, 2 mode In IDLE 1, 2 mode	0.5	// <u>-</u>	10	
	t _{cy}	In SLOW mode In SLEEP mode	117.6	_	133.3	μS
High Level Clock Pulse Width	t _{WCH}	For external clock operation	62.5			25
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 8 MHz	02.5	I	İ	ns
High Level Clock Pulse Width	twsH	For external clock operation	14.7			
Low Level Clock Pulse Width	(tws/ <	(XTIN input), fs = 32.768 kHz	14.7	ı	ı	μS

AC Characteristics - 2

 $(V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Parameter		Conditions	Min	Тур.	Max	Unit
$\langle \cdot \rangle$		In NORMAL 1, 2 mode	0.05		10	
		In IDLE 1, 2 mode	0.95	_	10	_
Machine Cycle Time	t _{cy}	In SLOW mode	117.6		422.2	μS
		In SLEEP mode	117.6	-	133.3	
High Level Clock Pulse Width	twch	For external clock operation	110			
Low Level Clock Pulse Width	∕ twc⊾	(XIN input), fc = 4.2 MHz	110	ı	ı	ns
High Level Clock Pulse Width	twsh	For external clock operation	14.7			
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	ı	ı	μS

Recomended Oscillating Condition-1

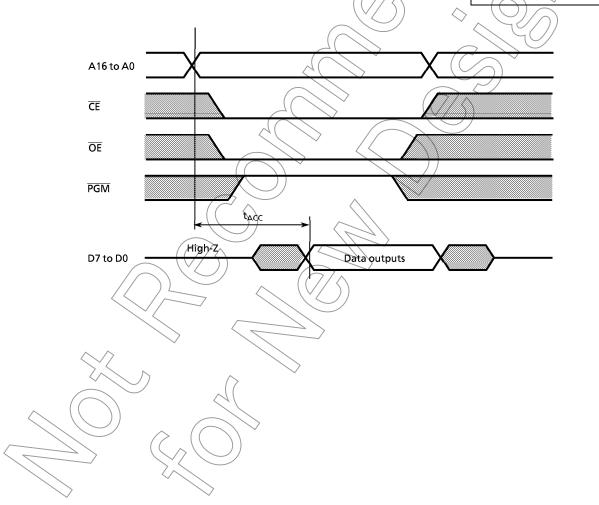

 $(VSS = 0 \text{ V}, VDD = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70^{\circ}\text{C})$

Parameter	Osillator	Frequency	Recommender	Recomm Cond		
		, ,				
			KYOCERA	KBR8.0M	30 pF	30 pF
			Standard/Lead Type	CSA8.00MTZ	built-in	built-in
			(MURATA)	CST8.00MTW	30 pF	30 pF
	Ceramic Resonator	8 MHz	Standard/SMP Type (MURATA)	CSAC8.00MT	30 pF	30 pF
High fraguency			Standard/Small ChipType	CSTC8:00MT	built-in	built-in
High-frequency			(MURATA)		30 pF	30 pF
		4 MHz	KYOCERA	KBR4.0MS	30 pF	30 pF
		8 MHz	тоуосом	210B 8.0000		
	Crystal Oscillator	4 MHz	тоуосом	204B 4.0000	20 pF	20 pF
Low-frequency	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15 pF	15 pF

Recomended Oscillating Condition-2

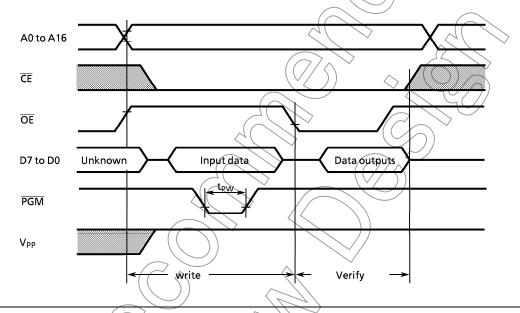
 $(VSS = 0 \text{ V}, \text{VDD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C}$

Parameter Osillator		Frequency Recommender Os		Oscillator	Recommended Condition	
		. ((C ₁	C ₂
			Standard/Lead Type	CSA4.00MG	30 pF	30 pF
	,		(MURATA)	CST4.00MGW	built-in 30 pF	built-in 30 pF
High-frequency	Ceramic Resonator	4MHz	Standard/SMD Type (MURATA)	CSA4.00MGC CSAC4.00MGCM	30 pF	30 pF
			I (O/A)	CSTC4.00MG	built-in	built-in
	-	$(\vee \langle \rangle)$		30 pF	30 pF	
			Standard/Small Chin Type	CSTCS 4 DONAC	built-in	built-in
			Standard/Small Chip Type	C31C34.00IVIG	10 pF	10 pF



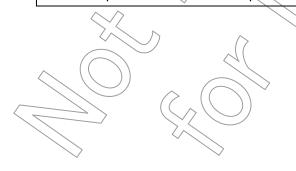
Note1: When used in high electric field such as a picture tube, the package is recommended to be electrically shielded to maintain a regular operation.

Note2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;


http://www.murata.co.jp/search/index.html

$(V_{SS} = 0 V)$ DC/AC Characteristics (PROM mode) (1) Read Operation Max Conditions Unit Parameter Symbol Min Typ. Input High Voltage V_{IH4} V_{CC} × 0.7 V_{CC} Input Low Voltage V_{IL4} $V_{CC}\,{\times}\,0.12$ ٧ **Power Supply Voltage** V_{CC} 4.75 5.0 5.25 **Program Power Supply Voltage** $V_{PP} \\$ 1.5 tcyc + 300 Address Access Time $V_{CC} = 5.0 \pm 0.25 \text{ V}$ $\mathsf{t}_{\mathsf{ACC}}$ ns Note: tcyc = 500 ns at 8 MHz

(2) High-Speed Programming Operation


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage	V _{IH4}		V _{CC} × 0.7	-	V _{CC}	
Input Low Voltage	V _{IL4}		0	(-(V _{CC} × 0.12	
Power Supply Voltage	V _{CC}		6.0	6.25	6.5	V
Program Power Supply Voltage	V _{PP}		12.5	12.75	13.0	
Initial Program Pulse Width	t _{PW}	V _{CC} = 6.0 V	0.095	0.1	0.105	ms

Note1: When V_{cc} power supply is turned on or after, V_{pp} must be increased. When V_{cc} power supply is turned off or before, V_{pp} must be increased.

Note2: The device must not be set to the EPROM programmer or picked op from it under applying the program voltage (12.75 V \pm 0.25 V = V) to the V_{pp} pin as the device is damaged.

Note3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.