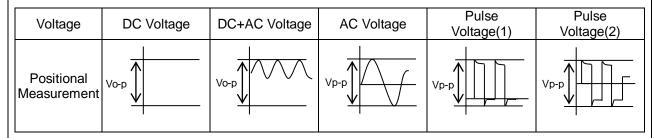


Reference Specification

Type KX
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

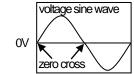
When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.


(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

EGD08E

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

$oldsymbol{\Lambda}$ note

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type KX used for General Electric equipment.

Type KX is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1343810	
VDE	IEC60384-14, EN60384-14	40002831	
BSI	EN60065 (8.8,14.2), IEC60384-14, EN60384-14	KM 37901	
SEMKO		1612604	X1:440
DEMKO	JE00000444	D-05321	Y1:300
FIMKO	IEC60384-14, EN60384-14 —	FI 29602	
NEMKO	L1400304-14	P16221232	
ESTI		18.0079	
IMQ	EN60384-14 V4069		
CQC	IEC60384-14	CQC12001079941	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

-40 ~ +125°C

2-2. Part number configuration

ex.) <u>DE1</u>	E3	KX	472	M	_A4	B	P01F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

$$47 \times 10^2 = 4700 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

•	,040								
	Code	Lead style							
A* Vertical crimp long type									
	B*	Vartical arims abort tune	Lead Length: 5mm						
	J*	Vertical crimp short type	Lead Length: 3.5mm						
	N*	Vertical crimp taping type							

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

ona or parenambon	•
Code	Specification
P01F	 Rated voltage : AC300V(r.m.s.) Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm) Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

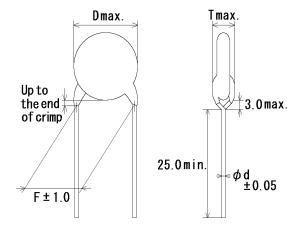
3. Marking

Nominal capacitance : 3 digit system

Capacitance tolerance : Code
Type name : KX
Rated voltage mark : 300~
Class code : X1Y1
Halogen free mark : HF

Manufacturing year : Letter code(The last digit of A.D. year.)

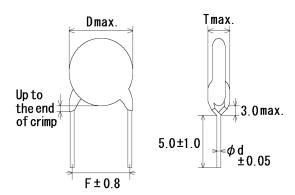
Manufacturing month : Code


Company name code : (Made in Thailand)

(Example)

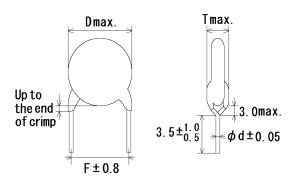
472M KX300~ X1Y1 IF 5D (15

4. Part number list


·Vertical crimp long type (Lead code:A*)

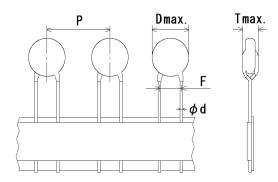
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

Τ.Ο	Сар.	Cap.	0.44.44.5	Maria Bartharia	Din	nensi	Lead	Pack		
T.C.	(pF)	tol.	Customer Part Number	Murata Part Number	D	Т	F	d	code	qty. (pcs)
В	100	±10%		DE1B3KX101KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	150	±10%		DE1B3KX151KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	220	±10%		DE1B3KX221KA4BP01F	8.0	7.0	10.0	0.6	A4	250
В	330	\pm 10%		DE1B3KX331KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	470	\pm 10%		DE1B3KX471KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	680	\pm 10%		DE1B3KX681KA4BP01F	8.0	7.0	10.0	0.6	A4	250
Е	1000	$\pm 20\%$		DE1E3KX102MA4BP01F	7.0	7.0	10.0	0.6	A4	250
Е	1500	$\pm 20\%$		DE1E3KX152MA4BP01F	8.0	7.0	10.0	0.6	A4	250
Е	2200	$\pm 20\%$		DE1E3KX222MA4BP01F	9.0	7.0	10.0	0.6	A4	250
Е	3300	\pm 20%		DE1E3KX332MA4BP01F	10.0	7.0	10.0	0.6	A4	250
Е	4700	\pm 20%		DE1E3KX472MA4BP01F	12.0	7.0	10.0	0.6	A4	200


Vertical crimp short type (Lead code:B*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Cap.	Cap. Cap.	Сар. Сар.	L Customer Part Number L		Dir	nensi	m)	Lead	Pack
T.C.	(pF)	tol.	Customer Part Number	Murata Part Number	D	Т	F	d	code	qty. (pcs)
В	100	±10%		DE1B3KX101KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	150	±10%		DE1B3KX151KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	220	±10%		DE1B3KX221KB4BP01F	8.0	7.0	10.0	0.6	B4	500
В	330	±10%		DE1B3KX331KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	470	\pm 10%		DE1B3KX471KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	680	\pm 10%		DE1B3KX681KB4BP01F	8.0	7.0	10.0	0.6	B4	500
Е	1000	$\pm 20\%$		DE1E3KX102MB4BP01F	7.0	7.0	10.0	0.6	B4	500
Е	1500	$\pm 20\%$		DE1E3KX152MB4BP01F	8.0	7.0	10.0	0.6	B4	500
Е	2200	$\pm 20\%$		DE1E3KX222MB4BP01F	9.0	7.0	10.0	0.6	B4	500
Е	3300	\pm 20%		DE1E3KX332MB4BP01F	10.0	7.0	10.0	0.6	B4	500
Е	4700	\pm 20%		DE1E3KX472MB4BP01F	12.0	7.0	10.0	0.6	B4	250


·Vertical crimp short type
 (Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

OTHE THE									
Cap.	Cap. Cap.	Customer Part Number	Murata Dart Number	Dimension (mm)				Lead	Pack
(pF)	tol.	Customer Fart Number	Murata Part Number	D	Т	F	d	code	qty. (pcs)
100	±10%		DE1B3KX101KJ4BP01F	7.0	7.0	10.0	0.6	J4	500
150	±10%		DE1B3KX151KJ4BP01F	7.0	7.0	10.0	0.6	J4	500
220	±10%		DE1B3KX221KJ4BP01F	8.0	7.0	10.0	0.6	J4	500
330	$\pm 10\%$		DE1B3KX331KJ4BP01F	7.0	7.0	10.0	0.6	J4	500
470	$\pm 10\%$		DE1B3KX471KJ4BP01F	7.0	7.0	10.0	0.6	J4	500
680	$\pm 10\%$		DE1B3KX681KJ4BP01F	8.0	7.0	10.0	0.6	J4	500
1000	$\pm 20\%$		DE1E3KX102MJ4BP01F	7.0	7.0	10.0	0.6	J4	500
1500	$\pm 20\%$		DE1E3KX152MJ4BP01F	8.0	7.0	10.0	0.6	J4	500
2200	$\pm 20\%$		DE1E3KX222MJ4BP01F	9.0	7.0	10.0	0.6	J4	500
3300	$\pm 20\%$		DE1E3KX332MJ4BP01F	10.0	7.0	10.0	0.6	J4	500
4700	\pm 20%		DE1E3KX472MJ4BP01F	12.0	7.0	10.0	0.6	J4	250
	(pF) 100 150 220 330 470 680 1000 1500 2200 3300	$\begin{array}{c c} (\text{pF}) & \text{tol.} \\ \hline 100 & \pm 10\% \\ \hline 150 & \pm 10\% \\ \hline 220 & \pm 10\% \\ \hline 330 & \pm 10\% \\ \hline 470 & \pm 10\% \\ \hline 680 & \pm 10\% \\ \hline 1000 & \pm 20\% \\ \hline 1500 & \pm 20\% \\ \hline 2200 & \pm 20\% \\ \hline 3300 & \pm 20\% \\ \hline \end{array}$	(pF) tol. Customer Part Number 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Part Number Murata Part Number 100 ±10% DE1B3KX101KJ4BP01F 150 ±10% DE1B3KX221KJ4BP01F 220 ±10% DE1B3KX331KJ4BP01F 330 ±10% DE1B3KX331KJ4BP01F 470 ±10% DE1B3KX471KJ4BP01F 680 ±10% DE1B3KX681KJ4BP01F 1000 ±20% DE1E3KX102MJ4BP01F 1500 ±20% DE1E3KX222MJ4BP01F 2200 ±20% DE1E3KX332MJ4BP01F 3300 ±20% DE1E3KX332MJ4BP01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 100 ±10% DE1B3KX101KJ4BP01F 7.0 150 ±10% DE1B3KX151KJ4BP01F 7.0 220 ±10% DE1B3KX221KJ4BP01F 8.0 330 ±10% DE1B3KX331KJ4BP01F 7.0 470 ±10% DE1B3KX471KJ4BP01F 7.0 680 ±10% DE1B3KX681KJ4BP01F 8.0 1000 ±20% DE1E3KX102MJ4BP01F 7.0 1500 ±20% DE1E3KX222MJ4BP01F 9.0 3300 ±20% DE1E3KX332MJ4BP01F 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T 100 ±10% DE1B3KX101KJ4BP01F 7.0 7.0 150 ±10% DE1B3KX151KJ4BP01F 7.0 7.0 220 ±10% DE1B3KX221KJ4BP01F 8.0 7.0 330 ±10% DE1B3KX331KJ4BP01F 7.0 7.0 470 ±10% DE1B3KX471KJ4BP01F 7.0 7.0 680 ±10% DE1B3KX681KJ4BP01F 8.0 7.0 1000 ±20% DE1E3KX102MJ4BP01F 7.0 7.0 1500 ±20% DE1E3KX222MJ4BP01F 9.0 7.0 3300 ±20% DE1E3KX332MJ4BP01F 10.0 7.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F 100 ±10% DE1B3KX101KJ4BP01F 7.0 7.0 10.0 150 ±10% DE1B3KX21KJ4BP01F 7.0 7.0 10.0 220 ±10% DE1B3KX331KJ4BP01F 7.0 7.0 10.0 330 ±10% DE1B3KX471KJ4BP01F 7.0 7.0 10.0 470 ±10% DE1B3KX681KJ4BP01F 8.0 7.0 10.0 680 ±10% DE1B3KX681KJ4BP01F 8.0 7.0 10.0 1000 ±20% DE1E3KX102MJ4BP01F 7.0 7.0 10.0 2200 ±20% DE1E3KX222MJ4BP01F 9.0 7.0 10.0 3300 ±20% DE1E3KX332MJ4BP01F 10.0 7.0 10.0	Cap. (pF) tol. Customer Part Number Murata Part Number D T F d D D T F d DE1B3KX101KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX151KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX221KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX221KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX331KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX471KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX471KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX471KJ4BP01F 7.0 7.0 10.0 0.6 DE1B3KX681KJ4BP01F 8.0 7.0 10.0 0.6 DE1E3KX102MJ4BP01F 7.0 7.0 10.0 0.6 DE1E3KX152MJ4BP01F 8.0 7.0 10.0 0.6 DE1E3KX152MJ4BP01F 9.0 7.0 10.0 0.6 DE1E3KX222MJ4BP01F 9.0 7.0 10.0 0.6 DE1E3KX222MJ4BP01F 9.0 7.0 10.0 0.6 DE1E3KX332MJ4BP01F 9.0 7.0 10.0 0.6	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d code 100 ±10% DE1B3KX101KJ4BP01F 7.0 7.0 10.0 0.6 J4 150 ±10% DE1B3KX151KJ4BP01F 7.0 7.0 10.0 0.6 J4 220 ±10% DE1B3KX221KJ4BP01F 8.0 7.0 10.0 0.6 J4 330 ±10% DE1B3KX331KJ4BP01F 7.0 7.0 10.0 0.6 J4 470 ±10% DE1B3KX471KJ4BP01F 7.0 7.0 10.0 0.6 J4 680 ±10% DE1B3KX102MJ4BP01F 8.0 7.0 10.0 0.6 J4 1000 ±20% DE1E3KX152MJ4BP01F 8.0 7.0 10.0 0.6 J4 2200 ±20% DE1E3KX222MJ4BP01F 9.0 7.0 10.0 0.6 J4 3300 ±20% DE1E3KX332MJ4BP01F 10.0 7.0 10.0 0.6

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

Oint : init										
Сар.	Сар.	Customer Part Number	Murata Part Number	D	imer	Lead	Pack			
(pF)	tol.	Customer Fart Number	Murata Fart Number	D	Τ	F	d	Р	code	qty. (pcs)
100	±10%		DE1B3KX101KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
150	±10%		DE1B3KX151KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
220	$\pm 10\%$		DE1B3KX221KN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
330	$\pm 10\%$		DE1B3KX331KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
470	$\pm 10\%$		DE1B3KX471KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
680	$\pm 10\%$		DE1B3KX681KN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
1000	$\pm 20\%$		DE1E3KX102MN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
1500	$\pm 20\%$		DE1E3KX152MN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
2200	$\pm 20\%$		DE1E3KX222MN4AP01F	9.0	7.0	10.0	0.6	25.4	N4	500
3300	±20%		DE1E3KX332MN4AP01F	10.0	7.0	10.0	0.6	25.4	N4	500
4700	±20%		DE1E3KX472MN4AP01F	12.0	7.0	10.0	0.6	25.4	N4	500
	150 220 330 470 680 1000 1500 2200 3300	(pF) tol. 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fait Number 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number Interior Fart Number 100 ±10% DE1B3KX101KN4AP01F 150 ±10% DE1B3KX221KN4AP01F 220 ±10% DE1B3KX331KN4AP01F 470 ±10% DE1B3KX471KN4AP01F 680 ±10% DE1B3KX681KN4AP01F 1000 ±20% DE1E3KX102MN4AP01F 1500 ±20% DE1E3KX222MN4AP01F 2200 ±20% DE1E3KX332MN4AP01F 3300 ±20% DE1E3KX332MN4AP01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number 100 ±10% DE1B3KX101KN4AP01F 7.0 150 ±10% DE1B3KX2151KN4AP01F 7.0 220 ±10% DE1B3KX221KN4AP01F 8.0 330 ±10% DE1B3KX331KN4AP01F 7.0 470 ±10% DE1B3KX471KN4AP01F 7.0 680 ±10% DE1B3KX681KN4AP01F 8.0 1000 ±20% DE1E3KX102MN4AP01F 7.0 1500 ±20% DE1E3KX222MN4AP01F 9.0 3300 ±20% DE1E3KX332MN4AP01F 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 1500 ±20% DE1E3KX222MN4AP01F 9.0 7.0 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 10.0 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 680 ±10% DE1B3KX102MN4AP01F 8.0 7.0 10.0 1000 ±20% DE1E3KX152MN4AP01F 8.0 7.0 10.0 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 10.0 0.6 330 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 0.6 470 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 680 ±10% DE1B3KX102MN4AP01F 8.0 7.0 10.0 0.6 1500 ±20% DE1E3KX152MN4AP01F 8.0 7.0 10.0 0.6 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0 0.6	(pF) tol. Consister Fait Number Invalidate Fait Number D T F d P 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 25.4 150 ±10% DE1B3KX221KN4AP01F 7.0 7.0 10.0 0.6 25.4 220 ±10% DE1B3KX221KN4AP01F 8.0 7.0 10.0 0.6 25.4 330 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 0.6 25.4 470 ±10% DE1B3KX681KN4AP01F 7.0 7.0 10.0 0.6 25.4 680 ±10% DE1B3KX102MN4AP01F 8.0 7.0 10.0 0.6 25.4 1000 ±20% DE1E3KX152MN4AP01F 8.0 7.0 10.0 0.6 25.4 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 25.4 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0 <td< td=""><td>Cap. (pF) Customer Part Number Murata Part Number D T F d P 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 220 ±10% DE1B3KX221KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 470 ±10% DE1B3KX681KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 25.4 N4 3300<!--</td--></td></td<>	Cap. (pF) Customer Part Number Murata Part Number D T F d P 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 220 ±10% DE1B3KX221KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 470 ±10% DE1B3KX681KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 25.4 N4 3300 </td

		d 4 a a 4 11 1		ce only	
	pecification and				Toot make a
No. 1	Iter Appearance and di		Specification No marked defect on ap form and dimensions. Please refer to [Part nur	pearance	Test method The capacitor should be inspected by naked eyes for visible evidence of defect. Dimensions should be measured with slide calipers.
2	Marking		To be easily legible.	nber nstj.	The capacitor should be inspected by naked eyes.
3	Dielectric strength	Between lead wires	No failure.		The capacitor should not be damaged when AC4000V(r.m.s.)<50/60Hz> is applied between the lead wires for 60 s.
		Body insulation	No failure.		First, the terminals of the capacitor should be connected together. Then, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC4000V (r.m.s.)<50/60Hz> is applied for 60 s between the capacitor lead wires and metal balls.
4	Insulation Resistan	nce (I.R.)	10 000MΩ min.		The insulation resistance should be measured with DC500 \pm 50V within 60 \pm 5 s of charging. The voltage should be applied to the capacitor through a resistor of 1M Ω .
5	Capacitance		Within specified tolerand	ce.	The capacitance should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max
6	Dissipation Factor	(D.F.)	2.5% max.		The dissipation factor should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max
7	Temperature characteristic		Char. B: Within ±10 % Char. E: Within +20/-5 (Temp. range: -25 to +8	55%	The capacitance measurement should be made at each step specified in Table.
			St Temp		1 2 3 4 5 20±2 -25±2 20±2 85±2 20±2
8	Active flammability		The cheese-cloth should on fire.	d not be	The capacitors should be individually wrapped in at least one but more than two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 s. The UAc should be maintained for 2min after the last discharge. C1,2 : 1μF±10%, C3: 0.033μF±5% 10kV L1 to L4: 1.5mH±20% 16A Rod core choke R : 100Ω±2%, Ct: 3μF±5% 10kV UAc : UR ±5% UR: Rated voltage Cx : Capacitor under test F : Fuse, Rated 10A Ut : Voltage applied to Ct
			1		ı

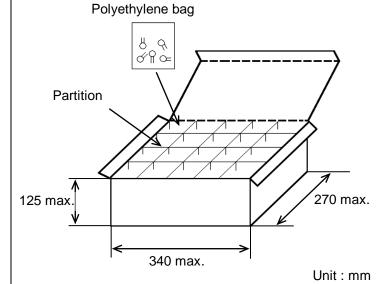
			Reference only	
No.	Item		Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending	-	capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
		Bending		capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
10	Vibration	Appearance	No marked defect.	in the opposite direction. The capacitor should be firmly soldered to the
10	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in
				total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in
				3 mutually perpendicular directions.
11	Solderability of leads	<u> </u>	Lead wire should be soldered	The lead wire of a capacitor should be dipped into a
	•		With uniformly coated on the	ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth of
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires. Temp. of solder:
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
				235±5°C H63 Eutectic Solder
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change I.R.	1000MΩ min.	(In case of 260±5°C: 10±1 s) The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		- Constitution
				Thermal Capacitor insulating
				1.5 to 2.0mm
				Molten solder
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at *1room condition for 24±2 h
				before initial measurements.
				Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
		change	1000140	Then, as in figure, the lead wires should be
		I.R.	1 000MΩ min. Per item 3	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 s.
		Dielectric strength	rei ileiii 3	
		3 55		Thermal Capacitor insulating
				1.5
				- = - + to 2.0mm
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
				*1room condition for 24±2 h before initial measurements.
				Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
*1 "roo	om condition" Tempera	ature: 15 to 35°C	, Relative humidity: 45 to 75%, Atmos	pheric pressure: 86 to 106kPa

No.	Item	1	Specification	Test method			
14	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied flame			
	l'idille test		as follows.	for 15 s. and then removed for 15 s until 5 cycle.			
				<u>.</u>			
			Cycle Time	Capacitor			
			1 to 4 30 s max.				
			5 60 s max.				
			0 000 111600	Gas Burner			
				1 Sas Burner			
15	Passive flammability		The burning time should not be	The capacitor under test should be held in the flame			
			exceeded the time 30 s.	in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm			
			The tissue paper should not				
			ignite.				
				Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm			
				Outside Dia. 0.5±0.1mm Outside Dia. 0.9mm max.			
				Gas: Butane gas Purity 95% min.			
				. —			
				Capacitor			
				About 8mm			
				Gas burner — Flame			
				45° 200±5mm			
				—————————————————————————————————————			
				About 10mm thick board			
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to			
	(Under steady	Capacitance	Char. B: Within ±10%	95% relative humidity.			
	state)	change	Char. E: Within ±15%				
		D.F.	5.0% max.	Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.			
				2 n at "room condition.			
		I.R.	3000MΩ min.				
		Dielectric	Per item 3				
		strength					
17	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500±12 h at 40±2°C in			
		Capacitance	Char. B: Within ±10%	90 to 95% relative humidity.			
		change D.F.	Char. E: Within ±15% 5.0% max.	Post-treatment : Capacitor should be stored for 1 to			
		D.F.	3.0 /0 Hldx.	2 h at *1 room condition.			
		I.R.	3000MΩ min.	1			
		Dielectric	Per item 3	1			
		strength					
*1 "ro	om condition" Temper	ature: 15 to 35°C	Relative humidity: 45 to 75% Atmost	pheric pressure: 86 to 106kPa			

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

lo.	Item	<u> </u>	Specification			Test m	ethod			
18	Life	Appearance	No marked defect.	Impulse	Impulse voltage					
	-	Capacitance	Within ±20%	Each individual capacitor should be subject				ubjected to a		
		change		8kV impulses for three times. Then the capacit						
		I.R.	3000 Μ Ω min.	are applied to life test.						
		Dielectric	Per item 3	Front time (T1) = 1.7 μ s=1.67T Time to half-value (T2) = 50 μ s						
		strength								
		ou or gur								
				0 T t						
				T2						
				The capacitors are placed in a circulating air oven for a period of 1000 h. The air in the oven is maintained at a temperature of 125 12/10 °C, and relative hymidity of 50% may						
					of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC510V(r.m.s.)<50/60Hz> alternating voltage					
						icy, except t				
				the volta	age is inc	reased to A	C1000V(r.m.s.) for 0.1 s		
							(
				Post-tre	eatment :	Capacitor	should be	e stored for 1 to		
_						2 h at *1ro	om condit	ion.		
9	Temperature and	Appearance	No marked defect.	The capacitor should be subjected to 5 temperature						
	immersion cycle	Capacitance	Char. B: Within ±10%	cycles,	then cons	secutively to	2 immer	sion cycles.		
		change	Char. E : Within ±20% 5.0% max.							
				<tempe< td=""><td>erature cy</td><td>/cle></td><td></td><td></td></tempe<>	erature cy	/cle>				
		D.F.			Step	Temperatu	re(°C)	Time		
					1	-40+0/		30 min		
		I.R.	3000M $Ω$ min.		2	Room te	mp.	3 min		
		Dielectric	Per item 3		3	+125+3		30 min		
		strength			4	Room te	mp.	3 min		
								ycle time : 5 cy		
							O;	yole time . 5 cy		
				<lmmei< td=""><td>sion cycle</td><td>e></td><td></td><td></td></lmmei<>	sion cycle	e>				
					olon oyon	1		Immersion		
				Step	Step Temperature(°C)		Time	water		
								Clean		
				1	+65	5+5/-0	15 min	water		
								Salt		
				2	0)±3	15 min	water		
				1		L		1 0		
							C	ycle time : 2 cy		
				Due tue						
				Pre-treatment: Capacitor should be stored at 85±2°C for 1 h, then placed at						
						*1room co	11011101110	. ∠4⊥∠ II.		
				Post-tra	atment .	Canacitor	should be	e stored for 4 to		
				1 331-116	Post-treatment: Capacitor should 24 h at *1room of			dition		

6. Packing specification

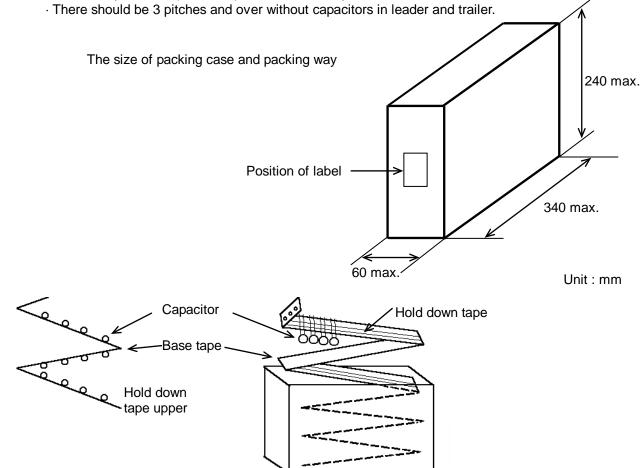

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = Packing quantity \times n

*1 : Please refer to [Part number list].

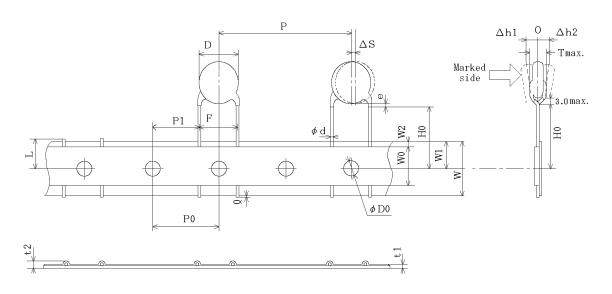
*2 : Standard n = 20 (bag)



Note)

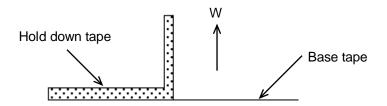
The outer package and the number of outer packing be changed by the order getting amount.

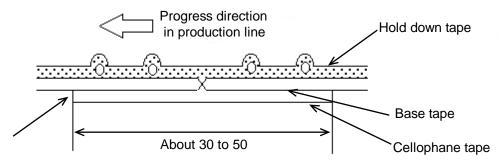
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- · When body of the capacitor is piled on other body under it.

7. Taping specification

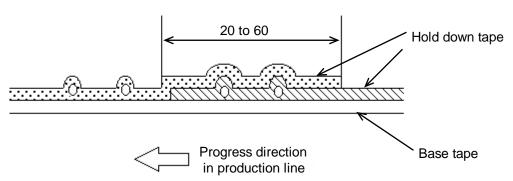
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


1	T	Offit . IIIIII		
Code	Dimensions	Remarks		
Р	25.4±2.0			
P0	12.7±0.3			
F	10.0±1.0			
P1	7.7±1.5			
D	Please refer to [Part number list].			
ΔS	0±2.0	They include deviation by lead bend .		
W	18.0±0.5			
W1	9.0±0.5	Deviation of tape width direction		
ЦΛ	19 O ^{2.0}			
но	16.0± ₀			
Q	+0.5~-1.0			
φ D 0	4.0±0.1			
φd	0.60±0.05			
t1	0.6±0.3	The control of the left decree 4 to 1 to		
t2	1.5 max.	They include hold down tape thickness.		
∆h1	2.0 0.1			
∆h2				
L	11.0± _{1.0}			
W0	11.5 min.			
W2	1.5±1.5			
е	Up to the end of crimp			
Т	Please refer to [Part number list].			
	P P0 F P1 D ΔS W W1 H0 Q φD0 φd t1 t2 Δh1 Δh2 L W0 W2 e	P 25.4 ± 2.0 P0 12.7 ± 0.3 F 10.0 ± 1.0 P1 7.7 ± 1.5 D Please refer to [P		

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.